1
|
Krausfeldt LE, Samuel PS, Smith RP, Urakawa H, Rosen BH, Colwell RR, Lopez JV. Transcriptional profiles of Microcystis reveal gene expression shifts that promote bloom persistence in in situ mesocosms. Microbiol Spectr 2024:e0136924. [PMID: 39555930 DOI: 10.1128/spectrum.01369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024] Open
Abstract
Harmful algal blooms caused by cyanobacteria threaten aquatic ecosystems, the economy, and human health. Previous work has tried to identify the mechanisms that allow blooms to form, focusing on the role of nutrients. However, little is known about how introduced nutrients influence gene expression in situ. To address this knowledge gap, we used in situ mesocosms initiated with water experiencing a Microcystis bloom. We added pulses of nutrients that are commonly associated with anthropogenic sources to the mesocosms for 72 hours and collected samples for metatranscriptomics to examine how the physiological function of Microcystis and bloom status changed. The addition of nitrogen (N) as urea, but not the addition of PO4, resulted in conspicuous bloom persistence for at least 9 days after the final introduction of nutrients. The addition of urea initially resulted in the upregulation of photosynthesis machinery, as well as phosphate, carbon, and N transport and metabolism. Once Microcystis presumably became N-replete, upregulation of amino acid metabolism, microcystin biosynthesis, and other processes associated with biomass generation occurred. These capacities coincided with the upregulation of toxin-antitoxin systems, CRISPR-cas genes, and transposases suggesting that phage defense and genome rearrangement are critical in bloom persistence. Overall, our results show the stepwise transcriptional response of a Microcystis bloom to the introduction of nutrients, specifically urea, as it is sustained in a natural setting. The transcriptomic shifts observed herein may serve as markers of the longevity of blooms while providing insight into why Microcystis blooms over other cyanobacteria.IMPORTANCEHarmful algal blooms represent a threat to human health and ecosystems. Understanding why blooms persist may help us develop warning indicators of bloom persistence and create novel mitigation strategies. Using mesocosm experiments initiated with water with an active bloom, we measured the stepwise transcription changes of the toxin-producing cyanobacterium Microcystis in response to the addition of nutrients that are important in causing blooms. We found that nitrogen (N), but not phosphorus, promoted bloom longevity. The initial introduction of N resulted in the upregulation of genes involved in photosynthesis and N import. At later times in the bloom, upregulation of genes involved in biomass generation, phage protection, genomic rearrangement, and toxin production was observed. Our results suggest that Microcystis first fulfills nutritional requirements before investing energy in pathways associated with growth and protection against competitors, which allowed bloom persistence more than a week after the final addition of nutrients.
Collapse
Affiliation(s)
- Lauren E Krausfeldt
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
| | - Paisley S Samuel
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
| | - Robert P Smith
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hidetoshi Urakawa
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Barry H Rosen
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Rita R Colwell
- Institute for Advanced Computer Studies, University of Maryland College Park, College Park, Maryland, USA
| | - Jose V Lopez
- Department of Biological Sciences, Guy Harvey Oceanographic Center, Nova Southeastern University, Dania Beach, Florida, USA
| |
Collapse
|
2
|
Le VV, Tran QG, Ko SR, Oh HM, Ahn CY. Insights into cyanobacterial blooms through the lens of omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173028. [PMID: 38723963 DOI: 10.1016/j.scitotenv.2024.173028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Cyanobacteria are oxygen-producing photosynthetic bacteria that convert carbon dioxide into biomass upon exposure to sunlight. However, favorable conditions cause harmful cyanobacterial blooms (HCBs), which are the dense accumulation of biomass at the water surface or subsurface, posing threats to freshwater ecosystems and human health. Understanding the mechanisms underlying cyanobacterial bloom formation is crucial for effective management. In this regard, recent advancements in omics technologies have provided valuable insights into HCBs, which have raised expectations to develop more effective control methods in the near future. This literature review aims to present the genomic architecture, adaptive mechanisms, microbial interactions, and ecological impacts of HCBs through the lens of omics. Genomic analysis indicates that the genome plasticity of cyanobacteria has enabled their resilience and effective adaptation to environmental changes. Transcriptomic investigations have revealed that cyanobacteria use various strategies for adapting to environmental stress. Additionally, metagenomic and metatranscriptomic analyses have emphasized the significant role of the microbial community in regulating HCBs. Finally, we offer perspectives on potential opportunities for further research in this field.
Collapse
Affiliation(s)
- Ve Van Le
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | - So-Ra Ko
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Cai H, McLimans CJ, Jiang H, Chen F, Krumholz LR, Hambright KD. Aerobic anoxygenic phototrophs play important roles in nutrient cycling within cyanobacterial Microcystis bloom microbiomes. MICROBIOME 2024; 12:88. [PMID: 38741135 PMCID: PMC11089705 DOI: 10.1186/s40168-024-01801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND During the bloom season, the colonial cyanobacterium Microcystis forms complex aggregates which include a diverse microbiome within an exopolymer matrix. Early research postulated a simple mutualism existing with bacteria benefitting from the rich source of fixed carbon and Microcystis receiving recycled nutrients. Researchers have since hypothesized that Microcystis aggregates represent a community of synergistic and interacting species, an interactome, each with unique metabolic capabilities that are critical to the growth, maintenance, and demise of Microcystis blooms. Research has also shown that aggregate-associated bacteria are taxonomically different from free-living bacteria in the surrounding water. Moreover, research has identified little overlap in functional potential between Microcystis and members of its microbiome, further supporting the interactome concept. However, we still lack verification of general interaction and know little about the taxa and metabolic pathways supporting nutrient and metabolite cycling within Microcystis aggregates. RESULTS During a 7-month study of bacterial communities comparing free-living and aggregate-associated bacteria in Lake Taihu, China, we found that aerobic anoxygenic phototrophic (AAP) bacteria were significantly more abundant within Microcystis aggregates than in free-living samples, suggesting a possible functional role for AAP bacteria in overall aggregate community function. We then analyzed gene composition in 102 high-quality metagenome-assembled genomes (MAGs) of bloom-microbiome bacteria from 10 lakes spanning four continents, compared with 12 complete Microcystis genomes which revealed that microbiome bacteria and Microcystis possessed complementary biochemical pathways that could serve in C, N, S, and P cycling. Mapping published transcripts from Microcystis blooms onto a comprehensive AAP and non-AAP bacteria MAG database (226 MAGs) indicated that observed high levels of expression of genes involved in nutrient cycling pathways were in AAP bacteria. CONCLUSIONS Our results provide strong corroboration of the hypothesized Microcystis interactome and the first evidence that AAP bacteria may play an important role in nutrient cycling within Microcystis aggregate microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Haiyuan Cai
- School of Biological Sciences, University of Oklahoma, Norman, USA
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | | | - Helong Jiang
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA
| | - Lee R Krumholz
- School of Biological Sciences, University of Oklahoma, Norman, USA
| | | |
Collapse
|
4
|
Baylous HR, Gladfelter MF, Gardner MI, Foley M, Wilson AE, Steffen MM. Indole-3-acetic acid promotes growth in bloom-forming Microcystis via an antioxidant response. HARMFUL ALGAE 2024; 133:102575. [PMID: 38485434 DOI: 10.1016/j.hal.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/19/2024]
Abstract
Interactions between bacteria and phytoplankton in the phycosphere facilitate and constrain biogeochemical cycling in aquatic ecosystems. Indole-3-acetic acid (IAA) is a bacterially produced chemical signal that promotes growth of phytoplankton and plants. Here, we explored the impact of IAA on bloom-forming cyanobacteria and their associated bacteria. Exposure to IAA and its precursor, tryptophan, resulted in a strong growth response in a bloom of the freshwater cyanobacterium, Microcystis. Metatranscriptome analysis revealed the induction of an antioxidant response in Microcystis upon exposure to IAA, potentially allowing populations to increase photosynthetic rate and overcome internally generated reactive oxygen. Our data reveal that co-occurring bacteria within the phycosphere microbiome exhibit a division of labor for supportive functions, such as nutrient mineralization and transport, vitamin synthesis, and reactive oxygen neutralization. These complex dynamics within the Microcystis phycosphere microbiome are an example of interactions within a microenvironment that can have ecosystem-scale consequences.
Collapse
Affiliation(s)
- Hunter R Baylous
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Matthew F Gladfelter
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Malia I Gardner
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Madalynn Foley
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Morgan M Steffen
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA.
| |
Collapse
|
5
|
Sadeghi J, Hashemi Shahraki A, Chaganti SR, Heath D. Functional gene transcription variation in bacterial metatranscriptomes in large freshwater Lake Ecosystems: Implications for ecosystem and human health. ENVIRONMENTAL RESEARCH 2023; 231:116298. [PMID: 37268212 DOI: 10.1016/j.envres.2023.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Little is known regarding the temporal and spatial functional variation of freshwater bacterial community (BC) under non-bloom conditions, especially in winter. To address this, we used metatranscriptomics to assess bacterial gene transcription variation among three sites across three seasons. Our metatranscriptome data for freshwater BCs at three public beaches (Ontario, Canada) sampled in the winter (no ice), summer and fall (2019) showed relatively little spatial, but a strong temporal variation. Our data showed high transcriptional activity in summer and fall but surprisingly, 89% of the KEGG pathway genes and 60% of the selected candidate genes (52 genes) associated with physiological and ecological activity were still active in freezing temperatures (winter). Our data also supported the possibility of an adaptively flexible gene expression response of the freshwater BC to low temperature conditions (winter). Only 32% of the bacterial genera detected in the samples were active, indicating that the majority of detected taxa were non-active (dormant). We also identified high seasonal variation in the abundance and activity of taxa associated with health risks (i.e., Cyanobacteria and waterborne bacterial pathogens). This study provides a baseline for further characterization of freshwater BCs, health-related microbial activity/dormancy and the main drivers of their functional variation (such as rapid human-induced environmental change and climate change).
Collapse
Affiliation(s)
- Javad Sadeghi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | | | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada; Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
6
|
Crevecoeur S, Edge TA, Watson LC, Watson SB, Greer CW, Ciborowski JJH, Diep N, Dove A, Drouillard KG, Frenken T, McKay RM, Zastepa A, Comte J. Spatio-temporal connectivity of the aquatic microbiome associated with cyanobacterial blooms along a Great Lake riverine-lacustrine continuum. Front Microbiol 2023; 14:1073753. [PMID: 36846788 PMCID: PMC9947797 DOI: 10.3389/fmicb.2023.1073753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Lake Erie is subject to recurring events of cyanobacterial harmful algal blooms (cHABs), but measures of nutrients and total phytoplankton biomass seem to be poor predictors of cHABs when taken individually. A more integrated approach at the watershed scale may improve our understanding of the conditions that lead to bloom formation, such as assessing the physico-chemical and biological factors that influence the lake microbial community, as well as identifying the linkages between Lake Erie and the surrounding watershed. Within the scope of the Government of Canada's Genomics Research and Development Initiative (GRDI) Ecobiomics project, we used high-throughput sequencing of the 16S rRNA gene to characterize the spatio-temporal variability of the aquatic microbiome in the Thames River-Lake St. Clair-Detroit River-Lake Erie aquatic corridor. We found that the aquatic microbiome was structured along the flow path and influenced mainly by higher nutrient concentrations in the Thames River, and higher temperature and pH downstream in Lake St. Clair and Lake Erie. The same dominant bacterial phyla were detected along the water continuum, changing only in relative abundance. At finer taxonomical level, however, there was a clear shift in the cyanobacterial community, with Planktothrix dominating in the Thames River and Microcystis and Synechococcus in Lake St. Clair and Lake Erie. Mantel correlations highlighted the importance of geographic distance in shaping the microbial community structure. The fact that a high proportion of microbial sequences found in the Western Basin of Lake Erie were also identified in the Thames River, indicated a high degree of connectivity and dispersal within the system, where mass effect induced by passive transport play an important role in microbial community assembly. Nevertheless, some cyanobacterial amplicon sequence variants (ASVs) related to Microcystis, representing less than 0.1% of relative abundance in the upstream Thames River, became dominant in Lake St. Clair and Erie, suggesting selection of those ASVs based on the lake conditions. Their extremely low relative abundances in the Thames suggest additional sources are likely to contribute to the rapid development of summer and fall blooms in the Western Basin of Lake Erie. Collectively, these results, which can be applied to other watersheds, improve our understanding of the factors influencing aquatic microbial community assembly and provide new perspectives on how to better understand the occurrence of cHABs in Lake Erie and elsewhere.
Collapse
Affiliation(s)
- Sophie Crevecoeur
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Thomas A. Edge
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Linet Cynthia Watson
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Susan B. Watson
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Charles W. Greer
- Energy, Mining and Environment, National Research Council of Canada, Montreal, QC, Canada
| | - Jan J. H. Ciborowski
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
- Department of Biological Sciences University of Calgary, Calgary, AB, Canada
| | - Ngan Diep
- Ontario Ministry of the Environment, Conservation and Parks, Environmental Monitoring and Reporting Branch, Etobicoke, ON, Canada
| | - Alice Dove
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Kenneth G. Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Thijs Frenken
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Cluster Nature & Society, HAS University of Applied Sciences, s-Hertogenbosch, Netherlands
| | - Robert Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - Arthur Zastepa
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Jérôme Comte
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec City, QC, Canada
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
7
|
Roux S, Fischer MG, Hackl T, Katz LA, Schulz F, Yutin N. Updated Virophage Taxonomy and Distinction from Polinton-like Viruses. Biomolecules 2023; 13:204. [PMID: 36830574 PMCID: PMC9952930 DOI: 10.3390/biom13020204] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Virophages are small dsDNA viruses that hijack the machinery of giant viruses during the co-infection of a protist (i.e., microeukaryotic) host and represent an exceptional case of "hyperparasitism" in the viral world. While only a handful of virophages have been isolated, a vast diversity of virophage-like sequences have been uncovered from diverse metagenomes. Their wide ecological distribution, idiosyncratic infection and replication strategy, ability to integrate into protist and giant virus genomes and potential role in antiviral defense have made virophages a topic of broad interest. However, one limitation for further studies is the lack of clarity regarding the nomenclature and taxonomy of this group of viruses. Specifically, virophages have been linked in the literature to other "virophage-like" mobile genetic elements and viruses, including polinton-like viruses (PLVs), but there are no formal demarcation criteria and proper nomenclature for either group, i.e., virophage or PLVs. Here, as part of the ICTV Virophage Study Group, we leverage a large set of genomes gathered from published datasets as well as newly generated protist genomes to propose delineation criteria and classification methods at multiple taxonomic ranks for virophages 'sensu stricto', i.e., genomes related to the prototype isolates Sputnik and mavirus. Based on a combination of comparative genomics and phylogenetic analyses, we show that this group of virophages forms a cohesive taxon that we propose to establish at the class level and suggest a subdivision into four orders and seven families with distinctive ecogenomic features. Finally, to illustrate how the proposed delineation criteria and classification method would be used, we apply these to two recently published datasets, which we show include both virophages and other virophage-related elements. Overall, we see this proposed classification as a necessary first step to provide a robust taxonomic framework in this area of the virosphere, which will need to be expanded in the future to cover other virophage-related viruses such as PLVs.
Collapse
Affiliation(s)
- Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthias G. Fischer
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120 Heidelberg, Germany
| | - Thomas Hackl
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
8
|
Uptake of Phytoplankton-Derived Carbon and Cobalamins by Novel Acidobacteria Genera in Microcystis Blooms Inferred from Metagenomic and Metatranscriptomic Evidence. Appl Environ Microbiol 2022; 88:e0180321. [PMID: 35862730 PMCID: PMC9317899 DOI: 10.1128/aem.01803-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Interactions between bacteria and phytoplankton can influence primary production, community composition, and algal bloom development. However, these interactions are poorly described for many consortia, particularly for freshwater bloom-forming cyanobacteria. Here, we assessed the gene content and expression of two uncultivated Acidobacteria from Lake Erie Microcystis blooms. These organisms were targeted because they were previously identified as important catalase producers in Microcystis blooms, suggesting that they protect Microcystis from H2O2. Metatranscriptomics revealed that both Acidobacteria transcribed genes for uptake of organic compounds that are known cyanobacterial products and exudates, including lactate, glycolate, amino acids, peptides, and cobalamins. Expressed genes for amino acid metabolism and peptide transport and degradation suggest that use of amino acids and peptides by Acidobacteria may regenerate nitrogen for cyanobacteria and other organisms. The Acidobacteria genomes lacked genes for biosynthesis of cobalamins but expressed genes for its transport and remodeling. This indicates that the Acidobacteria obtained cobalamins externally, potentially from Microcystis, which has a complete gene repertoire for pseudocobalamin biosynthesis; expressed them in field samples; and produced pseudocobalamin in axenic culture. Both Acidobacteria were detected in Microcystis blooms worldwide. Together, the data support the hypotheses that uncultured and previously unidentified Acidobacteria taxa exchange metabolites with phytoplankton during harmful cyanobacterial blooms and influence nitrogen available to phytoplankton. Thus, novel Acidobacteria may play a role in cyanobacterial physiology and bloom development. IMPORTANCE Interactions between heterotrophic bacteria and phytoplankton influence competition and successions between phytoplankton taxa, thereby influencing ecosystem-wide processes such as carbon cycling and algal bloom development. The cyanobacterium Microcystis forms harmful blooms in freshwaters worldwide and grows in buoyant colonies that harbor other bacteria in their phycospheres. Bacteria in the phycosphere and in the surrounding community likely influence Microcystis physiology and ecology and thus the development of freshwater harmful cyanobacterial blooms. However, the impacts and mechanisms of interaction between bacteria and Microcystis are not fully understood. This study explores the mechanisms of interaction between Microcystis and uncultured members of its phycosphere in situ with population genome resolution to investigate the cooccurrence of Microcystis and freshwater Acidobacteria in blooms worldwide.
Collapse
|
9
|
Prevalence of Actinobacteria in the production of 2-methylisoborneol and geosmin, over Cyanobacteria in a temperate eutrophic reservoir. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Pound HL, Gann ER, Wilhelm SW. A comparative study of metatranscriptomic assessment methods to characterize Microcystis blooms. LIMNOLOGY AND OCEANOGRAPHY, METHODS 2021; 19:846-854. [PMID: 35528780 PMCID: PMC9075346 DOI: 10.1002/lom3.10465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Harmful algal blooms are increasing in duration and severity globally, resulting in increased research interest. The use of genetic sequencing technologies has provided a wealth of opportunity to advance knowledge, but also poses a risk to that knowledge if handled incorrectly. The vast numbers of sequence processing tools and protocols provide a method to test nearly every hypothesis, but each method has inherent strengths and weaknesses. Here, we tested six methods to classify and quantify metatranscriptomic activity from a harmful algal bloom dominated by Microcystis spp. Three online tools were evaluated (Kaiju, MG-RAST, and GhostKOALA) in addition to three local tools that included a command line BLASTx approach, recruitment of reads to individual Microcystis genomes, and recruitment to a combined Microcystis composite genome generated from sequenced isolates with complete, closed genomes. Based on the analysis of each tool presented in this study, two recommendations are made that are dependent on the hypothesis to be tested. For researchers only interested in the function and physiology of Microcystis spp., read recruitments to the composite genome, referred to as "Frankenstein's Microcystis", provided the highest total estimates of transcript expression. However, for researchers interested in the entire bloom microbiome, the online GhostKOALA annotation tool, followed by subsequent read recruitments, provided functional and taxonomic characterization, in addition to transcript expression estimates. This study highlights the critical need for careful evaluation of methods before data analysis.
Collapse
Affiliation(s)
- Helena L. Pound
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Eric R. Gann
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Steven W. Wilhelm
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
11
|
Wang K, Mou X. Coordinated Diel Gene Expression of Cyanobacteria and Their Microbiome. Microorganisms 2021; 9:microorganisms9081670. [PMID: 34442749 PMCID: PMC8398468 DOI: 10.3390/microorganisms9081670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Diel rhythms have been well recognized in cyanobacterial metabolisms. However, whether this programmed activity of cyanobacteria could elicit coordinated diel gene expressions in microorganisms (microbiome) that co-occur with cyanobacteria and how such responses in turn impact cyanobacterial metabolism are unknown. To address these questions, a microcosm experiment was set up using Lake Erie water to compare the metatranscriptomic variations of Microcystis cells alone, the microbiome alone, and these two together (whole water) over two day-night cycles. A total of 1205 Microcystis genes and 4779 microbiome genes exhibited significant diel expression patterns in the whole-water microcosm. However, when Microcystis and the microbiome were separated, only 515 Microcystis genes showed diel expression patterns. A significant structural change was not observed for the microbiome communities between the whole-water and microbiome microcosms. Correlation analyses further showed that diel expressions of carbon, nitrogen, phosphorous, and micronutrient (iron and vitamin B12) metabolizing genes were significantly coordinated between Microcystis and the microbiome in the whole-water microcosm. Our results suggest that diel fluxes of organic carbon and vitamin B12 (cobalamin) in Microcystis could cause the diel expression of microbiome genes. Meanwhile, the microbiome communities may support the growth of Microcystis by supplying them with recycled nutrients, but compete with Microcystis for iron.
Collapse
|
12
|
Srivastava A, Shukla P. Emerging tools and strategies in cyanobacterial omics. Trends Biotechnol 2021; 40:4-7. [PMID: 34154821 DOI: 10.1016/j.tibtech.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 01/11/2023]
Abstract
Cyanobacteria are emerging as a popular system in both basic and applied microbial research. However, the incomplete understanding of their molecular biology hinders their practical applications in the industrial, agricultural, and environmental sectors. We present the potential of recently developed omics approaches to obtain deeper insights into cyanobacterial molecular physiology.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| |
Collapse
|
13
|
Pascault N, Rué O, Loux V, Pédron J, Martin V, Tambosco J, Bernard C, Humbert JF, Leloup J. Insights into the cyanosphere: capturing the respective metabolisms of cyanobacteria and chemotrophic bacteria in natural conditions? ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:364-374. [PMID: 33763994 DOI: 10.1111/1758-2229.12944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Specific interactions have been highlighted between cyanobacteria and chemotrophic bacteria within the cyanosphere, suggesting that nutrients recycling could be optimized by cyanobacteria/bacteria exchanges. In order to determine the respective metabolic roles of the cyanobacterial and bacterial consortia (microbiome), a day-night metatranscriptomic analysis was performed on Dolichospermum sp. (N2 -fixer) and Microcystis sp. (non N2 -fixer) natural blooms occurring successively within a French peri-urban lake. The taxonomical and functional analysis of the metatranscriptoms have highlighted specific association of bacteria within the cyanosphere, driven by the cyanobacteria identity, without strongly modifying the functional composition of the microbiomes, suggesting functional redundancy within the cyanosphere. Moreover, the functional composition of these active communities was driven by the living mode. During the two successive bloom events, it appeared that NH4 + (newly fixed and/or allochthonous) was preferentially transformed into amino acids for the both the microbiome and the cyanobacteria, while phosphate metabolism was enhanced, suggesting that due to a high cellular growth, P limitation might take place within the cyanosphere consortium.
Collapse
Affiliation(s)
- Noémie Pascault
- UMR 7618 iEES-Paris Sorbonne Université 4 place Jussieu - 75252 Paris Cedex 05, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, 78350, France
| | - Valentin Loux
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, 78350, France
| | - Jacques Pédron
- UMR 7618 iEES-Paris Sorbonne Université 4 place Jussieu - 75252 Paris Cedex 05, France
| | - Véronique Martin
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, 78350, France
| | - Jennifer Tambosco
- UMR 7618 iEES-Paris Sorbonne Université 4 place Jussieu - 75252 Paris Cedex 05, France
| | - Cécile Bernard
- UMR 7245 MCAM Muséum National d'Histoire Naturelle - CNRS, 75231 Paris Cedex 05, France
| | - Jean-François Humbert
- UMR 7618 iEES-Paris Sorbonne Université 4 place Jussieu - 75252 Paris Cedex 05, France
| | - Julie Leloup
- UMR 7618 iEES-Paris Sorbonne Université 4 place Jussieu - 75252 Paris Cedex 05, France
| |
Collapse
|
14
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
15
|
McKindles KM, Manes MA, DeMarco JR, McClure A, McKay RM, Davis TW, Bullerjahn GS. Dissolved Microcystin Release Coincident with Lysis of a Bloom Dominated by Microcystis spp. in Western Lake Erie Attributed to a Novel Cyanophage. Appl Environ Microbiol 2020; 86:e01397-20. [PMID: 32859600 PMCID: PMC7642080 DOI: 10.1128/aem.01397-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/25/2020] [Indexed: 11/20/2022] Open
Abstract
Western Lake Erie (Laurentian Great Lakes) is prone to annual cyanobacterial harmful algal blooms (cHABs) dominated by Microcystis spp. that often yield microcystin toxin concentrations exceeding the federal EPA recreational contact advisory of 8 μg liter-1 In August 2014, microcystin levels were detected in finished drinking water above the World Health Organization 1.0 μg liter-1 threshold for consumption, leading to a 2-day disruption in the supply of drinking water for >400,000 residents of Toledo, Ohio (USA). Subsequent metatranscriptomic analysis of the 2014 bloom event provided evidence that release of toxin into the water supply was likely caused by cyanophage lysis that transformed a portion of the intracellular microcystin pool into the dissolved fraction, rendering it more difficult to eliminate during treatment. In August 2019, a similar increase in dissolved microcystins at the Toledo water intake was coincident with a viral lytic event caused by a phage consortium different in composition from what was detected following the 2014 Toledo water crisis. The most abundant viral sequence in metagenomic data sets was a scaffold from a putative member of the Siphoviridae, distinct from the Ma-LMM01-like Myoviridae that are typically documented to occur in western Lake Erie. This study provides further evidence that viral activity in western Lake Erie plays a significant role in transformation of microcystins from the particulate to the dissolved fraction and therefore requires monitoring efforts from local water treatment plants. Additionally, identification of multiple lytic cyanophages will enable the development of a quantitative PCR toolbox to assess viral activity during cHABs.IMPORTANCE Viral attack on cHABs may contribute to changes in community composition during blooms, as well as bloom decline, yet loss of bloom biomass does not eliminate the threat of cHAB toxicity. Rather, it may increase risks to the public by delivering a pool of dissolved toxin directly into water treatment utilities when the dominating Microcystis spp. are capable of producing microcystins. Detecting, characterizing, and quantifying the major cyanophages involved in lytic events will assist water treatment plant operators in making rapid decisions regarding the pool of microcystins entering the plant and the corresponding best practices to neutralize the toxin.
Collapse
Affiliation(s)
- Katelyn M McKindles
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Makayla A Manes
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Jonathan R DeMarco
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Andrew McClure
- Division of Water Treatment for the City of Toledo, Toledo, Ohio, USA
| | - R Michael McKay
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Timothy W Davis
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
- Center for Great Lakes and Watershed Studies, Bowling Green State University, Bowling Green, Ohio, USA
| | - George S Bullerjahn
- Department of Biological Sciences and Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
- Center for Great Lakes and Watershed Studies, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
16
|
Abstract
Blooms of the toxin-producing cyanobacterium Microcystis are increasing globally, leading to the loss of ecosystem services, threats to human health, as well as the deaths of pets and husbandry animals. While nutrient availability is a well-known driver of algal biomass, the factors controlling “who” is present in fresh waters are more complicated. Microcystis possesses multiple strategies to adapt to temperature, light, changes in nutrient chemistry, herbivory, and parasitism that provide a selective advantage over its competitors. Blooms of the toxin-producing cyanobacterium Microcystis are increasing globally, leading to the loss of ecosystem services, threats to human health, as well as the deaths of pets and husbandry animals. While nutrient availability is a well-known driver of algal biomass, the factors controlling “who” is present in fresh waters are more complicated. Microcystis possesses multiple strategies to adapt to temperature, light, changes in nutrient chemistry, herbivory, and parasitism that provide a selective advantage over its competitors. Moreover, its ability to alter ecosystem pH provides it a further advantage that helps exclude many of its planktonic competitors. While decades of nutrient monitoring have provided us with the tools to predict the accumulation of phytoplankton biomass, here, we point to factors on the horizon that may inform us why Microcystis is presently the dominant bloom former in freshwaters around the world.
Collapse
|
17
|
McKay RM, Frenken T, Diep N, Cody WR, Crevecoeur S, Dove A, Drouillard KG, Ortiz X, Wintermute J, Zastepa A. Bloom announcement: An early autumn cyanobacterial bloom co-dominated by Aphanizomenon flos- aquae and Planktothrix agardhii in an agriculturally-influenced Great Lakes tributary (Thames River, Ontario, Canada). Data Brief 2020; 30:105585. [PMID: 32373689 PMCID: PMC7195512 DOI: 10.1016/j.dib.2020.105585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- R. Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - Thijs Frenken
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ngan Diep
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| | | | - Sophie Crevecoeur
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON, Canada
| | - Alice Dove
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON, Canada
| | - Kenneth G. Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Xavier Ortiz
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| | | | - Arthur Zastepa
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON, Canada
| |
Collapse
|
18
|
Trench-Fiol S, Fink P. Metatranscriptomics From a Small Aquatic System: Microeukaryotic Community Functions Through the Diurnal Cycle. Front Microbiol 2020; 11:1006. [PMID: 32523568 PMCID: PMC7261829 DOI: 10.3389/fmicb.2020.01006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Light is an important factor for the growth of planktonic organisms, and many of them depend on the diurnal light/dark cycle to regulate key metabolic processes. So far, most of the diel responses were only studied in single species or marine and large lake communities. Yet, we lack information on whether these processes are regulated similarly in small aquatic systems such as ponds. Here, we investigated the activity of a microeukaryotic community from a temperate, small freshwater pond in response to the diurnal cycle. For this, we took samples at midday and night during the Central European summer. We extracted pigments and RNA from samples and the sequencing of eukaryotic transcripts allowed us to obtain day and night metatranscriptomes. Differentially expressed transcripts primarily corresponded to photosynthesis-related and translational processes, and were found to be upregulated at midday with high light conditions compared to darkness. Unique gene ontology classes were found at each respective condition. During the day, ontology classes including photoreception for photosynthesis, defense, and stress mechanisms dominated, while motility, ribosomal assembly and other large, energy-consuming processes were restricted to the night. Euglenophyta and Chlorophyta dominated the active phototrophic community, as shown by the pigment composition analysis. Regarding the gene expression patterns, we could confirm that the pond community appears to follow similar diurnal dynamics as those described for larger aquatic ecosystems. Overall, combining pigment analyses, metatranscriptomics, and data on physicochemical factors yielded considerably more insight into the metabolic processes performed by the microeukaryotic community of a small freshwater ecosystem.
Collapse
Affiliation(s)
- Stephanie Trench-Fiol
- Workgroup Aquatic Chemical Ecology, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Patrick Fink
- Workgroup Aquatic Chemical Ecology, Institute for Zoology, University of Cologne, Cologne, Germany
- Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany
- Department River Ecology, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany
| |
Collapse
|
19
|
The Use of Multisource Optical Sensors to Study Phytoplankton Spatio-Temporal Variation in a Shallow Turbid Lake. WATER 2020. [DOI: 10.3390/w12010284] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lake water quality monitoring has the potential to be improved through integrating detailed spatial information from new generation remote sensing satellites with high frequency observations from in situ optical sensors (WISPstation). We applied this approach for Lake Trasimeno with the aim of increasing knowledge of phytoplankton dynamics at different temporal and spatial scales. High frequency chlorophyll-a data from the WISPstation was modeled using non-parametric multiplicative regression. The ‘day of year’ was the most important factor, reflecting the seasonal progression of a phytoplankton bloom from July to September. In addition, weather factors such as the east–west wind component were also significant in predicting phytoplankton seasonal and diurnal patterns. Sentinel 3-OLCI and Sentinel 2-MSI satellites delivered 42 images in 2018 that successfully mapped the spatial and seasonal change in chlorophyll-a. The potential influence of localized inflows in contributing to increased chlorophyll-a in mid-summer was visualized. The satellite data also allowed an estimation of quality status at a much finer scale than traditional manual methods. Good correspondence was found with manually collected field data but more significantly, the greatly increased spatial and temporal resolution provided by satellite and WISPstation sensors clearly offers an unprecedented resource in the research and management of aquatic resources.
Collapse
|
20
|
Krausfeldt LE, Steffen MM, McKay RM, Bullerjahn GS, Boyer GL, Wilhelm SW. Insight Into the Molecular Mechanisms for Microcystin Biodegradation in Lake Erie and Lake Taihu. Front Microbiol 2019; 10:2741. [PMID: 31921001 PMCID: PMC6914704 DOI: 10.3389/fmicb.2019.02741] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023] Open
Abstract
Microcystins are potent hepatotoxins that are frequently detected in fresh water lakes plagued by toxic cyanobacteria. Microbial biodegradation has been referred to as the most important avenue for removal of microcystin from aquatic environments. The biochemical pathway most commonly associated with the degradation of microcystin is encoded by the mlrABCD (mlr) cassette. The ecological significance of this pathway remains unclear as no studies have examined the expression of these genes in natural environments. Six metatranscriptomes were generated from microcystin-producing Microcystis blooms and analyzed to assess the activity of this pathway in environmental samples. Seventy-eight samples were collected from Lake Erie, United States/Canada and Lake Tai (Taihu), China, and screened for the presence of mlr gene transcripts. Read mapping to the mlr cassette indicated transcripts for these genes were absent, with only 77 of the collective 3.7 billion reads mapping to any part of the mlr cassette. Analysis of the assembled metatranscriptomes supported this, with only distantly related sequences identified as mlrABC-like. These observations were made despite the presence of microcystin and over 500,000 reads mapping to the mcy cassette for microcystin production. Glutathione S-transferases and alkaline proteases have been previously hypothesized to be alternative pathways for microcystin biodegradation, and expression of these genes was detected across space and time in both lakes. While the activity of these alternative pathways needs to be experimentally confirmed, they may be individually or collectively more important than mlr genes in the natural environment. Importantly, the lack of mlr expression could indicate microcystin biodegradation was not occurring in the analyzed samples. This study raises interesting questions about the ubiquity, specificity and locality of microcystin biodegradation, and highlights the need for the characterization of relevant mechanisms in natural communities to understand the fate of microcystin in the environment and risk to public health.
Collapse
Affiliation(s)
- Lauren E. Krausfeldt
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Morgan M. Steffen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Robert M. McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - George S. Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Gregory L. Boyer
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|