1
|
Fernández-Rhodes M, Lorca C, Lisa J, Batalla I, Ramos-Miguel A, Gallart-Palau X, Serra A. New Origins of Yeast, Plant and Bacterial-Derived Extracellular Vesicles to Expand and Advance Compound Delivery. Int J Mol Sci 2024; 25:7151. [PMID: 39000260 PMCID: PMC11241179 DOI: 10.3390/ijms25137151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing methods, examining the cargo-loading processes applicable to these sources, which involve both passive and active functionalization methods. While the primary focus of these novel sources of endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on their systemic target preference, their use, as reviewed here, extends beyond these key applications within the biotechnological and biomedical fields.
Collapse
Affiliation(s)
- María Fernández-Rhodes
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
- Institute for Bioengineering of Catalonia (IBEC), C. Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Cristina Lorca
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| | - Julia Lisa
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| | - Iolanda Batalla
- Psychiatry Unit, Hospital Universitari Santa Maria, Medicine Department, Universitat de Lleida (UdL), 25198 Lleida, Spain
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Instituto de Salud Carlos III, 48940 Leioa, Spain
| | - Xavier Gallart-Palau
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Institute for Bioengineering of Catalonia (IBEC), C. Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Aida Serra
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| |
Collapse
|
2
|
Aor AC, Sangenito LS, Mello TP, Joffe LS, Rizzo J, Veiga VF, da Silva RN, Pereira MD, Fonseca BB, Rozental S, Haido RMT, Rodrigues ML, Branquinha MH, Santos ALS. Extracellular Vesicles from Scedosporium apiospermum Mycelial Cells: Implication for Fungal-Host Interplays. J Fungi (Basel) 2024; 10:277. [PMID: 38667948 PMCID: PMC11051067 DOI: 10.3390/jof10040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The release of extracellular vesicles (EVs) has been implicated as an alternative transport mechanism for the passage of macromolecules through the fungal cell wall, a phenomenon widely reported in yeasts but poorly explored in mycelial cells. In the present work, we have purified and characterized the EVs released by mycelia of the emerging, opportunistic, widespread and multidrug-resistant filamentous fungus Scedosporium apiospermum. Transmission electron microscopy images and light scattering measurements revealed the fungal EVs, which were observed individually or grouped with heterogeneous morphology, size and electron density. The mean diameter of the EVs, evaluated by the light scattering technique, was 179.7 nm. Overall, the structural stability of S. apiospermum EVs was preserved during incubation under various storage conditions. The lipid, carbohydrate and protein contents were quantified, and the EVs' protein profile was evidenced by SDS-PAGE, revealing proteins with molecular masses ranging from 20 to 118 kDa. Through immunoblotting, ELISA and immunocytochemistry assays, antigenic molecules were evidenced in EVs using a polyclonal serum (called anti-secreted molecules) from a rabbit inoculated with conditioned cell-free supernatant obtained from S. apiospermum mycelial cells. By Western blotting, several antigenic proteins were identified. The ELISA assay confirmed that the anti-secreted molecules exhibited a positive reaction up to a serum dilution of 1:3200. Despite transporting immunogenic molecules, S. apiospermum EVs slightly induced an in vitro cytotoxicity effect after 48 h of contact with either macrophages or lung epithelial cells. Interestingly, the pretreatment of both mammalian cells with purified EVs significantly increased the association index with S. apiospermum conidia. Furthermore, EVs were highly toxic to Galleria mellonella, leading to larval death in a typically dose- and time-dependent manner. Collectively, the results represent the first report of detecting EVs in the S. apiospermum filamentous form, highlighting a possible implication in fungal pathogenesis.
Collapse
Affiliation(s)
- Ana Carolina Aor
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Departamento de Microbiologia e Parasitologia (MIP), Instituto Biomédico (CMB), Universidade Federal Fluminense (UFF), Niterói 24210-130, RJ, Brazil
| | - Leandro S. Sangenito
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Campus Nilópolis, Rio de Janeiro 26530-060, RJ, Brazil
| | - Thaís P. Mello
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Luna S. Joffe
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Juliana Rizzo
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Venício F. Veiga
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Renata N. da Silva
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
| | - Marcos D. Pereira
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Beatriz B. Fonseca
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Sonia Rozental
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Rosa Maria T. Haido
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, RJ, Brazil;
| | - Marcio L. Rodrigues
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81310-020, PR, Brazil
| | - Marta H. Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - André L. S. Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
3
|
Zhang L, Chi J, Wu H, Xia X, Xu C, Hao H, Liu Z. Extracellular vesicles and endothelial dysfunction in infectious diseases. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e148. [PMID: 38938849 PMCID: PMC11080793 DOI: 10.1002/jex2.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity globally. Studies have shown that infections especially bacteraemia and sepsis are associated with increased risks for endothelial dysfunction and related CVDs including atherosclerosis. Extracellular vesicles (EVs) are small, sealed membrane-derived structures that are released into body fluids and blood from cells and/or microbes and are critically involved in a variety of important cell functions and disease development, including intercellular communications, immune responses and inflammation. It is known that EVs-mediated mechanism(s) is important in the development of endothelial dysfunction in infections with a diverse spectrum of microorganisms including Escherichia coli, Candida albicans, SARS-CoV-2 (the virus for COVID-19) and Helicobacter pylori. H. pylori infection is one of the most common infections globally. During H. pylori infection, EVs can carry H. pylori components, such as lipopolysaccharide, cytotoxin-associated gene A, or vacuolating cytotoxin A, and transfer these substances into endothelial cells, triggering inflammatory responses and endothelial dysfunction. This review is to illustrate the important role of EVs in the pathogenesis of infectious diseases, and the development of endothelial dysfunction in infectious diseases especially H. pylori infection, and to discuss the potential mechanisms and clinical implications.
Collapse
Affiliation(s)
- Linfang Zhang
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Jingshu Chi
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
- Department of Gastroenterologythe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hao Wu
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Xiujuan Xia
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Canxia Xu
- Department of Gastroenterologythe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular MedicineDepartment of MedicineUniversity of Missouri School of MedicineColumbiaMissouriUSA
| |
Collapse
|
4
|
Duan H, Meng F, Liu X, Qi P, Peng X, Li C, Wang Q, Zhao G, Lin J. Extracellular vesicles from Candida albicans modulate immune cells function and play a protective role in fungal keratitis. Microb Pathog 2024; 189:106606. [PMID: 38437994 DOI: 10.1016/j.micpath.2024.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Fungal keratitis (FK) is a highly blinding infectious corneal disease caused by pathogenic fungi. Candida albicans (C. albicans) is one of the main pathogens of fungal keratitis. Extracellular vesicles (EVs), lipid bilayer compartments released by almost all living cells, including fungi, have garnered attention for their role in pathogenic microbial infection and host immune responses in recent years. Studies have reported that pretreating the host with fungal EVs can reduce the inflammatory response of the host when attacked by fungi and reduce the lethality of fungal infection. However, there are no studies that have evaluated whether C. albicans EVs can modulate the inflammatory response associated with C. albicans keratitis. Our study revealed that C. albicans EVs could activate the polymorphonuclear cells (PMNs) and promote their secretion of proinflammatory cytokines and nitric oxide (NO), enhance their phagocytic and fungicidal abilities against C. albicans. C. albicans EVs also induced a proinflammatory response in RAW264.7 cells, which was characterized by increased production of inflammatory cytokines and elevated expression of the chemokine CCL2. Similarly, stimulation of C. albicans EVs to RAW264.7 cells also enhanced the phagocytosis and killing ability of cells against C. albicans. Besides, in our in vivo experiments, after receiving subconjunctival injection of C. albicans EVs, C57BL/6 mice were infected with C. albicans. The results demonstrated that pre-exposure to C. albicans EVs could effectively diminish the severity of keratitis, reduce fungal load and improve prognosis. Overall, we conclude that C. albicans EVs can modulate the function of immune cells and play a protective role in C. albicans keratitis.
Collapse
Affiliation(s)
- Huijin Duan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fanyue Meng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Pingli Qi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xudong Peng
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
5
|
Brown Harding H, Kwaku GN, Reardon CM, Khan NS, Zamith-Miranda D, Zarnowski R, Tam JM, Bohaen CK, Richey L, Mosallanejad K, Crossen AJ, Reedy JL, Ward RA, Vargas-Blanco DA, Basham KJ, Bhattacharyya RP, Nett JE, Mansour MK, van de Veerdonk FL, Kumar V, Kagan JC, Andes DR, Nosanchuk JD, Vyas JM. Candida albicans extracellular vesicles trigger type I IFN signalling via cGAS and STING. Nat Microbiol 2024; 9:95-107. [PMID: 38168615 PMCID: PMC10959075 DOI: 10.1038/s41564-023-01546-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
The host type I interferon (IFN) pathway is a major signature of inflammation induced by the human fungal pathogen, Candida albicans. However, the molecular mechanism for activating this pathway in the host defence against C. albicans remains unknown. Here we reveal that mice lacking cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway components had improved survival following an intravenous challenge by C. albicans. Biofilm-associated C. albicans DNA packaged in extracellular vesicles triggers the cGAS-STING pathway as determined by induction of interferon-stimulated genes, IFNβ production, and phosphorylation of IFN regulatory factor 3 and TANK-binding kinase 1. Extracellular vesicle-induced activation of type I IFNs was independent of the Dectin-1/Card9 pathway and did not require toll-like receptor 9. Single nucleotide polymorphisms in cGAS and STING potently altered inflammatory cytokine production in human monocytes challenged by C. albicans. These studies provide insights into the early innate immune response induced by a clinically significant fungal pathogen.
Collapse
Affiliation(s)
- Hannah Brown Harding
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Geneva N Kwaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher M Reardon
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nida S Khan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Jenny M Tam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Collins K Bohaen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lauren Richey
- Tufts Comparative Medicine Services, Tufts University, Boston, MA, USA
| | - Kenta Mosallanejad
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arianne J Crossen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer L Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Rebecca A Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Diego A Vargas-Blanco
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kyle J Basham
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roby P Bhattacharyya
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, the Netherlands
- Nitte University Centre for Science Education and Research, Medical Sciences Complex, Mangaluru, India
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Joshua D Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jatin M Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Kulig K, Bednaruk K, Rudolphi-Szydło E, Barbasz A, Wronowska E, Barczyk-Woznicka O, Karnas E, Pyza E, Zuba-Surma E, Rapala-Kozik M, Karkowska-Kuleta J. Stress Conditions Affect the Immunomodulatory Potential of Candida albicans Extracellular Vesicles and Their Impact on Cytokine Release by THP-1 Human Macrophages. Int J Mol Sci 2023; 24:17179. [PMID: 38139005 PMCID: PMC10742962 DOI: 10.3390/ijms242417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Human immune cells possess the ability to react complexly and effectively after contact with microbial virulence factors, including those transported in cell-derived structures of nanometer sizes termed extracellular vesicles (EVs). EVs are produced by organisms of all kingdoms, including fungi pathogenic to humans. In this work, the immunomodulatory properties of EVs produced under oxidative stress conditions or at host concentrations of CO2 by the fungal pathogen Candida albicans were investigated. The interaction of EVs with human pro-monocytes of the U-937 cell line was established, and the most notable effect was attributed to oxidative stress-related EVs. The immunomodulatory potential of tested EVs against human THP-1 macrophages was verified using cytotoxicity assay, ROS-production assay, and the measurement of cytokine production. All fungal EVs tested did not show a significant cytotoxic effect on THP-1 cells, although a slight pro-oxidative impact was indicated for EVs released by C. albicans cells grown under oxidative stress. Furthermore, for all tested types of EVs, the pro-inflammatory properties related to increased IL-8 and TNF-α production and decreased IL-10 secretion were demonstrated, with the most significant effect observed for EVs released under oxidative stress conditions.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Bednaruk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
7
|
de Oliveira GP, Welsh JA, Pinckney B, Palu CC, Lu S, Zimmerman A, Barbosa RH, Sahu P, Noshin M, Gummuluru S, Tigges J, Jones JC, Ivanov AR, Ghiran IC. Human red blood cells release microvesicles with distinct sizes and protein composition that alter neutrophil phagocytosis. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e107. [PMID: 37942280 PMCID: PMC10629908 DOI: 10.1002/jex2.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 11/10/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound structures released by cells and tissues into biofluids, involved in cell-cell communication. In humans, circulating red blood cells (RBCs), represent the most common cell-type in the body, generating daily large numbers of microvesicles. In vitro, RBC vesiculation can be mimicked by stimulating RBCs with calcium ionophores, such as ionomycin and A23187. The fate of microvesicles released during in vivo aging of RBCs and their interactions with circulating cells is hitherto unknown. Using SEC plus DEG isolation methods, we have found that human RBCs generate microvesicles with two distinct sizes, densities, and protein composition, identified by flow cytometry, and MRPS, and further validated by immune TEM. Furthermore, proteomic analysis revealed that RBC-derived microvesicles (RBC-MVs) are enriched in proteins with important functions in ion channel regulation, calcium homeostasis, and vesicular transport, such as of sorcin, stomatin, annexin A7, and RAB proteins. Cryo-electron microscopy identified two separate pathways of RBC-MV-neutrophil interaction, direct fusion with the plasma membrane and internalization, respectively. Functionally, RBC-MVs decrease neutrophil ability to phagocytose E. coli but do not affect their survival at 24 hrs. This work brings new insights regarding the complexity of the RBC-MVs biogenesis, as well as their possible role in circulation.
Collapse
Affiliation(s)
- Getulio Pereira de Oliveira
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of Chemistry and Chemical BiologyBarnett Institute of Chemical & Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Brandy Pinckney
- Nano Flow Core FacilityBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Shulin Lu
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Alan Zimmerman
- Department of Chemistry and Chemical BiologyBarnett Institute of Chemical & Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Raquel Hora Barbosa
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Parul Sahu
- Department of AnesthesiaBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Maeesha Noshin
- Translational Nanobiology Section, Laboratory of Pathology Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Suryaram Gummuluru
- Department of MicrobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - John Tigges
- Nano Flow Core FacilityBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer Clare Jones
- Translational Nanobiology Section, Laboratory of Pathology Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical BiologyBarnett Institute of Chemical & Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Ionita C. Ghiran
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of AnesthesiaBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
8
|
Nenciarini S, Cavalieri D. Immunomodulatory Potential of Fungal Extracellular Vesicles: Insights for Therapeutic Applications. Biomolecules 2023; 13:1487. [PMID: 37892168 PMCID: PMC10605264 DOI: 10.3390/biom13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.
Collapse
Affiliation(s)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
9
|
Sayson SG, Ashbaugh A, Cushion MT. Extracellular Vesicles from Pneumocystis carinii -Infected Rats Impair Fungal Viability but are Dispensable for Macrophage Functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558454. [PMID: 37786700 PMCID: PMC10541577 DOI: 10.1101/2023.09.19.558454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Pneumocystis spp. are host obligate fungal pathogens that can cause severe pneumonia in mammals and rely heavily on their host for essential nutrients. The lack of a sustainable in vitro culture system poses challenges in understanding their metabolism and the acquisition of essential nutrients from host lungs remains unexplored. Transmission electron micrographs show Extracellular Vesicles (EVs) are found near Pneumocystis spp. within the lung. We hypothesized that EVs transport essential nutrients to the fungi during infection. To investigate this, EVs from P. carinii and P. murina infected rodents were biochemically and functionally characterized. These EVs contained host proteins involved in cellular, metabolic, and immune processes as well as proteins with homologs found in other fungal EV proteomes, indicating Pneumocystis may release EVs. Notably, EV uptake by P. carinii indicated their potential involvement in nutrient acquisition and indicate a possibility for using engineered EVs for efficient therapeutic delivery. However, EVs added to P. carinii in vitro , did not show increased growth or viability, implying that additional nutrients or factors are necessary to support their metabolic requirements. Exposure of macrophages to EVs increased proinflammatory cytokine levels, but did not affect macrophages' ability to kill or phagocytose P. carinii . These findings provide vital insights into P. carinii and host EV interactions, yet the mechanisms underlying P. carinii 's survival in the lung remain uncertain. These studies are the first to isolate, characterize, and functionally assess EVs from Pneumocystis -infected rodents, promising to enhance our understanding of host-pathogen dynamics and therapeutic potential.
Collapse
|
10
|
Liu J, Hu X. Fungal extracellular vesicle-mediated regulation: from virulence factor to clinical application. Front Microbiol 2023; 14:1205477. [PMID: 37779707 PMCID: PMC10540631 DOI: 10.3389/fmicb.2023.1205477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Invasive fungal disease (IFD) poses a significant threat to immunocompromised patients and remains a global challenge due to limited treatment options, high mortality and morbidity rates, and the emergence of drug-resistant strains. Despite advancements in antifungal agents and diagnostic techniques, the lack of effective vaccines, standardized diagnostic tools, and efficient antifungal drugs contributes to the ongoing impact of invasive fungal infections (IFI). Recent studies have highlighted the presence of extracellular vesicles (EVs) released by fungi carrying various components such as enzymes, lipids, nucleic acids, and virulence proteins, which play roles in both physiological and pathological processes. These fungal EVs have been shown to interact with the host immune system during the development of fungal infections whereas their functional role and potential application in patients are not yet fully understood. This review summarizes the current understanding of the biologically relevant findings regarding EV in host-pathogen interaction, and aim to describe our knowledge of the roles of EV as diagnostic tools and vaccine vehicles, offering promising prospects for the treatment of IFI patients.
Collapse
Affiliation(s)
| | - Xiaoping Hu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
11
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
12
|
Ullah A, Huang Y, Zhao K, Hua Y, Ullah S, Rahman MU, Wang J, Wang Q, Hu X, Zheng L. Characteristics and potential clinical applications of the extracellular vesicles of human pathogenic Fungi. BMC Microbiol 2023; 23:227. [PMID: 37598156 PMCID: PMC10439556 DOI: 10.1186/s12866-023-02945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 08/21/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of lipid membrane-enclosed compartments that contain different biomolecules and are released by almost all living cells, including fungal genera. Fungal EVs contain multiple bioactive components that perform various biological functions, such as stimulation of the host immune system, transport of virulence factors, induction of biofilm formation, and mediation of host-pathogen interactions. In this review, we summarize the current knowledge on EVs of human pathogenic fungi, mainly focusing on their biogenesis, composition, and biological effects. We also discuss the potential markers and therapeutic applications of fungal EVs.
Collapse
Affiliation(s)
- Amir Ullah
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Kening Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Yuneng Hua
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shafi Ullah
- Department of pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
13
|
Wu S, Song R, Liu T, Li C. Antifungal therapy: Novel drug delivery strategies driven by new targets. Adv Drug Deliv Rev 2023; 199:114967. [PMID: 37336246 DOI: 10.1016/j.addr.2023.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
In patients with compromised immunity, invasive fungal infections represent a significant cause of mortality. Given the limited availability and drawbacks of existing first-line antifungal drugs, there is a growing interest in exploring novel targets that could facilitate the development of new antifungal agents or enhance the effectiveness of conventional ones. While previous studies have extensively summarized new antifungal targets inherent in fungi for drug development purposes, the exploration of potential targets for novel antifungal drug delivery strategies has received less attention. In this review, we provide an overview of recent advancements in new antifungal drug delivery strategies that leverage novel targets, including those located in the physio-pathological barrier at the site of infection, the infection microenvironment, fungal-host interactions, and the fungal pathogen itself. The objective is to enhance therapeutic efficacy and mitigate toxic effects in fungal infections, particularly in challenging cases such as refractory, recurrent, and drug-resistant invasive fungal infections. We also discuss the current challenges and future prospects associated with target-driven antifungal drug delivery strategies, offering important insights into the clinical implementation of these innovative approaches.
Collapse
Affiliation(s)
- Shuang Wu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China
| | - Ruiqi Song
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China
| | - Tongbao Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China.
| | - Chong Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
14
|
Trentin G, Bitencourt TA, Guedes A, Pessoni AM, Brauer VS, Pereira AK, Costa JH, Fill TP, Almeida F. Mass Spectrometry Analysis Reveals Lipids Induced by Oxidative Stress in Candida albicans Extracellular Vesicles. Microorganisms 2023; 11:1669. [PMID: 37512842 PMCID: PMC10383470 DOI: 10.3390/microorganisms11071669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/30/2023] Open
Abstract
Candida albicans is a commensal fungus in healthy humans that causes infection in immunocompromised individuals through the secretion of several virulence factors. The successful establishment of infection is owing to elaborate strategies to cope with defensive molecules secreted by the host, including responses toward oxidative stress. Extracellular vesicle (EV) release is considered an alternative to the biomolecule secretory mechanism that favors fungal interactions with the host cells. During candidiasis establishment, the host environment becomes oxidative, and it impacts EV release and cargo. To simulate the host oxidative environment, we added menadione (an oxidative stress inducer) to the culture medium, and we explored C. albicans EV metabolites by metabolomics analysis. This study characterized lipidic molecules transported to an extracellular milieu by C. albicans after menadione exposure. Through Liquid Chromatography coupled with Mass Spectrometry (LC-MS) analyses, we identified biomolecules transported by EVs and supernatant. The identified molecules are related to several biological processes, such as glycerophospholipid and sphingolipid pathways, which may act at different levels by tuning compound production in accordance with cell requirements that favor a myriad of adaptive responses. Taken together, our results provide new insights into the role of EVs in fungal biology and host-pathogen interactions.
Collapse
Affiliation(s)
- Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tamires A Bitencourt
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Arthur Guedes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - André M Pessoni
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Veronica S Brauer
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Alana Kelyene Pereira
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Jonas Henrique Costa
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Taicia Pacheco Fill
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
15
|
Fabri JHTM, Rocha MC, Fernandes CM, Campanella JEM, da Cunha AF, Del Poeta M, Malavazi I. The Heat Shock Transcription Factor HsfA Plays a Role in Membrane Lipids Biosynthesis Connecting Thermotolerance and Unsaturated Fatty Acid Metabolism in Aspergillus fumigatus. Microbiol Spectr 2023; 11:e0162723. [PMID: 37195179 PMCID: PMC10269545 DOI: 10.1128/spectrum.01627-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Thermotolerance is a remarkable virulence attribute of Aspergillus fumigatus, but the consequences of heat shock (HS) to the cell membrane of this fungus are unknown, although this structure is one of the first to detect changes in ambient temperature that imposes on the cell a prompt adaptative response. Under high-temperature stress, fungi trigger the HS response controlled by heat shock transcription factors, such as HsfA, which regulates the expression of heat shock proteins. In yeast, smaller amounts of phospholipids with unsaturated fatty acid (FA) chains are synthesized in response to HS, directly affecting plasma membrane composition. The addition of double bonds in saturated FA is catalyzed by Δ9-fatty acid desaturases, whose expression is temperature-modulated. However, the relationship between HS and saturated/unsaturated FA balance in membrane lipids of A. fumigatus in response to HS has not been investigated. Here, we found that HsfA responds to plasma membrane stress and has a role in sphingolipid and phospholipid unsaturated biosynthesis. In addition, we studied the A. fumigatus Δ9-fatty acid desaturase sdeA and discovered that this gene is essential and required for unsaturated FA biosynthesis, although it did not directly affect the total levels of phospholipids and sphingolipids. sdeA depletion significantly sensitizes mature A. fumigatus biofilms to caspofungin. Also, we demonstrate that hsfA controls sdeA expression, while SdeA and Hsp90 physically interact. Our results suggest that HsfA is required for the adaptation of the fungal plasma membrane to HS and point out a sharp relationship between thermotolerance and FA metabolism in A. fumigatus. IMPORTANCE Aspergillus fumigatus causes invasive pulmonary aspergillosis, a life-threatening infection accounting for high mortality rates in immunocompromised patients. The ability of this organism to grow at elevated temperatures is long recognized as an essential attribute for this mold to cause disease. A. fumigatus responds to heat stress by activating heat shock transcription factors and chaperones to orchestrate cellular responses that protect the fungus against damage caused by heat. Concomitantly, the cell membrane must adapt to heat and maintain physical and chemical properties such as the balance between saturated/unsaturated fatty acids. However, how A. fumigatus connects these two physiological responses is unclear. Here, we explain that HsfA affects the synthesis of complex membrane lipids such as phospholipids and sphingolipids and controls the enzyme SdeA, which produces monounsaturated fatty acids, raw material for membrane lipids. These findings suggest that forced dysregulation of saturated/unsaturated fatty acid balance might represent novel strategies for antifungal therapy.
Collapse
Affiliation(s)
- João Henrique Tadini Marilhano Fabri
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Jonatas Erick Maimoni Campanella
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
16
|
Fernandes LB, D'Souza JS, Prasad TSK, Ghag SB. Isolation and characterization of extracellular vesicles from Fusarium oxysporum f. sp. cubense, a banana wilt pathogen. Biochim Biophys Acta Gen Subj 2023; 1867:130382. [PMID: 37207907 DOI: 10.1016/j.bbagen.2023.130382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Fusarium wilt of banana is a destructive widespread disease caused by Fusarium oxysporum f. sp. cubense (Foc) that ravaged banana plantations globally, incurring huge economic losses. Current knowledge demonstrates the involvement of several transcription factors, effector proteins, and small RNAs in the Foc-banana interaction. However, the precise mode of communication at the interface remains elusive. Cutting-edge research has emphasized the significance of extracellular vesicles (EVs) in trafficking the virulent factors modulating the host physiology and defence system. EVs are ubiquitous inter- and intra-cellular communicators across kingdoms. This study focuses on the isolation and characterization of Foc EVs from methods that make use of sodium acetate, polyethylene glycol, ethyl acetate, and high-speed centrifugation. Isolated EVs were microscopically visualized using Nile red staining. Further, the EVs were characterized using transmission electron microscopy, which revealed the presence of spherical, double-membrane, vesicular structures ranging in size from 50 to 200 nm (diameter). The size was also determined using the principle based on Dynamic Light Scattering. The Foc EVs contained proteins that were separated using SDS-PAGE and ranged between 10 and 315 kDa. Mass spectrometry analysis revealed the presence of EV-specific marker proteins, toxic peptides, and effectors. The Foc EVs were found to be cytotoxic, whose toxicity increased with EVs isolated from the co-culture preparation. Taken together, a better understanding of Foc EVs and their cargo will aid in deciphering the molecular crosstalk between banana and Foc.
Collapse
Affiliation(s)
- Lizelle B Fernandes
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz (East), Mumbai 400098, India
| | - Jacinta S D'Souza
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz (East), Mumbai 400098, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz (East), Mumbai 400098, India.
| |
Collapse
|
17
|
Freitas MS, Bitencourt TA, Rezende CP, Martins NS, Dourado TDMH, Tirapelli CR, Almeida F. Aspergillus fumigatus Extracellular Vesicles Display Increased Galleria mellonella Survival but Partial Pro-Inflammatory Response by Macrophages. J Fungi (Basel) 2023; 9:jof9050541. [PMID: 37233252 DOI: 10.3390/jof9050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Fungal extracellular vesicles (EVs) mediate intra- and interspecies communication and are critical in host-fungus interaction, modulating inflammation and immune responses. In this study, we evaluated the in vitro pro- and anti-inflammatory properties of Aspergillus fumigatus EVs over innate leukocytes. A. fumigatus EVs induced a partial proinflammatory response by macrophages, characterized by increased tumor necrosis factor-alpha production, and increased gene expression of induced nitric oxide synthase and adhesion molecules. EVs induce neither NETosis in human neutrophils nor cytokine secretion by peripheral mononuclear cells. However, prior inoculation of A. fumigatus EVs in Galleria mellonella larvae resulted in increased survival after the fungal challenge. Taken together, these findings show that A. fumigatus EVs play a role in protection against fungal infection, although they induce a partial pro-inflammatory response.
Collapse
Affiliation(s)
- Mateus Silveira Freitas
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Tamires Aparecida Bitencourt
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Caroline Patini Rezende
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Nubia Sabrina Martins
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | | | - Carlos R Tirapelli
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-902, SP, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
18
|
Medina-Castellanos E, Salgado-Bautista DA, Martínez-Andrade JM, Cadena-Nava RD, Riquelme M. Nanosized extracellular vesicles released by Neurospora crassa hyphae. Fungal Genet Biol 2023; 165:103778. [PMID: 36690295 DOI: 10.1016/j.fgb.2023.103778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Extracellular vesicles (EVs) are nanosized structures containing proteins, lipids, and nucleic acids, released by living cells to the surrounding medium. EVs participate in diverse processes, such as intercellular communication, virulence, and disease. In pathogenic fungi, EVs carry enzymes that allow them to invade the host or undergo environmental adaptation successfully. In Neurospora crassa, a non-pathogenic filamentous fungus widely used as a model organism, the vesicle-dependent secretory mechanisms that lead to polarized growth are well studied. In contrast, biosynthesis of EVs in this fungus has been practically unexplored. In the present work, we analyzed N. crassa culture's supernatant for the presence of EVs by dynamic light scattering (DLS), transmission electron microscopy (TEM) and proteomic analysis. We identified spherical membranous structures, with a predominant subpopulation averaging a hydrodynamic diameter (dh) of 68 nm and a particle diameter (dp) of 38 nm. EV samples stained with osmium tetroxide vapors were better resolved than those stained with uranyl acetate. Mass spectrometry analysis identified 252 proteins, including enzymes involved in carbohydrate metabolic processes, oxidative stress response, cell wall organization/remodeling, and circadian clock-regulated proteins. Some of these proteins have been previously reported in exosomes from human cells or in EVs of other fungi. In view of the results, it is suggested a putative role for EVs in cell wall biosynthesis and vegetative development in N. crassa.
Collapse
Affiliation(s)
- Elizabeth Medina-Castellanos
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Daniel A Salgado-Bautista
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Juan M Martínez-Andrade
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Ruben Dario Cadena-Nava
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Mexico.
| |
Collapse
|
19
|
Heires AJ, Samuelson D, Villageliu D, Nordgren TM, Romberger DJ. Agricultural dust derived bacterial extracellular vesicle mediated inflammation is attenuated by DHA. Sci Rep 2023; 13:2767. [PMID: 36797300 PMCID: PMC9933036 DOI: 10.1038/s41598-023-29781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Dietary long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA) and their pro-resolving metabolites are protective against atherosclerotic disease, and ameliorate systemic inflammatory conditions including lupus erythematosus, psoriasis, and bronchial asthma. Organic bioaerosol inhalation is a common and injurious hazard associated with agricultural occupations such as work in swine concentrated animal feeding operations (CAFOs) and is known to increase the risk for developing respiratory conditions such as asthma and COPD. Nearly all cells secrete membrane-bound vesicles (extracellular vesicles, EVs) that have the capacity to transmit protein, nucleic acid, and lipid signaling mediators between cells. Using a polymer-based isolation technique (ExoQuick, PEG) followed by ultracentrifugation, EVs were isolated from CAFO dust extracts, and were quantified and partially characterized. Here, we investigated the role of the n-3 PUFA docosahexaenoic acid (DHA) as a component of n-6 to n-3 PUFA mixtures used to recapitulate physiologically relevant dietary ratios in the resolution of inflammatory injury caused by exposure to EVs carried by agricultural organic dust in vitro. Primary human bronchial epithelial cells, fibroblasts and monocyte-derived macrophages were exposed to EVs isolated from swine CAFO dust. Cells were treated with mixtures of n-6 and n-3 PUFA during recovery from the EV-induced injury. CAFO dust extract (DE) was found to contain EVs that contributed significantly to the overall consequences of exposure to complete DE. DHA-rich PUFA ratios inhibited DE-derived EV-induced proinflammatory cytokine release dose-dependently. DHA-rich PUFA ratios also reversed the damaging effects of EVs on recellularization of lung matrix scaffolds, accelerated wound healing, and stimulated the release of pro-resolution mediators. These results underscore the importance of n-3 PUFA as anti-inflammatory compounds during recovery from EV-laden environmental dust exposure in the context of cellular responses in vitro, warranting future translational studies.
Collapse
Affiliation(s)
- Art J Heires
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Derrick Samuelson
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daniel Villageliu
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tara M Nordgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Debra J Romberger
- VA Nebraska Western Iowa Health Care System, Omaha, NE, USA.
- Department of Internal Medicine, Pulmonary, Critical Care & Sleep division, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
20
|
Mello TP, Barcellos IC, Aor AC, Branquinha MH, Santos ALS. Extracellularly Released Molecules by the Multidrug-Resistant Fungal Pathogens Belonging to the Scedosporium Genus: An Overview Focused on Their Ecological Significance and Pathogenic Relevance. J Fungi (Basel) 2022; 8:1172. [PMID: 36354939 PMCID: PMC9693033 DOI: 10.3390/jof8111172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
The multidrug-resistant species belonging to the Scedosporium genus are well recognized as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as human pathogens in both immunocompetent and immunocompromised individuals. It is well recognized that some fungi are ubiquitous organisms that produce an enormous amount of extracellular molecules, including enzymes and secondary metabolites, as part of their basic physiology in order to satisfy their several biological processes. In this context, the molecules secreted by Scedosporium species are key weapons for successful colonization, nutrition and maintenance in both host and environmental sites. These biologically active released molecules have central relevance on fungal survival when colonizing ecological places contaminated with hydrocarbons, as well as during human infection, particularly contributing to the invasion/evasion of host cells and tissues, besides escaping from the cellular and humoral host immune responses. Based on these relevant premises, the present review compiled the published data reporting the main secreted molecules by Scedosporium species, which operate important physiopathological events associated with pathogenesis, diagnosis, antimicrobial activity and bioremediation of polluted environments.
Collapse
Affiliation(s)
- Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Iuri C. Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Ana Carolina Aor
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
21
|
The RNA Content of Fungal Extracellular Vesicles: At the “Cutting-Edge” of Pathophysiology Regulation. Cells 2022; 11:cells11142184. [PMID: 35883627 PMCID: PMC9318717 DOI: 10.3390/cells11142184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
The role of extracellular vesicles (EVs) in interkingdom communication is widely accepted, and their role in intraspecies communication has been strengthened by recent research. Based on the regulation promoted by EV-associated molecules, the interactions between host and pathogens can reveal different pathways that ultimately affect infection outcomes. As a great part of the regulation is ascribable to RNA contained in EVs, many studies have focused on profiling RNAs in fungal and host EVs, tracking their accumulation during infection, and identifying potential target genes. Herein, we overview the main classes of RNA contained in fungal EVs and the biological processes regulated by these molecules, portraying a state-of-the-art picture of RNAs loaded in fungal EVs, while also raising several questions to drive future investigations. Our compiled data show unambiguously that EVs act as key elements in signaling pathways, and play a crucial role in pathosystems. A complete understanding of the processes that govern RNA content loading and trafficking, and its effect on recipient cells, will lead to improved technologies to ward off infectious agents that threaten human health.
Collapse
|
22
|
Sucupira PHF, Moura TR, Gurgel ILS, Pereira TTP, Padovan ACB, Teixeira MM, Bahia D, Soriani FM. In vitro and in vivo Characterization of Host–Pathogen Interactions of the L3881 Candida albicans Clinical Isolate. Front Microbiol 2022; 13:901442. [PMID: 35898912 PMCID: PMC9309619 DOI: 10.3389/fmicb.2022.901442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Candida albicans is a human commensal fungus and the etiologic agent of nosocomial infections in immunocompromised individuals. Candida spp. is the most studied human fungal pathogen, and the mechanisms by which this fungus can evade the immune system affecting immunosuppressed individuals have been extensively studied. Most of these studies focus on different species of Candida, and there is much to be understood in virulence variability among lineages, specifically different C. albicans clinical isolates. To better understand the main mechanisms of its virulence variability modulated in C. albicans clinical isolates, we characterized L3881 lineage, which has been previously classified as hypovirulent, and SC5314 lineage, a virulent wild-type control, by using both in vitro and in vivo assays. Our findings demonstrated that L3881 presented higher capacity to avoid macrophage phagocytosis and higher resistance to oxidative stress than the wild type. These characteristics prevented higher mortality rates for L3881 in the animal model of candidiasis. Conversely, L3881 has been able to induce an upregulation of pro-inflammatory mediators both in vitro and in vivo. These results indicated that in vitro and in vivo functional characterizations are necessary for determination of virulence in different clinical isolates due to its modulation in the host–pathogen interactions.
Collapse
Affiliation(s)
- Pedro H. F. Sucupira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tauany R. Moura
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella L. S. Gurgel
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tassia T. P. Pereira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana C. B. Padovan
- Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Mauro M. Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diana Bahia
- Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico M. Soriani
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Frederico M. Soriani,
| |
Collapse
|
23
|
Las-Casas LDO, Marina CLF, de Castro RJA, Coelho LC, Báo SN, de Hoog GS, Vicente VA, Fernandes L, Bocca AL. Pathogenicity and Growth Conditions Modulate Fonsecaea Extracellular Vesicles' Ability to Interact With Macrophages. Front Cell Infect Microbiol 2022; 12:879018. [PMID: 35755848 PMCID: PMC9218254 DOI: 10.3389/fcimb.2022.879018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chromoblastomycosis (CBM) is a chronic cutaneous and subcutaneous mycosis caused by black, dimorphic, and filamentous fungi of the Herpothrichiellaceae family, such as species of the genus Fonsecaea. These fungi can switch between the saprophytic forms (conidia and hyphae) and the pathogenic form, the muriform cells (MCs), which is considered an essential mechanism for fungal virulence. Nearly all types of cells can produce membranous structures formed by a lipid bilayer that communicate extracellularly with other cells, known as "extracellular vesicles" (EVs), which may act as virulence factors, as observed for several species of pathogenic fungi. Our findings demonstrated for the first time that F. pedrosoi, F. nubica, and F. erecta produce EVs in response to nutritional conditions. The EVs varied in sterol and protein contents, size, and morphology. Moreover, the EVs induced different cytokine and nitric oxide release patterns by bone marrow-derived macrophages (BMDMs). The EVs activated IL-1β production, possibly acting as the first signal in inflammasome activation. Unlike the pathogenic species, the EVs isolated from F. erecta did not significantly stimulate TNF and IL-10 production in general. Overall, these results demonstrated that different species of Fonsecaea produce EVs capable of modulating pro- and anti-inflammatory cytokine and nitric oxide production by BMDMs and that growth conditions affected the immunomodulatory capacities of the EVs as well as their size, content, and morphology.
Collapse
Affiliation(s)
| | | | | | | | - Sônia Nair Báo
- Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - G. Sybren de Hoog
- Department of Pathology, Federal University of Paraná, Curitiba, Brazil
- Center of Expertise in Mycology of Radboud, University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | | | | | | |
Collapse
|
24
|
Souza JAM, Gurgel ILDS, Malacco NLSDO, Martins FRB, Queiroz-Junior CM, Teixeira MM, Soriani FM. Pre-Exposure With Extracellular Vesicles From Aspergillus fumigatus Attenuates Inflammatory Response and Enhances Fungal Clearance in a Murine Model Pulmonary Aspergillosis. Front Cell Infect Microbiol 2022; 12:898619. [PMID: 35719346 PMCID: PMC9198263 DOI: 10.3389/fcimb.2022.898619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous and saprophytic filamentous fungus and the main etiologic agent of aspergillosis. Infections caused by A. fumigatus culminate in a strong inflammatory response that can evolve into respiratory failure and may be lethal in immunocompromised individuals. In the last decades, it has been demonstrated that extracellular vesicles (EVs) elicit a notable biological response in immune cells. EVs carry a variety of biomolecules, therefore are considered potential antigen delivery vehicles. The role of EVs as a strategy for modulating an effective response against infections caused by A. fumigatus remains unexplored. Here we investigate the use of EVs derived from A. fumigatus as an immunization tool to induce a more robust immune response to A. fumigatus pulmonary infection. In order to investigate that, male C57BL/6 mice were immunized with two doses of EVs and infected with A. fumigatus. Pre-exposure of mice to EVs was able to induce the production of specific IgG serum for fungal antigens. Besides that, the immunization with EVs reduced the neutrophilic infiltrate into the alveoli, as well as the extravasation of total proteins and the production of proinflammatory mediators IL-1β, IL-6, and CXCL-1. In addition, immunization prevented extensive lung tissue damage and also improved phagocytosis and fungus clearance. Noteworthy, immunization with EVs, associated with subclinical doses of Amphotericin B (AmB) treatment, rescued 50% of mice infected with A. fumigatus from lethal fungal pneumonia. Therefore, the present study shows a new role for A. fumigatus EVs as host inflammatory response modulators, suggesting their use as immunizing agents.
Collapse
Affiliation(s)
- Jéssica Amanda Marques Souza
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Frederico Marianetti Soriani, ; Jéssica Amanda Marques Souza,
| | - Isabella Luísa da Silva Gurgel
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nathália Luísa Sousa de Oliveira Malacco
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- The Lopes Lab, Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Flávia Rayssa Braga Martins
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico Marianetti Soriani
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Frederico Marianetti Soriani, ; Jéssica Amanda Marques Souza,
| |
Collapse
|
25
|
Barros BCSC, Almeida BR, Barros DTL, Toledo MS, Suzuki E. Respiratory Epithelial Cells: More Than Just a Physical Barrier to Fungal Infections. J Fungi (Basel) 2022; 8:jof8060548. [PMID: 35736031 PMCID: PMC9225092 DOI: 10.3390/jof8060548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
The respiratory epithelium is highly complex, and its composition varies along the conducting airways and alveoli. In addition to their primary function in maintaining the respiratory barrier and lung homeostasis for gas exchange, epithelial cells interact with inhaled pathogens, which can manipulate cell signaling pathways, promoting adhesion to these cells or hosting tissue invasion. Moreover, pathogens (or their products) can induce the secretion of chemokines and cytokines by epithelial cells, and in this way, these host cells communicate with the immune system, modulating host defenses and inflammatory outcomes. This review will focus on the response of respiratory epithelial cells to two human fungal pathogens that cause systemic mycoses: Aspergillus and Paracoccidioides. Some of the host epithelial cell receptors and signaling pathways, in addition to fungal adhesins or other molecules that are responsible for fungal adhesion, invasion, or induction of cytokine secretion will be addressed in this review.
Collapse
Affiliation(s)
- Bianca C. S. C. Barros
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Bruna R. Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Debora T. L. Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Marcos S. Toledo
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Leal Prado, São Paulo 04023-062, SP, Brazil;
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
- Correspondence:
| |
Collapse
|
26
|
Challenges in Serologic Diagnostics of Neglected Human Systemic Mycoses: An Overview on Characterization of New Targets. Pathogens 2022; 11:pathogens11050569. [PMID: 35631090 PMCID: PMC9143782 DOI: 10.3390/pathogens11050569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic mycoses have been viewed as neglected diseases and they are responsible for deaths and disabilities around the world. Rapid, low-cost, simple, highly-specific and sensitive diagnostic tests are critical components of patient care, disease control and active surveillance. However, the diagnosis of fungal infections represents a great challenge because of the decline in the expertise needed for identifying fungi, and a reduced number of instruments and assays specific to fungal identification. Unfortunately, time of diagnosis is one of the most important risk factors for mortality rates from many of the systemic mycoses. In addition, phenotypic and biochemical identification methods are often time-consuming, which has created an increasing demand for new methods of fungal identification. In this review, we discuss the current context of the diagnosis of the main systemic mycoses and propose alternative approaches for the identification of new targets for fungal pathogens, which can help in the development of new diagnostic tests.
Collapse
|
27
|
Meena DS, Kumar D, Agarwal M, Bohra GK, Choudhary R, Samantaray S, Sharma S, Midha N, Garg MK. Clinical features, diagnosis and treatment outcome of fungal endocarditis: A systematic review of reported cases. Mycoses 2022; 65:294-302. [PMID: 34787939 DOI: 10.1111/myc.13398] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022]
Abstract
The landscape of fungal endocarditis (FE) has constantly been evolving in the last few decades. Despite the advancement in diagnostic methods and the introduction of newer antifungals, mortality remains high in FE. This systematic review aimed to evaluate the epidemiology, clinical features, diagnostic and therapeutic interventions in patients with FE. We also aim to examine the aforementioned factors as a determinant of mortality in FE. A literature search was performed in PubMed, Google Scholar and Scopus, and all patients ≥18 years with proven fungal endocarditis were included. A total of 220 articles (250 patients) were included in the final analysis. Candida was the commonest aetiology (49.6%), followed by Aspergillus (30%) and Scedosporium species (3.2%). The proportion of prosthetic valve endocarditis (PVE) and intravenous drug users was 35.2% and 16%, respectively. The overall mortality rate was 40%. On multivariate analysis, Aspergillus endocarditis (HR 3.7, 95% CI 1.4-9.7; p = .009) and immunocompromised state (HR 2.8, 95% CI 1.24-6.3; p = .013) were independently associated with mortality. Patients treated with surgery along antifungals had better survival (HR 0.20, 95% CI 0.09-0.42; p < .001) compared to those treated with antifungals alone. Recurrence of FE was reported in 10.4% of patients. In conclusion, FE carries significant mortality, particularly in immunodeficient and Aspergillus endocarditis. We advocate the use of surgery combined with antifungals to improve clinical outcomes.
Collapse
Affiliation(s)
- Durga Shankar Meena
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Deepak Kumar
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Madhulata Agarwal
- Department of Internal Medicine, SMS Medical College, Jodhpur, India
| | - Gopal Krishana Bohra
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Rahul Choudhary
- Department of Cardiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Subhashree Samantaray
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Shivang Sharma
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Naresh Midha
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Mahendra Kumar Garg
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
28
|
Bitencourt TA, Hatanaka O, Pessoni AM, Freitas MS, Trentin G, Santos P, Rossi A, Martinez-Rossi NM, Alves LL, Casadevall A, Rodrigues ML, Almeida F. Fungal Extracellular Vesicles Are Involved in Intraspecies Intracellular Communication. mBio 2022; 13:e0327221. [PMID: 35012355 PMCID: PMC8749427 DOI: 10.1128/mbio.03272-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Fungal infections are associated with high mortality rates in humans. The risk of fungal diseases creates the urgent need to broaden the knowledge base regarding their pathophysiology. In this sense, the role of extracellular vesicles (EVs) has been described to convey biological information and participate in the fungus-host interaction process. We hypothesized that fungal EVs work as an additional element in the communication routes regulating fungal responses in intraspecies interaction systems. In this respect, the aim of this study was to address the gene regulation profiles prompted by fungal EVs in intraspecies recipient cells. Our data demonstrated the intraspecies uptake of EVs in pathogenic fungi, such as Candida albicans, Aspergillus fumigatus, and Paracoccidioides brasiliensis, and the effects triggered by EVs in fungal cells. In C. albicans, we evaluated the involvement of EVs in the yeast-to-hypha transition, while in P. brasiliensis and A. fumigatus the function of EVs as stress transducers was investigated. P. brasiliensis and A. fumigatus were exposed to an inhibitor of glycosylation or UV light, respectively. The results demonstrated the role of EVs in regulating the expression of target genes and triggering phenotypic changes. The EVs treatment induced cellular proliferation and boosted the yeast to hyphal transition in C. albicans, while they enhanced stress responsiveness in A. fumigatus and P. brasiliensis, establishing a role for EVs in fungal intraspecies communication. Thus, EVs regulate fungal behavior, acting as potent message effectors, and understanding their effects and mechanism(s) of action could be exploited in antifungal therapies. IMPORTANCE Here, we report a study about extracellular vesicles (EVs) as communication mediators in fungi. Our results demonstrated the role of EVs from Candida albicans, Aspergillus fumigatus, and Paracoccidioides brasiliensis regulating the expression of target genes and phenotypic features. We asked whether fungal EVs play a role as message effectors. We show that fungal EVs are involved in fungal interaction systems as potent message effectors, and understanding their effects and mechanisms of action could be exploited in antifungal therapies.
Collapse
Affiliation(s)
- Tamires A. Bitencourt
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Otavio Hatanaka
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Andre M. Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Mateus S. Freitas
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Patrick Santos
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lysangela L. Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, PR, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marcio L. Rodrigues
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, PR, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| |
Collapse
|
29
|
Heredia M, Andes D. Contributions of Extracellular Vesicles to Fungal Biofilm Pathogenesis. Curr Top Microbiol Immunol 2022; 432:67-79. [PMID: 34972879 DOI: 10.1007/978-3-030-83391-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are produced by all kingdoms of life and have been increasingly recognized as a key aspect of microbial pathogenicity. These membrane-bound compartments serve as secretory vehicles for the delivery of macromolecules to the extracellular environment. Studies over the past several decades have revealed that microbial EVs are highly suited to the biology and environmental context of the organism secreting them. Fungal EVs have been described in at least 12 species and have diverse functions. These functions include, but are not limited to, molecular transport across the cell wall, immunomodulation, cell-cell communication, export of virulence factors and nucleic acids, extracellular matrix (ECM) production, and induction of drug resistance. This chapter will explore the contributions of EVs to fungal pathogenesis and virulence, with a detailed focus on the role of C. albicans biofilm EVs in matrix biogenesis and antifungal resistance. Brief commentary on EV function in bacterial biofilms will also be provided for comparison, and suggestions for areas of future investigation in this field will be discussed.
Collapse
Affiliation(s)
- Marienela Heredia
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - David Andes
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
30
|
Comparative Molecular and Immunoregulatory Analysis of Extracellular Vesicles from Candida albicans and Candida auris. mSystems 2021; 6:e0082221. [PMID: 34427507 PMCID: PMC8407381 DOI: 10.1128/msystems.00822-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida auris is a recently described multidrug-resistant pathogenic fungus that is increasingly responsible for health care-associated outbreaks across the world. Bloodstream infections of this fungus cause death in up to 70% of cases. Aggravating this scenario, the disease-promoting mechanisms of C. auris are poorly understood. Fungi release extracellular vesicles (EVs) that carry a broad range of molecules, including proteins, lipids, carbohydrates, pigments, and RNA, many of which are virulence factors. Here, we carried out a comparative molecular characterization of C. auris and Candida albicans EVs and evaluated their capacity to modulate effector mechanisms of host immune defense. Using proteomics, lipidomics, and transcriptomics, we found that C. auris released EVs with payloads that were significantly different from those of EVs released by C. albicans. EVs released by C. auris potentiated the adhesion of this yeast to an epithelial cell monolayer, while EVs from C. albicans had no effect. C. albicans EVs primed macrophages for enhanced intracellular yeast killing, whereas C. auris EVs promoted survival of the fungal cells. Moreover, EVs from both C. auris and C. albicans induced the activation of bone marrow-derived dendritic cells. Together, our findings show distinct profiles and properties of EVs released by C. auris and by C. albicans and highlight the potential contribution of C. auris EVs to the pathogenesis of this emerging pathogen. IMPORTANCECandida auris is a recently described multidrug-resistant pathogenic fungus that is responsible for outbreaks across the globe, particularly in the context of nosocomial infections. Its virulence factors and pathogenesis are poorly understood. Here, we tested the hypothesis that extracellular vesicles (EVs) released by C. auris are a disease-promoting factor. We describe the production of EVs by C. auris and compare their biological activities against those of the better-characterized EVs from C. albicans. C. auris EVs have immunoregulatory properties, of which some are opposite those of C. albicans EVs. We also explored the cargo and structural components of those vesicles and found that they are remarkably distinct compared to EVs from C. auris’s phylogenetic relative Candida albicans.
Collapse
|
31
|
Morelli KA, Kerkaert JD, Cramer RA. Aspergillus fumigatus biofilms: Toward understanding how growth as a multicellular network increases antifungal resistance and disease progression. PLoS Pathog 2021; 17:e1009794. [PMID: 34437655 PMCID: PMC8389518 DOI: 10.1371/journal.ppat.1009794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aspergillus fumigatus is a saprophytic, filamentous fungus found in soils and compost and the causative agent of several pulmonary diseases in humans, birds, and other mammals. A. fumigatus and other filamentous fungi grow as networks of filamentous hyphae that have characteristics of a classic microbial biofilm. These characteristics include production of an extracellular matrix (ECM), surface adhesion, multicellularity, and increased antimicrobial drug resistance. A. fumigatus biofilm growth occurs in vivo at sites of infection, highlighting the importance of defining mechanisms underlying biofilm development and associated emergent properties. We propose that there are 3 distinct phases in the development of A. fumigatus biofilms: biofilm initiation, immature biofilm, and mature biofilm. These stages are defined both temporally and by unique genetic and structural changes over the course of development. Here, we review known mechanisms within each of these stages that contribute to biofilm structure, ECM production, and increased resistance to contemporary antifungal drugs. We highlight gaps in our understanding of biofilm development and function that when addressed are expected to aid in the development of novel antifungal therapies capable of killing filamentous fungal biofilms.
Collapse
Affiliation(s)
- Kaesi A. Morelli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Joshua D. Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
32
|
Peroxiredoxin Asp f3 Is Essential for Aspergillus fumigatus To Overcome Iron Limitation during Infection. mBio 2021; 12:e0097621. [PMID: 34399627 PMCID: PMC8406167 DOI: 10.1128/mbio.00976-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is an important fungal pathogen that causes allergic reactions but also life-threatening infections. One of the most abundant A. fumigatus proteins is Asp f3. This peroxiredoxin is a major fungal allergen and known for its role as a virulence factor, vaccine candidate, and scavenger of reactive oxygen species. Based on the hypothesis that Asp f3 protects A. fumigatus against killing by immune cells, we investigated the susceptibility of a conditional aspf3 mutant by employing a novel assay. Surprisingly, Asp f3-depleted hyphae were killed as efficiently as the wild type by human granulocytes. However, we identified an unexpected growth defect of mutants that lack Asp f3 under low-iron conditions, which explains the avirulence of the Δaspf3 deletion mutant in a murine infection model. A. fumigatus encodes two Asp f3 homologues which we named Af3l (Asp f3-like) 1 and Af3l2. Inactivation of Af3l1, but not of Af3l2, exacerbated the growth defect of the conditional aspf3 mutant under iron limitation, which ultimately led to death of the double mutant. Inactivation of the iron acquisition repressor SreA partially compensated for loss of Asp f3 and Af3l1. However, Asp f3 was not required for maintaining iron homeostasis or siderophore biosynthesis. Instead, we show that it compensates for a loss of iron-dependent antioxidant enzymes. Iron supplementation restored the virulence of the Δaspf3 deletion mutant in a murine infection model. Our results unveil the crucial importance of Asp f3 to overcome nutritional immunity and reveal a new biological role of peroxiredoxins in adaptation to iron limitation.
Collapse
|
33
|
Rizzo J, Wong SSW, Gazi AD, Moyrand F, Chaze T, Commere P, Novault S, Matondo M, Péhau‐Arnaudet G, Reis FCG, Vos M, Alves LR, May RC, Nimrichter L, Rodrigues ML, Aimanianda V, Janbon G. Cryptococcus extracellular vesicles properties and their use as vaccine platforms. J Extracell Vesicles 2021; 10:e12129. [PMID: 34377375 PMCID: PMC8329992 DOI: 10.1002/jev2.12129] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Whereas extracellular vesicle (EV) research has become commonplace in different biomedical fields, this field of research is still in its infancy in mycology. Here we provide a robust set of data regarding the structural and compositional aspects of EVs isolated from the fungal pathogenic species Cryptococcus neoformans, C. deneoformans and C. deuterogattii. Using cutting-edge methodological approaches including cryogenic electron microscopy and cryogenic electron tomography, proteomics, and flow cytometry, we revisited cryptococcal EV features and suggest a new EV structural model, in which the vesicular lipid bilayer is covered by mannoprotein-based fibrillar decoration, bearing the capsule polysaccharide as its outer layer. About 10% of the EV population is devoid of fibrillar decoration, adding another aspect to EV diversity. By analysing EV protein cargo from the three species, we characterized the typical Cryptococcus EV proteome. It contains several membrane-bound protein families, including some Tsh proteins bearing a SUR7/PalI motif. The presence of known protective antigens on the surface of Cryptococcus EVs, resembling the morphology of encapsulated virus structures, suggested their potential as a vaccine. Indeed, mice immunized with EVs obtained from an acapsular C. neoformans mutant strain rendered a strong antibody response in mice and significantly prolonged their survival upon C. neoformans infection.
Collapse
Affiliation(s)
- Juliana Rizzo
- Unité Biologie des ARN des Pathogènes FongiquesDépartement de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Sarah Sze Wah Wong
- Unité Mycologie Moléculaire, CNRS UMR2000Département de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Anastasia D. Gazi
- Ultrastructural Bio‐Imaging, UTechS UBI, CNRS UMR 3528Département de Biologie cellulaire et infection, Institut Pasteur, F‐75015ParisFrance
| | - Frédérique Moyrand
- Unité Biologie des ARN des Pathogènes FongiquesDépartement de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Thibault Chaze
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), CNRS UMR 2000Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Pierre‐Henri Commere
- Cytometry and BiomarkersCentre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Sophie Novault
- Cytometry and BiomarkersCentre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), CNRS UMR 2000Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | - Gérard Péhau‐Arnaudet
- Ultrastructural Bio‐Imaging, UTechS UBI, CNRS UMR 3528Département de Biologie cellulaire et infection, Institut Pasteur, F‐75015ParisFrance
| | - Flavia C. G. Reis
- Instituto Carlos ChagasFundação Oswaldo Cruz (FIOCRUZ)CuritibaBrazil
- Centro de Desenvolvimento Tecnologico em Saude (CDTS‐Fiocruz)São PauloBrazil
| | - Matthijn Vos
- NanoImaging Core FacilityCentre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F‐75015ParisFrance
| | | | - Robin C. May
- Institute of Microbiology and Infection and School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes (IMPG)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Marcio L. Rodrigues
- Instituto Carlos ChagasFundação Oswaldo Cruz (FIOCRUZ)CuritibaBrazil
- Instituto de Microbiologia Paulo de Góes (IMPG)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Vishukumar Aimanianda
- Unité Mycologie Moléculaire, CNRS UMR2000Département de Mycologie, Institut Pasteur, F‐75015ParisFrance
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes FongiquesDépartement de Mycologie, Institut Pasteur, F‐75015ParisFrance
| |
Collapse
|
34
|
Zamith-Miranda D, Peres da Silva R, Couvillion SP, Bredeweg EL, Burnet MC, Coelho C, Camacho E, Nimrichter L, Puccia R, Almeida IC, Casadevall A, Rodrigues ML, Alves LR, Nosanchuk JD, Nakayasu ES. Omics Approaches for Understanding Biogenesis, Composition and Functions of Fungal Extracellular Vesicles. Front Genet 2021; 12:648524. [PMID: 34012462 PMCID: PMC8126698 DOI: 10.3389/fgene.2021.648524] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer structures released by organisms from all kingdoms of life. The diverse biogenesis pathways of EVs result in a wide variety of physical properties and functions across different organisms. Fungal EVs were first described in 2007 and different omics approaches have been fundamental to understand their composition, biogenesis, and function. In this review, we discuss the role of omics in elucidating fungal EVs biology. Transcriptomics, proteomics, metabolomics, and lipidomics have each enabled the molecular characterization of fungal EVs, providing evidence that these structures serve a wide array of functions, ranging from key carriers of cell wall biosynthetic machinery to virulence factors. Omics in combination with genetic approaches have been instrumental in determining both biogenesis and cargo loading into EVs. We also discuss how omics technologies are being employed to elucidate the role of EVs in antifungal resistance, disease biomarkers, and their potential use as vaccines. Finally, we review recent advances in analytical technology and multi-omic integration tools, which will help to address key knowledge gaps in EVs biology and translate basic research information into urgently needed clinical applications such as diagnostics, and immuno- and chemotherapies to fungal infections.
Collapse
Affiliation(s)
- Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Erin L. Bredeweg
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Meagan C. Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Carolina Coelho
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Marcio L. Rodrigues
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas-FIOCRUZ PR, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lysangela R. Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas-FIOCRUZ PR, Curitiba, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
35
|
The paradoxical and still obscure properties of fungal extracellular vesicles. Mol Immunol 2021; 135:137-146. [PMID: 33895578 DOI: 10.1016/j.molimm.2021.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022]
Abstract
Early compositional studies of fungal EVs revealed a complex combination of biomolecules, including proteins, lipids, glycans, polysaccharides, nucleic acid and pigments, indicating that these compartments could be involved with multiple functions. Curiously, some of the activities attributed to fungal EVs were already attested experimentally and are implicated with contrasting effects in vitro and in vivo. For instance, the presence of virulence factors is correlated with increased pathogenic potential. Indeed, the administration to hosts of EVs along with some fungal pathogens seems to help the disease development. However, it has been clearly shown that immunization of insects and mice with fungal EVs can protect these animals against a subsequent infection. Fungal EVs not only influence the host response, as concluded from the observation that these compartments also work as messengers between fungal organisms. In this context, despite their size characterization, other physical properties of EVs are poorly known. For instance, their stability and half-life under physiological conditions can be a crucial parameter determining their long-distance effects. In this review, we will discuss the paradoxical and still unexploited functions and properties of fungal EVs that could be determinant for their biological functions.
Collapse
|
36
|
Parreira VDSC, Santos LGC, Rodrigues ML, Passetti F. ExVe: The knowledge base of orthologous proteins identified in fungal extracellular vesicles. Comput Struct Biotechnol J 2021; 19:2286-2296. [PMID: 33995920 PMCID: PMC8102145 DOI: 10.1016/j.csbj.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are double-membrane particles associated with intercellular communication. Since the discovery of EV production in the fungus Cryptococcus neoformans, the importance of EV release in its physiology and pathogenicity has been investigated. To date, few studies have investigated the proteomic content of EVs from multiple fungal species. Our main objective was to use an orthology approach to compare proteins identified by EV shotgun proteomics in 8 pathogenic and 1 nonpathogenic species. Using protein information from the UniProt and FungiDB databases, we integrated data for 11,433 hits in fungal EVs with an orthology perspective, resulting in 3,834 different orthologous groups. OG6_100083 (Hsp70 Pfam domain) was the unique orthologous group that was identified for all fungal species. Proteins with this protein domain are associated with the stress response, survival and morphological changes in different fungal species. Although no pathogenic orthologous group was found, we identified 5 orthologous groups exclusive to S. cerevisiae. Using the criteria of at least 7 pathogenic fungi to define a cluster, we detected the 4 unique pathogenic orthologous groups. Taken together, our data suggest that Hsp70-related proteins might play a key role in fungal EVs, regardless of the pathogenic status. Using an orthology approach, we identified at least 4 protein domains that could be novel therapeutic targets against pathogenic fungi. Our results were compiled in the herein described ExVe database, which is publicly available at http://exve.icc.fiocruz.br.
Collapse
Affiliation(s)
| | | | - Marcio L Rodrigues
- Instituto Carlos Chagas, FIOCRUZ, Rua Prof. Algacyr Munhoz Mader, 3775, CEP 81350-010, Curitiba/PR, Brazil.,Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Rua Prof. Algacyr Munhoz Mader, 3775, CEP 81350-010, Curitiba/PR, Brazil
| |
Collapse
|
37
|
Gu X, Hua YH, Zhang YD, Bao DI, Lv J, Hu HF. The Pathogenesis of Aspergillus fumigatus, Host Defense Mechanisms, and the Development of AFMP4 Antigen as a Vaccine. Pol J Microbiol 2021; 70:3-11. [PMID: 33815522 PMCID: PMC8008755 DOI: 10.33073/pjm-2021-003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Aspergillus fumigatus is one of the ubiquitous fungi with airborne conidia, which accounts for most aspergillosis cases. In immunocompetent hosts, the inhaled conidia are rapidly eliminated. However, immunocompromised or immunodeficient hosts are particularly vulnerable to most Aspergillus infections and invasive aspergillosis (IA), with mortality from 50% to 95%. Despite the improvement of antifungal drugs over the last few decades, the therapeutic effect for IA patients is still limited and does not provide significant survival benefits. The drawbacks of antifungal drugs such as side effects, antifungal drug resistance, and the high cost of antifungal drugs highlight the importance of finding novel therapeutic and preventive approaches to fight against IA. In this article, we systemically addressed the pathogenic mechanisms, defense mechanisms against A. fumigatus, the immune response, molecular aspects of host evasion, and vaccines' current development against aspergillosis, particularly those based on AFMP4 protein, which might be a promising antigen for the development of anti-A. fumigatus vaccines.
Collapse
Affiliation(s)
- Xiang Gu
- College of Law and Political Science, Nanjing University of Information Science and Technology, Nanjing, China.,The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Yan-Hong Hua
- The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Yang-Dong Zhang
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - D I Bao
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jin Lv
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hong-Fang Hu
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
38
|
Garcia-Ceron D, Dawson CS, Faou P, Bleackley MR, Anderson MA. Size-exclusion chromatography allows the isolation of EVs from the filamentous fungal plant pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). Proteomics 2021; 21:e2000240. [PMID: 33609009 DOI: 10.1002/pmic.202000240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized compartments involved in cell communication and macromolecule transport that are well characterized in mammalian organisms. Fungal EVs transport virulence-related cargo and modulate the host immune response, but most work has been focused on human yeast pathogens. Additionally, the study of EVs from filamentous fungi has been hindered by the lack of protein markers and efficient isolation methods. In this study we performed the isolation and proteomic characterization of EVs from the filamentous cotton pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). EVs were recovered from two different growth media, Czapek Dox and Saboraud's dextrose broth, and purified by size-exclusion chromatography. Our results show that the EV proteome changes depending on the growth medium but EV production remains constant. EVs contained proteins involved in polyketide synthesis, cell wall modifications, proteases and potential effectors. These results support a role in modulation of host-pathogen interactions for Fov EVs.
Collapse
Affiliation(s)
- Donovan Garcia-Ceron
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Charlotte S Dawson
- Cambridge Centre for Proteomics, Department of Biochemistry, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Pierre Faou
- La Trobe Comprehensive Proteomics Platform, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
39
|
Phytotoxic Tryptoquialanines Produced In Vivo by Penicillium digitatum Are Exported in Extracellular Vesicles. mBio 2021; 12:mBio.03393-20. [PMID: 33563828 PMCID: PMC7885104 DOI: 10.1128/mbio.03393-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During the postharvest period, citrus fruits can be affected by phytopathogens such as Penicillium digitatum, which causes green mold disease and is responsible for up to 90% of total citrus losses. Chemical fungicides are widely used to prevent green mold disease, leading to concerns about environmental and health risks. Penicillium digitatum is the most aggressive pathogen of citrus fruits. Tryptoquialanines are major indole alkaloids produced by P. digitatum. It is unknown if tryptoquialanines are involved in the damage of citrus fruits caused by P. digitatum. To investigate the pathogenic roles of tryptoquialanines, we initially asked if tryptoquialanines could affect the germination of Citrus sinensis seeds. Exposure of the citrus seeds to tryptoquialanine A resulted in a complete inhibition of germination and an altered metabolic response. Since this phytotoxic effect requires the extracellular export of tryptoquialanine A, we investigated the mechanisms of extracellular delivery of this alkaloid in P. digitatum. We detected extracellular vesicles (EVs) released by P. digitatum both in culture and during infection of citrus fruits. Compositional analysis of EVs produced during infection revealed the presence of a complex cargo, which included tryptoquialanines and the mycotoxin fungisporin. The EVs also presented phytotoxicity activity in vitro and caused damage to the tissues of citrus seeds. Through molecular networking, it was observed that the metabolites present in the P. digitatum EVs are produced in all of its possible hosts. Our results reveal a novel phytopathogenic role of P. digitatum EVs and tryptoquialanine A, implying that this alkaloid is exported in EVs during plant infection.
Collapse
|
40
|
Yang B, Wang J, Jiang H, Lin H, Ou Z, Ullah A, Hua Y, Chen J, Lin X, Hu X, Zheng L, Wang Q. Extracellular Vesicles Derived From Talaromyces marneffei Yeasts Mediate Inflammatory Response in Macrophage Cells by Bioactive Protein Components. Front Microbiol 2021; 11:603183. [PMID: 33488545 PMCID: PMC7819977 DOI: 10.3389/fmicb.2020.603183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) loaded with proteins, nucleic acids, membrane lipids, and other virulence factors could participate in pathogenic processes in some fungi such as Cryptococcus neoformans and Candida albicans. However, the specific characteristics of EVs derived from Talaromyces marneffei (TM) still have not been figured out yet. In the present study, it has been observed that TM-derived EVs were a heterogeneous group of nanosized membrane vesicles (30–300 nm) under nanoparticle tracking analysis and transmission electron microscopy. The DiI-labeled EVs could be taken up by RAW 264.7 macrophage cells. Incubation of EVs with macrophages would result in increased expression levels of reactive oxygen species, nitric oxide, and some inflammatory factors including interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor. Furthermore, the expression of co-stimulatory molecules (CD80, CD86, and MHC-II) was also increased in macrophages stimulated with EVs. The level of inflammatory factors secreted by macrophages showed a significant decrease when EVs were hydrolyzed by protease, while that of DNA and RNA hydrolase treatment remained unchanged. Subsequently, some virulence factors in EVs including heat shock protein, mannoprotein 1, and peroxidase were determined by liquid chromatography–tandem mass spectrometry. Taken together, our results indicated that the TM-derived EVs could mediate inflammatory response and its protein would play a key role in regulating the function of RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Biao Yang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongye Jiang
- Shunde Hospital, The First People's Hospital of Shunde, Southern Medical University, Foshan, China
| | - Huixian Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Amir Ullah
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuneng Hua
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Juanjiang Chen
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Freitas MS, Pessoni AM, Coelho C, Bonato VLD, Rodrigues ML, Casadevall A, Almeida F. Interactions of Extracellular Vesicles from Pathogenic Fungi with Innate Leukocytes. Curr Top Microbiol Immunol 2021; 432:89-120. [DOI: 10.1007/978-3-030-83391-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Filamentous Fungi Extracellular Vesicles. Curr Top Microbiol Immunol 2021; 432:45-55. [DOI: 10.1007/978-3-030-83391-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Fungal Extracellular Vesicles in Interkingdom Communication. Curr Top Microbiol Immunol 2021; 432:81-88. [DOI: 10.1007/978-3-030-83391-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Garcia-Ceron D, Bleackley MR, Anderson MA. Fungal Extracellular Vesicles in Pathophysiology. Subcell Biochem 2021; 97:151-177. [PMID: 33779917 DOI: 10.1007/978-3-030-67171-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fungal pathogens are a concern in medicine and agriculture that has been exacerbated by the emergence of antifungal-resistant varieties that severely threaten human and animal health, as well as food security. This had led to the search for new and sustainable treatments for fungal diseases. Innovative solutions require a deeper understanding of the interactions between fungal pathogens and their hosts, and the key determinants of fungal virulence. Recently, a link has emerged between the release of extracellular vesicles (EVs) and fungal virulence that may contribute to finding new methods for fungal control. Fungal EVs carry pigments, carbohydrates, protein, nucleic acids and other macromolecules with similar functions as those found in EVs from other organisms, however certain fungal features, such as the fungal cell wall, impact EV release and cargo. Fungal EVs modulate immune responses in the host, have a role in cell-cell communication and transport molecules that function in virulence. Understanding the function of fungal EVs will expand our knowledge of host-pathogen interactions and may provide new and specific targets for antifungal drugs and agrichemicals.
Collapse
|
45
|
Biogenesis of Fungal Extracellular Vesicles: What Do We Know? Curr Top Microbiol Immunol 2021; 432:1-11. [DOI: 10.1007/978-3-030-83391-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Honorato L, Bonilla JJA, Piffer AC, Nimrichter L. Fungal Extracellular Vesicles as a Potential Strategy for Vaccine Development. Curr Top Microbiol Immunol 2021; 432:121-138. [DOI: 10.1007/978-3-030-83391-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Munhoz da Rocha IF, Amatuzzi RF, Lucena ACR, Faoro H, Alves LR. Cross-Kingdom Extracellular Vesicles EV-RNA Communication as a Mechanism for Host-Pathogen Interaction. Front Cell Infect Microbiol 2020; 10:593160. [PMID: 33312966 PMCID: PMC7708329 DOI: 10.3389/fcimb.2020.593160] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
The extracellular vesicle (EVs) traffic has been highlighted as a very important pathway of cellular communication. EVs are produced by prokaryotes and eukaryotes organisms and can carry molecules to help maintain homeostasis, responding to general disbalance, infections, and allowing rapid modulation of the immune system. In the context of infection, EVs from both the host and the pathogen have been identified as playing roles in the recruitment of immunological molecules that can lead to the resolution of the infection or the host’s defeat. Bacterial vesicles RNA cargo play roles in the host cell by regulating gene expression and modulating immune response. In fungi the RNA molecules present in EVs are diverse and participate in communication between the host and pathogenic fungi. Little is known about how cross-kingdom sRNA trafficking occurs, although in recent years, there has been an increase in studies that relate EV participation in sRNA delivery. This review aims to elucidate and update the reader concerning the role of extracellular vesicles, with emphasis in the RNA content. We describe the EVs during infection from the host point-of-view, as well as the bacteria and fungi pathogens producing EVs that help the establishment of the disease.
Collapse
Affiliation(s)
| | - Rafaela Ferreira Amatuzzi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Aline Castro Rodrigues Lucena
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil
| |
Collapse
|
48
|
de Oliveira HC, Castelli RF, Reis FCG, Rizzo J, Rodrigues ML. Pathogenic Delivery: The Biological Roles of Cryptococcal Extracellular Vesicles. Pathogens 2020; 9:pathogens9090754. [PMID: 32948010 PMCID: PMC7557404 DOI: 10.3390/pathogens9090754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are produced by all domains of life. In fungi, these structures were first described in Cryptococcus neoformans and, since then, they were characterized in several pathogenic and non-pathogenic fungal species. Cryptococcal EVs participate in the export of virulence factors that directly impact the Cryptococcus-host interaction. Our knowledge of the biogenesis and pathogenic roles of Cryptococcus EVs is still limited, but recent methodological and scientific advances have improved our understanding of how cryptococcal EVs participate in both physiological and pathogenic events. In this review, we will discuss the importance of cryptococcal EVs, including early historical studies suggesting their existence in Cryptococcus, their putative mechanisms of biogenesis, methods of isolation, and possible roles in the interaction with host cells.
Collapse
Affiliation(s)
- Haroldo C. de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
| | - Rafael F. Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4.365, Pavilhão Arthur Neiva–Manguinhos, Rio de Janeiro 21040-360, Brasil
| | - Flavia C. G. Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4036–Prédio Da Expansão–8˚ Andar–Sala 814, Rio De Janeiro 21040-361, Brasil
| | - Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France;
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 CIC Curitiba/PR, Curitiba 81350-010, Brasil; (H.C.d.O.); (R.F.C.); (F.C.G.R.)
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brasil
- Correspondence:
| |
Collapse
|
49
|
Berry SB, Haack AJ, Theberge AB, Brighenti S, Svensson M. Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Front Med (Lausanne) 2020; 7:537. [PMID: 33015094 PMCID: PMC7511576 DOI: 10.3389/fmed.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic lung diseases are a leading cause of morbidity and mortality across the globe, encompassing a diverse range of conditions from infections with pathogenic microorganisms to underlying genetic disorders. The respiratory tract represents an active interface with the external environment having the primary immune function of resisting pathogen intrusion and maintaining homeostasis in response to the myriad of stimuli encountered within its microenvironment. To perform these vital functions and prevent lung disorders, a chemical and biological cross-talk occurs in the complex milieu of the lung that mediates and regulates the numerous cellular processes contributing to lung health. In this review, we will focus on the role of cross-talk in chronic lung infections, and discuss how different cell types and signaling pathways contribute to the chronicity of infection(s) and prevent effective immune clearance of pathogens. In the lung microenvironment, pathogens have developed the capacity to evade mucosal immunity using different mechanisms or virulence factors, leading to colonization and infection of the host; such mechanisms include the release of soluble and volatile factors, as well as contact dependent (juxtracrine) interactions. We explore the diverse modes of communication between the host and pathogen in the lung tissue milieu in the context of chronic lung infections. Lastly, we review current methods and approaches used to model and study these host-pathogen interactions in vitro, and the role of these technological platforms in advancing our knowledge about chronic lung diseases.
Collapse
Affiliation(s)
- Samuel B. Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | | | - Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
50
|
Abstract
Fungal cells use extracellular vesicles (EVs) to export biologically active molecules to the extracellular space. In this study, we used protoplasts of Aspergillus fumigatus, a major fungal pathogen, as a model to evaluate the role of EV production in cell wall biogenesis. Our results demonstrated that wall-less A. fumigatus exports plasma membrane-derived EVs containing a complex combination of proteins and glycans. Our report is the first to characterize fungal EVs in the absence of a cell wall. Our results suggest that protoplasts represent a promising model for functional studies of fungal vesicles. Extracellular vesicles (EVs) are membranous compartments produced by yeast and mycelial forms of several fungal species. One of the difficulties in perceiving the role of EVs during the fungal life, and particularly in cell wall biogenesis, is caused by the presence of a thick cell wall. One alternative to have better access to these vesicles is to use protoplasts. This approach has been investigated here with Aspergillus fumigatus, one of the most common opportunistic fungal pathogens worldwide. Analysis of regenerating protoplasts by scanning electron microscopy and fluorescence microscopy indicated the occurrence of outer membrane projections in association with surface components and the release of particles with properties resembling those of fungal EVs. EVs in culture supernatants were characterized by transmission electron microscopy and nanoparticle tracking analysis. Proteomic and glycome analysis of EVs revealed the presence of a complex array of enzymes related to lipid/sugar metabolism, pathogenic processes, and cell wall biosynthesis. Our data indicate that (i) EV production is a common feature of different morphological stages of this major fungal pathogen and (ii) protoplastic EVs are promising tools for undertaking studies of vesicle functions in fungal cells. IMPORTANCE Fungal cells use extracellular vesicles (EVs) to export biologically active molecules to the extracellular space. In this study, we used protoplasts of Aspergillus fumigatus, a major fungal pathogen, as a model to evaluate the role of EV production in cell wall biogenesis. Our results demonstrated that wall-less A. fumigatus exports plasma membrane-derived EVs containing a complex combination of proteins and glycans. Our report is the first to characterize fungal EVs in the absence of a cell wall. Our results suggest that protoplasts represent a promising model for functional studies of fungal vesicles.
Collapse
|