1
|
Agarwal M, Bhaskar A, Singha B, Mukhopadhyay S, Pahuja I, Singh A, Chaturvedi S, Agarwal N, Dwivedi VP, Nandicoori VK. Depletion of essential mycobacterial gene glmM reduces pathogen survival and induces host-protective immune responses against tuberculosis. Commun Biol 2024; 7:949. [PMID: 39107377 PMCID: PMC11303689 DOI: 10.1038/s42003-024-06620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The limitations of TB treatment are the long duration and immune-dampening effects of anti-tuberculosis therapy. The Cell wall plays a crucial role in survival and virulence; hence, enzymes involved in its biosynthesis are good therapeutic targets. Here, we identify Mycobacterium tuberculosis (Mtb) GlmM, (GlmMMtb) engaged in the UDP-GlcNAc synthesis pathway as an essential enzyme. We generated a conditional knockdown strain, Rv-glmMkD using the CRISPR interference-mediated gene silencing approach. Depletion of GlmMMtb affects the morphology and thickness of the cell wall. The Rv-glmMkD strain attenuated Mtb survival in vitro, in the host macrophages (ex vivo), and in a murine mice infection model (in vivo). Results suggest that the depletion of GlmMMtb induces M1 macrophage polarization, prompting a pro-inflammatory cytokine response, apparent from the upregulation of activation markers, including IFNɣ and IL-17 that resists the growth of Mtb. These observations provide a rationale for exploring GlmMMtb as a potential therapeutic target.
Collapse
Affiliation(s)
- Meetu Agarwal
- Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India.
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India.
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Biplab Singha
- Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India
| | - Suparba Mukhopadhyay
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Archna Singh
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Shivam Chaturvedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vinay Kumar Nandicoori
- Signal Transduction Laboratory, National Institute of Immunology, New Delhi, India.
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Wang C, Chen D, Wu S, Zhou W, Chen X, Zhang Q, Wang L. Dietary supplementation with Neolamarckia cadamba leaf extract improves broiler meat quality by enhancing antioxidant capacity and regulating metabolites. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:358-372. [PMID: 38800732 PMCID: PMC11127102 DOI: 10.1016/j.aninu.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 05/29/2024]
Abstract
This study was to evaluate the effect of supplementing the diet of broilers with Neolamarckia cadamba leaf extract (NCLE) on meat quality by evaluating antioxidant parameters and the expression of genes in the p38 mitogen-activated protein kinase/nuclear factor-erythroid 2-related factor 2/antioxidant responsive element (p38 MAPK/Nrf2/ARE) signaling pathway, coupled with LC-MS-based metabolomic analysis. A total of 480 one-day-old male broilers were randomly allocated to four treatment groups-a control (CON) group, which was fed a basal diet, and three NCLE treatment groups, which were fed the basal diet supplemented with 100, 200, or 400 mg/kg NCLE (N1, N2, and N3 groups, respectively) for 42 d. Compared with the CON group, meat quality was improved in the N2 and N3 groups, as evidenced by the higher pH45min (P < 0.05) and lower shear force (P < 0.05) in breast muscle (BM) and lower drip loss at 48 h (P < 0.05) in leg muscle (LM). Moreover, BM antioxidant capacity was significantly enhanced in the N3 group, characterized by an increase in the total antioxidant capacity (T-AOC), the concentrations of glutathione peroxidase (GSH-Px) and catalase (CAT), and the relative mRNA expression of p38 MAPK, extracellular-signal regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), Nrf2, CAT, and GSH-Px (P < 0.05). Similarly, LM in the N3 group displayed higher T-AOC, increased GSH-Px and CAT concentrations, reduced malonaldehyde contents (P < 0.05), and upregulation of the relative mRNA levels of JNK, Nrf2, heme oxygenase, CAT, and superoxide dismutase (SOD) (P < 0.05). Metabolomics analysis revealed that D-arabinono-1,4-lactone and lyso-PAF C-16-d4 were negatively correlated with shear force and cooking loss (P < 0.05) and displayed increased abundance in BM of the N3 group. L-Serine levels were upregulated while D-fructose 1,6-diphosphate contents were downregulated in the three NCLE groups. Finally, the differential metabolites in both BM and LM were involved in amino acid metabolism pathways. Our results indicated that NCLE supplementation improved meat quality by enhancing antioxidant enzyme activities, promoting the expression of genes in the p38 MAPK/Nrf2/ARE signaling pathway, and regulating amino acid metabolism. The optimal NCLE concentration was found to be 400 mg/kg.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Shou Wu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
3
|
Liu Y, Wang Y, Kong J, Jiang X, Han Y, Feng L, Sun Y, Chen L, Zhou T. An effective antimicrobial strategy of colistin combined with the Chinese herbal medicine shikonin against colistin-resistant Escherichia coli. Microbiol Spectr 2023; 11:e0145923. [PMID: 37800902 PMCID: PMC10714725 DOI: 10.1128/spectrum.01459-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Infections caused by multidrug-resistant Escherichia coli (MDR E. coli) have become a major global healthcare problem due to the lack of effective antibiotics today. The emergence of colistin-resistant E. coli strains makes the situation even worse. Therefore, new antimicrobial strategies are urgently needed to combat colistin-resistant E. coli. Combining traditional antibiotics with non-antibacterial drugs has proved to be an effective approach of combating MDR bacteria. This study investigated the combination of colistin and shikonin, a Chinese herbal medicine, against colistin-resistant E. coli. This combination showed good synergistic antibacterial both in vivo and in vitro experiments. Under the background of daily increasing colistin resistance in E. coli, this research points to an effective antimicrobial strategy of using colistin and shikonin in combination against colistin-resistant E. coli.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yue Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianguo Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yijia Han
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luozhu Feng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, and Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Silva VLM, Silva-Reis R, Moreira-Pais A, Ferreira T, Oliveira PA, Ferreira R, Cardoso SM, Sharifi-Rad J, Butnariu M, Costea MA, Grozea I. Dicoumarol: from chemistry to antitumor benefits. Chin Med 2022; 17:145. [PMID: 36575479 PMCID: PMC9793554 DOI: 10.1186/s13020-022-00699-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Dicoumarol, a coumarin-like compound, is known for its anticoagulant properties associated with the ability to inhibit vitamin K, being prescribed as a drug for several decades. The pharmaceutical value of dicoumarol turned it into a focus of chemists' attention, aiming its synthesis and of dicoumarol derivatives, bringing to light new methodologies. In recent years, several other bioactive effects have been claimed for dicoumarol and its derivatives, including anti-inflammatory, antimicrobial, antifungal, and anticancer, although the mechanisms of action underlying them are mostly not disclosed and additional research is needed to unravel them. This review presents a state of the art on the chemistry of dicoumarols, and their potential anticancer characteristics, highlighting the mechanisms of action elucidated so far. In parallel, we draw attention to the lack of in vivo studies and clinical trials to assess the safety and efficacy as drugs for later application.
Collapse
Affiliation(s)
- Vera L. M. Silva
- grid.7311.40000000123236065LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- grid.7311.40000000123236065LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Moreira-Pais
- grid.7311.40000000123236065LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal ,grid.12341.350000000121821287Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal ,grid.5808.50000 0001 1503 7226Laboratory for Integrative and Translational Research in Population Health (ITR), Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), 4200-450 Porto, Portugal
| | - Tiago Ferreira
- grid.12341.350000000121821287Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal ,grid.12341.350000000121821287Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- grid.12341.350000000121821287Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal ,grid.12341.350000000121821287Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.12341.350000000121821287Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Rita Ferreira
- grid.7311.40000000123236065LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- grid.7311.40000000123236065LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Javad Sharifi-Rad
- grid.442126.70000 0001 1945 2902Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Monica Butnariu
- Life Sciences University “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| | - Maria Alina Costea
- Life Sciences University “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| | - Ioana Grozea
- Life Sciences University “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| |
Collapse
|
5
|
Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Front Microbiol 2022; 13:1056608. [PMID: 36620019 PMCID: PMC9810820 DOI: 10.3389/fmicb.2022.1056608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Xu
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Baoyu Dong
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Peng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Gao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Wyllie JA, McKay MV, Barrow AS, Soares da Costa TP. Biosynthesis of uridine diphosphate N-Acetylglucosamine: An underexploited pathway in the search for novel antibiotics? IUBMB Life 2022; 74:1232-1252. [PMID: 35880704 PMCID: PMC10087520 DOI: 10.1002/iub.2664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022]
Abstract
Although the prevalence of antibiotic resistance is increasing at an alarming rate, there are a dwindling number of effective antibiotics available. Thus, the development of novel antibacterial agents should be of utmost importance. Peptidoglycan biosynthesis has been and is still an attractive source for antibiotic targets; however, there are several components that remain underexploited. In this review, we examine the enzymes involved in the biosynthesis of one such component, UDP-N-acetylglucosamine, an essential building block and precursor of bacterial peptidoglycan. Furthermore, given the presence of a similar biosynthesis pathway in eukaryotes, we discuss the current knowledge on the differences and similarities between the bacterial and eukaryotic enzymes. Finally, this review also summarises the recent advances made in the development of inhibitors targeting the bacterial enzymes.
Collapse
Affiliation(s)
- Jessica A Wyllie
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Mirrin V McKay
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew S Barrow
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tatiana P Soares da Costa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Luo L, Yang J, Wang C, Wu J, Li Y, Zhang X, Li H, Zhang H, Zhou Y, Lu A, Chen S. Natural products for infectious microbes and diseases: an overview of sources, compounds, and chemical diversities. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1123-1145. [PMID: 34705221 PMCID: PMC8548270 DOI: 10.1007/s11427-020-1959-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
As coronavirus disease 2019 (COVID-19) threatens human health globally, infectious disorders have become one of the most challenging problem for the medical community. Natural products (NP) have been a prolific source of antimicrobial agents with widely divergent structures and a range vast biological activities. A dataset comprising 618 articles, including 646 NP-based compounds from 672 species of natural sources with biological activities against 21 infectious pathogens from five categories, was assembled through manual selection of published articles. These data were used to identify 268 NP-based compounds classified into ten groups, which were used for network pharmacology analysis to capture the most promising lead-compounds such as agelasine D, dicumarol, dihydroartemisinin and pyridomycin. The distribution of maximum Tanimoto scores indicated that compounds which inhibited parasites exhibited low diversity, whereas the chemistries inhibiting bacteria, fungi, and viruses showed more structural diversity. A total of 331 species of medicinal plants with compounds exhibiting antimicrobial activities were selected to classify the family sources. The family Asteraceae possesses various compounds against C. neoformans, the family Anacardiaceae has compounds against Salmonella typhi, the family Cucurbitacea against the human immunodeficiency virus (HIV), and the family Ancistrocladaceae against Plasmodium. This review summarizes currently available data on NP-based antimicrobials against refractory infections to provide information for further discovery of drugs and synthetic strategies for anti-infectious agents.
Collapse
Affiliation(s)
- Lu Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100006, China
| | - Jie Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yafang Li
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xu Zhang
- weMED Health, Houston, 77054, USA
| | - Hui Li
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Zhang
- Akupunktur Akademiet, Aabyhoej, Aarhus, 8230, Denmark
| | - Yumei Zhou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 518033, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
Han X, Chen C, Wang H, Kang J, Yan Q, Ma Y, Wang W, Wu S, Wang C, Ma X. GlmU inhibitor from the roots of Euphorbia ebracteolata as an anti-tuberculosis agent. RSC Adv 2022; 12:18266-18273. [PMID: 35800323 PMCID: PMC9214920 DOI: 10.1039/d2ra02044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Ebractenoid F was identified to be a GlmU inhibitor from Euphorbia ebracteolata, which could inhibit the cell wall biosynthesis of M. tb H37Ra, along with the biofilm formation.
Collapse
Affiliation(s)
- Xiuyan Han
- Second Affiliated Hospital, Institute of Integrative Medicine, Dalian Medical University, Dalian 116023, P.R. of China
- College of Pharmacy, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, P.R. of China
| | - Changming Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, P.R. of China
| | - Honglei Wang
- College of Pharmacy, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, P.R. of China
| | - Jian Kang
- College of Pharmacy, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, P.R. of China
| | - Qiulong Yan
- College of Pharmacy, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, P.R. of China
| | - Yufang Ma
- College of Pharmacy, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, P.R. of China
| | - Wenxin Wang
- College of Pharmacy, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, P.R. of China
| | - Shan Wu
- College of Pharmacy, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, P.R. of China
| | - Chao Wang
- Second Affiliated Hospital, Institute of Integrative Medicine, Dalian Medical University, Dalian 116023, P.R. of China
- College of Pharmacy, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, P.R. of China
| | - Xiaochi Ma
- Second Affiliated Hospital, Institute of Integrative Medicine, Dalian Medical University, Dalian 116023, P.R. of China
| |
Collapse
|
9
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
10
|
Cazzaniga G, Mori M, Chiarelli LR, Gelain A, Meneghetti F, Villa S. Natural products against key Mycobacterium tuberculosis enzymatic targets: Emerging opportunities for drug discovery. Eur J Med Chem 2021; 224:113732. [PMID: 34399099 DOI: 10.1016/j.ejmech.2021.113732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
For centuries, natural products (NPs) have served as powerful therapeutics against a variety of human ailments. Nowadays, they still represent invaluable resources for the treatment of many diseases, including bacterial infections. After nearly three decades since the World Health Organization's (WHO) declaration of tuberculosis (TB) as a global health emergency, Mycobacterium tuberculosis (Mtb) continues to claim millions of lives, remaining among the leading causes of death worldwide. In the last years, several efforts have been devoted to shortening and improving treatment outcomes, and to overcoming the increasing resistance phenomenon. Nature has always provided a virtually unlimited source of bioactive molecules, which have inspired the development of new drugs. NPs are characterized by an exceptional chemical and structural diversity, the result of millennia of evolutionary responses to various stimuli. Thanks to their favorable structural features and their enzymatic origin, they are naturally prone to bind proteins and exhibit bioactivities. Furthermore, their worldwide distribution and ease of accessibility has contributed to promote investigations on their activity. Overall, these characteristics make NPs excellent models for the design of novel therapeutics. This review offers a critical and comprehensive overview of the most promising NPs, isolated from plants, fungi, marine species, and bacteria, endowed with inhibitory properties against traditional and emerging mycobacterial enzymatic targets. A selection of 86 compounds is here discussed, with a special emphasis on their biological activity, structure-activity relationships, and mechanism of action. Our study corroborates the antimycobacterial potential of NPs, substantiating their relevance in future drug discovery and development efforts.
Collapse
Affiliation(s)
- Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via A. Ferrata 9, 27100, Pavia, Italy
| | - Arianna Gelain
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy.
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
11
|
Li DW, Deng XP, He X, Han XY, Ma YF, Huang HL, Yu ZL, Feng L, Wang C, Ma XC. Eupholides A-H, abietane diterpenoids from the roots of Euphorbia fischeriana, and their bioactivities. PHYTOCHEMISTRY 2021; 183:112593. [PMID: 33341664 DOI: 10.1016/j.phytochem.2020.112593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The roots of Euphorbia fischeriana known as "Langdu" in traditional Chinese medicine have been used for the treatment of tuberculosis in China. Through a bioactive phytochemical investigation of the roots of E. fischeriana, 15 diterpenoids were obtained by various chromatographic techniques. On the basis of wide spectroscopic data, including NMR, UV, IR, HR-ESI-MS, ECD and X-ray crystallography, all of the isolated compounds were elucidated to be ent-abietane diterpenoid analogs, including undescribed eupholides A-H and seven known diterpenoids. In the bioassay for anti-tuberculosis, eupholides F-H moderately inhibited the proliferation of Mycobacterium tuberculosis H37Ra, with the MIC determined to be 50 μM. Furthermore, eupholides G, ent-11α-hydroxyabieta-8(14), 13(15)-dien-16,12α-olide, and jolkinolide F significantly inhibited the lyase activity of human carboxylesterase 2 (HCE 2), with IC50 values of 7.3, 150, and 34.5 nM, respectively.
Collapse
Affiliation(s)
- Da-Wei Li
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, Academy of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, People's Republic of China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Xiao-Peng Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, Academy of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xin He
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, Academy of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiu-Yan Han
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, Academy of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yu-Fang Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, Academy of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Hui-Lian Huang
- Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Zhen-Long Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, Academy of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Lei Feng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, Academy of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chao Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, Academy of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, People's Republic of China.
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, Academy of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, People's Republic of China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
12
|
Batt SM, Burke CE, Moorey AR, Besra GS. Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Cell Surf 2020; 6:100044. [PMID: 32995684 PMCID: PMC7502851 DOI: 10.1016/j.tcsw.2020.100044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is the global leading cause of mortality from an infectious agent. Part of this success relies on the unique cell wall, which consists of a thick waxy coat with tightly packed layers of complexed sugars, lipids and peptides. This coat provides a protective hydrophobic barrier to antibiotics and the host's defences, while enabling the bacterium to spread efficiently through sputum to infect and survive within the macrophages of new hosts. However, part of this success comes at a cost, with many of the current first- and second-line drugs targeting the enzymes involved in cell wall biosynthesis. The flip side of this coin is that resistance to these drugs develops either in the target enzymes or the activation pathways of the drugs, paving the way for new resistant clinical strains. This review provides a synopsis of the structure and synthesis of the cell wall and the major current drugs and targets, along with any mechanisms of resistance.
Collapse
Affiliation(s)
- Sarah M. Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher E. Burke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alice R. Moorey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
13
|
Maiolini M, Gause S, Taylor J, Steakin T, Shipp G, Lamichhane P, Deshmukh B, Shinde V, Bishayee A, Deshmukh RR. The War against Tuberculosis: A Review of Natural Compounds and Their Derivatives. Molecules 2020; 25:molecules25133011. [PMID: 32630150 PMCID: PMC7412169 DOI: 10.3390/molecules25133011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB), caused by the bacterial organism Mycobacterium tuberculosis, pose a major threat to public health, especially in middle and low-income countries. Worldwide in 2018, approximately 10 million new cases of TB were reported to the World Health Organization (WHO). There are a limited number of medications available to treat TB; additionally, multi-drug resistant TB and extensively-drug resistant TB strains are becoming more prevalent. As a result of various factors, such as increased costs of developing new medications and adverse side effects from current medications, researchers continue to evaluate natural compounds for additional treatment options. These substances have the potential to target bacterial cell structures and may contribute to successful treatment. For example, a study reported that green and black tea, which contains epigallocatechin gallate (a phenolic antioxidant), may decrease the risk of contracting TB in experimental subjects; cumin (a seed from the parsley plant) has been demonstrated to improve the bioavailability of rifampicin, an important anti-TB medication, and propolis (a natural substance produced by honeybees) has been shown to improve the binding affinity of anti-TB medications to bacterial cell structures. In this article, we review the opportunistic pathogen M. tuberculosis, various potential therapeutic targets, available therapies, and natural compounds that may have anti-TB properties. In conclusion, different natural compounds alone as well as in combination with already approved medication regimens should continue to be investigated as treatment options for TB.
Collapse
Affiliation(s)
- Morgan Maiolini
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (M.M.); (S.G.); (J.T.); (T.S.)
| | - Stacey Gause
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (M.M.); (S.G.); (J.T.); (T.S.)
| | - Jerika Taylor
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (M.M.); (S.G.); (J.T.); (T.S.)
| | - Tara Steakin
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (M.M.); (S.G.); (J.T.); (T.S.)
| | - Ginger Shipp
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Purushottam Lamichhane
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Bhushan Deshmukh
- Department of Chemistry, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425 001, Maharashtra, India;
| | - Vaibhav Shinde
- Department of Pharmacognosy, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune-411 038, Maharashtra, India;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: or (A.B.); (R.R.D.); Tel.: +1-941-782-5950 (A.B.); +1-941-782-5646 (R.R.D.)
| | - Rahul R. Deshmukh
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: or (A.B.); (R.R.D.); Tel.: +1-941-782-5950 (A.B.); +1-941-782-5646 (R.R.D.)
| |
Collapse
|