1
|
Barclay AM, Ninaber DK, Limpens RWL, Walburg KV, Bárcena M, Hiemstra PS, Ottenhoff TH, van der Does AM, Joosten SA. Mycobacteria develop biofilms on airway epithelial cells and promote mucosal barrier disruption. iScience 2024; 27:111063. [PMID: 39502292 PMCID: PMC11536035 DOI: 10.1016/j.isci.2024.111063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Tuberculosis displays several features commonly linked to biofilm-associated infections, including recurrence of infection and resistance to antibiotic treatment. The respiratory epithelium represents the first line of defense against pathogens such as Mycobacterium tuberculosis (Mtb). Here, we use an air-liquid interface model of human primary bronchial epithelial cells (PBEC) to explore the capability of four species of mycobacteria (Mtb, M. bovis (BCG), M. avium, and M. smegmatis) to form biofilms on airway epithelial cells. Mtb, BCG, and M. smegmatis consistently formed biofilms with extracellular matrixes on PBEC cultures. Biofilms varied in biomass, matrix polysaccharide content, and bacterial metabolic activity between species. Exposure of PBEC to mycobacteria caused the disruption of the epithelial barrier and was accompanied by mostly apical non-apoptotic cell death. Structural analysis revealed pore-like structures in 7-day biofilms. Taken together, mycobacteria can form biofilms on human airway epithelial cells, and long-term infection negatively affects barrier function and promotes cell death.
Collapse
Affiliation(s)
- Amy M. Barclay
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Dennis K. Ninaber
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ronald W.A. L. Limpens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kimberley V. Walburg
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Montserrat Bárcena
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pieter S. Hiemstra
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom H.M. Ottenhoff
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A. Joosten
- Leiden University Center for Infectious Diseases, (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Kumar TA, Birua S, SharathChandra M, Mukherjee P, Singh S, Kaul G, Akhir A, Chopra S, Hirschi J, Singh A, Chakrapani H. An Arm-to-Disarm Strategy to Overcome Phenotypic AMR in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.23.533925. [PMID: 38260651 PMCID: PMC10802243 DOI: 10.1101/2023.03.23.533925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Most front-line tuberculosis drugs are ineffective against hypoxic non-replicating drug-tolerant Mycobacterium tuberculosis (Mtb) contributing to phenotypic antimicrobial resistance (AMR). This is largely due to the poor permeability in the thick and waxy cell wall of persister cells, leading to diminished drug accumulation and reduced drug-target engagement. Here, using an "arm-to-disarm" prodrug approach, we demonstrate that non-replicating Mtb persisters can be sensitized to Moxifloxacin (MXF), a front-line TB drug. We design and develop a series of nitroheteroaryl MXF prodrugs that are substrates for bacterial nitroreductases (NTR), a class of enzymes that are over-expressed in hypoxic Mtb. Enzymatic activation involves electron-transfer to the nitroheteroaryl compound followed by protonation via water that contributes to the rapid cleavage rate of the protective group by NTR to produce the active drug. Phenotypic and genotypic data are fully consistent with MXF-driven lethality of the prodrug in Mtb with the protective group being a relatively innocuous bystander. The prodrug increased intracellular concentrations of MXF than MXF alone and is more lethal than MXF in non-replicating persisters. Hence, arming drugs to improve permeability, accumulation and drug-target engagement is a new therapeutic paradigm to disarm phenotypic AMR.
Collapse
Affiliation(s)
- T. Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Shalini Birua
- Division of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Piyali Mukherjee
- Division of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Samsher Singh
- Division of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Janakipuram Extension, Sitapur Road, Lucknow-226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Janakipuram Extension, Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Janakipuram Extension, Sitapur Road, Lucknow-226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Amit Singh
- Division of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
3
|
Ahmed S, Chowdhury S, Gomez J, Hung DT, Parish T. Benzene Amide Ether Scaffold is Active against Non-replicating and Intracellular Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:1981-1992. [PMID: 37708378 PMCID: PMC10580325 DOI: 10.1021/acsinfecdis.3c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/16/2023]
Abstract
New drugs to treat tuberculosis which target intractable bacterial populations are required to develop shorter and more effective treatment regimens. The benzene amide ether scaffold has activity against intracellular Mycobacterium tuberculosis, but low activity against extracellular, actively replicating M. tuberculosis. We determined that these molecules have bactericidal activity against non-replicating M. tuberculosis but not actively replicating bacteria. Exposure to compounds depleted ATP levels in non-replicating bacteria and increased the oxygen consumption rate; a subset of molecules led to the accumulation of intrabacterial reactive oxygen species. A comprehensive screen of M. tuberculosis strains identified a number of under-expressing strains as more sensitive to compounds under replicating conditions including QcrA and QcrB hypomorphs. We determined the global gene expression profile after compound treatment for both replicating and nutrient-starved M. tuberculosis. We saw compound-dependent changes in the expression of genes involved in energy metabolism under both conditions. Taken together, our data suggest that the scaffold targets respiration in M. tuberculosis.
Collapse
Affiliation(s)
- Sara Ahmed
- TB
Discovery Research, Infectious Disease Research
Institute, Seattle, Washington 98104, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Sultan Chowdhury
- TB
Discovery Research, Infectious Disease Research
Institute, Seattle, Washington 98104, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - James Gomez
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Deborah T. Hung
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Tanya Parish
- TB
Discovery Research, Infectious Disease Research
Institute, Seattle, Washington 98104, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| |
Collapse
|
4
|
Ufimtseva EG, Eremeeva NI. Drug-Tolerant Mycobacterium tuberculosis Adopt Different Survival Strategies in Alveolar Macrophages of Patients with Pulmonary Tuberculosis. Int J Mol Sci 2023; 24:14942. [PMID: 37834390 PMCID: PMC10573496 DOI: 10.3390/ijms241914942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The rapid spread of drug-resistant M. tuberculosis (Mtb) strains and the phenomenon of phenotypic tolerance to drugs present challenges toward achieving the goal of tuberculosis (TB) elimination worldwide. By using the ex vivo cultures of alveolar macrophages obtained from lung tissues of TB patients after intensive antimicrobial chemotherapy before surgery, different subpopulations of multidrug-tolerant Mtb with a spectrum of phenotypic and growth features were identified in the same TB lesions. Our results are indicative of not only passive mechanisms generating nonheritable resistance of Mtb to antibiotics, which are associated mainly with a lack of Mtb growth, but also some active mechanisms of Mtb persistence, such as cell wall and metabolic pathway remodeling. In one of the subpopulations, non-acid-fast Mtb have undergone significant reprogramming with the restoration of acid-fastness, lipoarabinomannan expression and replication in host cells of some patients after withdrawal of anti-TB drugs. Our data indicate the universal stress protein Rv2623 as a clinically relevant biomarker of Mtb that has lost acid-fastness in human lungs. The studies of Mtb survival, persistence, dormancy, and resumption and the identification of biomarkers characterizing these phenomena are very important concerning the development of vaccines and drug regimens with individualized management of patients for overcoming the resistance/tolerance crisis in anti-TB therapy.
Collapse
Affiliation(s)
- Elena G Ufimtseva
- Laboratory of Medical Biotechnology, Research Institute of Biochemistry, Federal Research Center of Fundamental and Translational Medicine, 2 Timakova Street, 630117 Novosibirsk, Russia
| | - Natalya I Eremeeva
- Institute of Disinfectology, F.F. Erisman Federal Scientific Center of Hygiene of the Federal Service on Surveillance for Consumer Rights Protection and Human Well-Being, 18a Nauchniy Proezd, 117246 Moscow, Russia
- Scientific Department, Ural Research Institute for Phthisiopulmonology, National Medical Research Center of Tuberculosis and Infectious Diseases of Ministry of Health of the Russian Federation, 50 XXII Partsyezda Street, 620039 Yekaterinburg, Russia
| |
Collapse
|
5
|
Sau S, Roy A, Agnivesh PK, Kumar S, Guru SK, Sharma S, Kalia NP. Unravelling the flexibility of Mycobacterium tuberculosis: an escape way for the bacilli. J Med Microbiol 2023; 72. [PMID: 37261969 DOI: 10.1099/jmm.0.001695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The persistence of Mycobacterium tuberculosis makes it difficult to eradicate the associated infection from the host. The flexible nature of mycobacteria and their ability to adapt to adverse host conditions give rise to different drug-tolerant phenotypes. Granuloma formation restricts nutrient supply, limits oxygen availability and exposes bacteria to a low pH environment, resulting in non-replicating bacteria. These non-replicating mycobacteria, which need high doses and long exposure to anti-tubercular drugs, are the root cause of lengthy chemotherapy. Novel strategies, which are effective against non-replicating mycobacteria, need to be adopted to shorten tuberculosis treatment. This not only will reduce the treatment time but also will help prevent the emergence of multi-drug-resistant strains of mycobacteria.
Collapse
Affiliation(s)
- Shashikanta Sau
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arnab Roy
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sunil Kumar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Santosh Kumar Guru
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab -144411, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol 2022; 20:529-541. [PMID: 35365812 DOI: 10.1038/s41579-022-00721-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
The remarkable ability of Mycobacterium tuberculosis to survive attacks from the host immune response and drug treatment is due to the resilience of a few bacilli rather than a result of survival of the entire population. Maintenance of mycobacterial subpopulations with distinct phenotypic characteristics is key for survival in the face of dynamic and variable stressors encountered during infection. Mycobacterial populations develop a wide range of phenotypes through an innate asymmetric growth pattern and adaptation to fluctuating microenvironments during infection that point to heterogeneity being a vital survival strategy. In this Review, we describe different types of mycobacterial heterogeneity and discuss how heterogeneity is generated and regulated in response to environmental cues. We discuss how this heterogeneity may have a key role in recording memory of their environment at both the single-cell level and the population level to give mycobacterial populations plasticity to withstand complex stressors.
Collapse
Affiliation(s)
- Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - William C Johnson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA. .,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA. .,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA, USA. .,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA.
| |
Collapse
|
7
|
Li X, Geng P, Hong X, Sun Z, Liu G. Detecting Mycobacterium Tuberculosis using a nitrofuranyl calanolide-trehalose probe based on nitroreductase Rv2466c. Chem Commun (Camb) 2021; 57:13174-13177. [PMID: 34812827 DOI: 10.1039/d1cc05187c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new Mtb fluorescent probe, NFC-Tre-5, was reported that could label single cells of Mtb under various stress conditions via a unique fluorescence off-on feature by a Rv2466c-mediated reductive mechanism. This probe effectively facilitates the rapid and specific detection of Mtb in the host cell during infection and the detection of Mtb in sputum samples from patients.
Collapse
Affiliation(s)
- Xueyuan Li
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China. .,Tsinghua-Peking Center for Life Sciences, Handian Dist., Beijing 100084, P. R. China
| | - Pengfei Geng
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China.
| | - Xiaoqiao Hong
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China.
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China. .,Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101149, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China.
| |
Collapse
|
8
|
Detection of a target protein (GroEl2) in Mycobacterium tuberculosis using a derivative of 1,2,4-triazolethiols. Mol Divers 2021; 26:2535-2548. [PMID: 34822095 DOI: 10.1007/s11030-021-10351-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Herein, we identified a potent lead compound RRA2, within a series of 54 derivatives of 1,2,4-triazolethiols (exhibit good potency as an anti-mycobacterial agents) against intracellular Mycobacterium tuberculosis (Mtb). Compound RRA2 showed significant mycobactericidal activity against active stage Mycobacterium bovis BCG and Mtb with minimum inhibitory concentration (MIC) values of 2.3 and 2.0 µg/mL, respectively. At MIC value, RRA2 compound yielded 0.82 log reduction of colony-forming unit (cfu) against non-replicating Mtb. Furthermore, RRA2 compound was selected for further target identification due to the presence of alkyne group, showing higher selectivity index (> 66.66 ± 0.22, in non-replicating stage). Using "click" chemistry, we synthesized the biotin linker-RRA2 conjugate, purified with HPLC method and confirmed the conjugation of biotin linker-RRA2 complex by HR-MS analysis. Furthermore, we successfully pulled down and identified a specific target protein GroEl2, from Mtb whole-cell extract. Furthermore, computational molecular modeling indicated RRA2 could interact with GroEl2, which explains the structure-activity relationship observed in this study. GroEL-2 identified a potent and specific target protein for RRA 2 compound in whole cell extract of Mtb H37Ra.
Collapse
|
9
|
HflX is a GTPase that controls hypoxia-induced replication arrest in slow-growing mycobacteria. Proc Natl Acad Sci U S A 2021; 118:2006717118. [PMID: 33723035 DOI: 10.1073/pnas.2006717118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GTPase high frequency of lysogenization X (HflX) is highly conserved in prokaryotes and acts as a ribosome-splitting factor as part of the heat shock response in Escherichia coli. Here we report that HflX produced by slow-growing Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a GTPase that plays a critical role in the pathogen's transition to a nonreplicating, drug-tolerant state in response to hypoxia. Indeed, HflX-deficient M. bovis BCG (KO) replicated markedly faster in the microaerophilic phase of a hypoxia model that resulted in premature entry into dormancy. The KO mutant displayed hallmarks of nonreplicating mycobacteria, including phenotypic drug resistance, altered morphology, low intracellular ATP levels, and overexpression of Dormancy (Dos) regulon proteins. Mice nasally infected with HflX KO mutant displayed increased bacterial burden in the lungs, spleen, and lymph nodes during the chronic phase of infection, consistent with the higher replication rate observed in vitro in microaerophilic conditions. Unlike fast growing mycobacteria, M. bovis BCG HlfX was not involved in antibiotic resistance under aerobic growth. Proteomics, pull-down, and ribo-sequencing approaches supported that mycobacterial HflX is a ribosome-binding protein that controls translational activity of the cell. With HflX fully conserved between M. bovis BCG and M. tuberculosis, our work provides further insights into the molecular mechanisms deployed by pathogenic mycobacteria to adapt to their hypoxic microenvironment.
Collapse
|
10
|
Surface-Shaving Proteomics of Mycobacterium marinum Identifies Biofilm Subtype-Specific Changes Affecting Virulence, Tolerance, and Persistence. mSystems 2021; 6:e0050021. [PMID: 34156290 PMCID: PMC8269238 DOI: 10.1128/msystems.00500-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complex cell wall and biofilm matrix (ECM) act as key barriers to antibiotics in mycobacteria. Here, the ECM and envelope proteins of Mycobacterium marinum ATCC 927, a nontuberculous mycobacterial model, were monitored over 3 months by label-free proteomics and compared with cell surface proteins on planktonic cells to uncover pathways leading to virulence, tolerance, and persistence. We show that ATCC 927 forms pellicle-type and submerged-type biofilms (PBFs and SBFs, respectively) after 2 weeks and 2 days of growth, respectively, and that the increased CelA1 synthesis in this strain prevents biofilm formation and leads to reduced rifampicin tolerance. The proteomic data suggest that specific changes in mycolic acid synthesis (cord factor), Esx1 secretion, and cell wall adhesins explain the appearance of PBFs as ribbon-like cords and SBFs as lichen-like structures. A subpopulation of cells resisting 64× MIC rifampicin (persisters) was detected in both biofilm subtypes and already in 1-week-old SBFs. The key forces boosting their development could include subtype-dependent changes in asymmetric cell division, cell wall biogenesis, tricarboxylic acid/glyoxylate cycle activities, and energy/redox/iron metabolisms. The effect of various ambient oxygen tensions on each cell type and nonclassical protein secretion are likely factors explaining the majority of the subtype-specific changes. The proteomic findings also imply that Esx1-type protein secretion is more efficient in planktonic (PL) and PBF cells, while SBF may prefer both the Esx5 and nonclassical pathways to control virulence and prolonged viability/persistence. In conclusion, this study reports the first proteomic insight into aging mycobacterial biofilm ECMs and indicates biofilm subtype-dependent mechanisms conferring increased adaptive potential and virulence of nontuberculous mycobacteria. IMPORTANCE Mycobacteria are naturally resilient, and mycobacterial infections are notoriously difficult to treat with antibiotics, with biofilm formation being the main factor complicating the successful treatment of tuberculosis (TB). The present study shows that nontuberculous Mycobacterium marinum ATCC 927 forms submerged- and pellicle-type biofilms with lichen- and ribbon-like structures, respectively, as well as persister cells under the same conditions. We show that both biofilm subtypes differ in terms of virulence-, tolerance-, and persistence-conferring activities, highlighting the fact that both subtypes should be targeted to maximize the power of antimycobacterial treatment therapies.
Collapse
|
11
|
Niño-Padilla EI, Velazquez C, Garibay-Escobar A. Mycobacterial biofilms as players in human infections: a review. BIOFOULING 2021; 37:410-432. [PMID: 34024206 DOI: 10.1080/08927014.2021.1925886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The role of biofilms in pathogenicity and treatment strategies is often neglected in mycobacterial infections. In recent years, the emergence of nontuberculous mycobacterial infections has necessitated the development of novel prophylactic strategies and elucidation of the mechanisms underlying the establishment of chronic infections. More importantly, the question arises whether members of the Mycobacterium tuberculosis complex can form biofilms and contribute to latent tuberculosis and drug resistance because of the long-lasting and recalcitrant nature of its infections. This review discusses some of the molecular mechanisms by which biofilms could play a role in infection or pathological events in humans.
Collapse
Affiliation(s)
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| |
Collapse
|
12
|
Wenzel M, Dekker MP, Wang B, Burggraaf MJ, Bitter W, van Weering JRT, Hamoen LW. A flat embedding method for transmission electron microscopy reveals an unknown mechanism of tetracycline. Commun Biol 2021; 4:306. [PMID: 33686188 PMCID: PMC7940657 DOI: 10.1038/s42003-021-01809-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Transmission electron microscopy of cell sample sections is a popular technique in microbiology. Currently, ultrathin sectioning is done on resin-embedded cell pellets, which consumes milli- to deciliters of culture and results in sections of randomly orientated cells. This is problematic for rod-shaped bacteria and often precludes large-scale quantification of morphological phenotypes due to the lack of sufficient numbers of longitudinally cut cells. Here we report a flat embedding method that enables observation of thousands of longitudinally cut cells per single section and only requires microliter culture volumes. We successfully applied this technique to Bacillus subtilis, Escherichia coli, Mycobacterium bovis, and Acholeplasma laidlawii. To assess the potential of the technique to quantify morphological phenotypes, we monitored antibiotic-induced changes in B. subtilis cells. Surprisingly, we found that the ribosome inhibitor tetracycline causes membrane deformations. Further investigations showed that tetracycline disturbs membrane organization and localization of the peripheral membrane proteins MinD, MinC, and MreB. These observations are not the result of ribosome inhibition but constitute a secondary antibacterial activity of tetracycline that so far has defied discovery.
Collapse
Affiliation(s)
- Michaela Wenzel
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands.
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands.
- Chemical Biology, Department for Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Marien P Dekker
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
| | - Biwen Wang
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Maroeska J Burggraaf
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines, and Systems, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands.
| | - Leendert W Hamoen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Gibson SER, Harrison J, Cox JAG. Drug Susceptibility Screening Using In Vitro Models of Hypoxic Non-Replicating Persistent Mycobacteria. Methods Mol Biol 2021; 2314:247-260. [PMID: 34235656 DOI: 10.1007/978-1-0716-1460-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-replicating persistence (NRP) is a functional adaptation that mycobacteria undergo in response to the stresses of the granuloma, facilitating antibiotic tolerance and long-term infection. These stresses, or NRP-inducing factors, include hypoxia, nutrient deprivation, and nitric oxide assault, which mycobacteria are well evolved to tolerate through a series of metabolic and physiological adaptations producing the NRP state. Most attempts to replicate these conditions in vitro have focused on only one of these factors at a time for ease and simplicity, but as a result, do not necessarily produce physiologically relevant phenotypes. Here, we provide the methods for two different in vitro NRP strategies that are useful for drug susceptibility testing and high-throughput screening.
Collapse
Affiliation(s)
| | - James Harrison
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Jonathan A G Cox
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
14
|
Sebastian J, Nair RR, Swaminath S, Ajitkumar P. Mycobacterium tuberculosis Cells Surviving in the Continued Presence of Bactericidal Concentrations of Rifampicin in vitro Develop Negatively Charged Thickened Capsular Outer Layer That Restricts Permeability to the Antibiotic. Front Microbiol 2020; 11:554795. [PMID: 33391194 PMCID: PMC7773709 DOI: 10.3389/fmicb.2020.554795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Majority of the cells in the bacterial populations exposed to lethal concentrations of antibiotics for prolonged duration succumbs to the antibiotics' sterilizing activity. The remaining cells survive by diverse mechanisms that include reduced permeability of the antibiotics. However, in the cells surviving in the continued presence of lethal concentrations of antibiotics, it is not known whether any cell surface alterations occur that in turn may reduce permeability of the antibiotics. Here we report the presence of a highly negatively charged, hydrophilic, thickened capsular outer layer (TCOL) on a small proportion of the rifampicin surviving population (RSP) of Mycobacterium tuberculosis (Mtb) cells upon prolonged continuous exposure to bactericidal concentrations of rifampicin in vitro. The TCOL reduced the intracellular entry of 5-carboxyfluorescein-rifampicin (5-FAM-rifampicin), a fluorochrome-conjugated rifampicin permeability probe of negligible bacteriocidal activity but comparable properties. Gentle mechanical removal of the TCOL enabled significant increase in the 5-FAM-rifampicin permeability. Zeta potential measurements of the cells' surface charge and hexadecane assay for cell surface hydrophobicity showed that the TCOL imparted high negative charge and polar nature to the cells' surface. Flow cytometry using the MLP and RSP cells, stained with calcofluor white, which specifically binds glucose/mannose units in β (1 → 4) or β (1 → 3) linkages, revealed the presence of lower content of polysaccharides containing such residues in the TCOL. GC-MS analyses of the TCOL and the normal capsular outer layer (NCOL) of MLP cells showed elevated levels of α-D-glucopyranoside, mannose, arabinose, galactose, and their derivatives in the TCOL, indicating the presence of high content of polysaccharides with these residues. We hypothesize that the significantly high thickness and the elevated negative charge of the TCOL might have functioned as a physical barrier restricting the permeability of the relatively non-polar rifampicin. This might have reduced intracellular rifampicin concentration enabling the cells' survival in the continued presence of high doses of rifampicin. In the context of our earlier report on the de novo emergence of rifampicin-resistant genetic mutants of Mtb from the population surviving under lethal doses of the antibiotic, the present findings attain clinical significance if a subpopulation of the tubercle bacilli in tuberculosis patients possesses TCOL.
Collapse
Affiliation(s)
- Jees Sebastian
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sharmada Swaminath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
15
|
Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions. Cell Mol Life Sci 2020; 78:1887-1907. [PMID: 33125509 PMCID: PMC7966188 DOI: 10.1007/s00018-020-03684-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Various factors of the tissue microenvironment such as the oxygen concentration influence the host-pathogen interaction. During the past decade, hypoxia-driven signaling via hypoxia-inducible factors (HIF) has emerged as an important factor that affects both the pathogen and the host. In this chapter, we will review the current knowledge of this complex interplay, with a particular emphasis given to the impact of hypoxia and HIF on the inflammatory and antimicrobial activity of myeloid cells, the bacterial responses to hypoxia and the containment of bacterial infections under oxygen-limited conditions. We will also summarize how low oxygen concentrations influence the metabolism of neutrophils, macrophages and dendritic cells. Finally, we will discuss the consequences of hypoxia and HIFα activation for the invading pathogen, with a focus on Pseudomonas aeruginosa, Mycobacterium tuberculosis, Coxiella burnetii, Salmonella enterica and Staphylococcus aureus. This includes a description of the mechanisms and microbial factors, which the pathogens use to sense and react to hypoxic conditions.
Collapse
|
16
|
Jia Y, Yu C, Fan J, Fu Y, Ye Z, Guo X, Xu Y, Shen C. Alterations in the Cell Wall of Rhodococcus biphenylivorans Under Norfloxacin Stress. Front Microbiol 2020; 11:554957. [PMID: 33123102 PMCID: PMC7573542 DOI: 10.3389/fmicb.2020.554957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/14/2020] [Indexed: 01/20/2023] Open
Abstract
Many microorganisms can enter a viable but non-culturable (VBNC) state under various environmental stresses, while they can also resuscitate when the surroundings turn to suitable conditions. Cell walls play a vital role in maintaining cellular integrity and protecting cells from ambient threats. Here, we investigated the alterations in the cell wall of Rhodococcus biphenylivorans TG9 at VBNC state under norfloxacin stress and then at resuscitated state in fresh lysogeny broth medium. Electron microscopy analyses presented that TG9 in the VBNC state had a thicker and rougher cell wall than that in exponential phase or resuscitated state. Meanwhile, the results from infrared spectroscopy also showed that its VBNC state has different peptidoglycan structures in the cell wall. Moreover, in the VBNC cells the gene expressions related to cell wall synthesis and remodeling maintain a relatively high level. It indicates that the morphological variations of TG9 at the VBNC state might result from kinetic changes in the cell wall synthesis and remodeling. As a consequence, the alterations in the cell wall of VBNC TG9 may somewhat account for its tolerance mechanisms to antibiotic treatment.
Collapse
Affiliation(s)
- Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chungui Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoguang Guo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
17
|
Parbhoo T, Sampson SL, Mouton JM. Recent Developments in the Application of Flow Cytometry to Advance our Understanding of Mycobacterium tuberculosis Physiology and Pathogenesis. Cytometry A 2020; 97:683-693. [PMID: 32437069 PMCID: PMC7496436 DOI: 10.1002/cyto.a.24030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
The ability of the bacterial pathogen Mycobacterium tuberculosis to adapt and survive within human cells to disseminate to other individuals and cause active disease is poorly understood. Research supports that as M. tuberculosis adapts to stressors encountered in the host, it exhibits variable physiological and metabolic states that are time and niche-dependent. Challenges associated with effective treatment and eradication of tuberculosis (TB) are in part attributed to our lack of understanding of these different mycobacterial phenotypes. This is mainly due to a lack of suitable tools to effectively identify/detect heterogeneous bacterial populations, which may include small, difficult-to-culture subpopulations. Importantly, flow cytometry allows rapid and affordable multiparametric measurements of physical and chemical characteristics of single cells, without the need to preculture cells. Here, we summarize current knowledge of flow cytometry applications that have advanced our understanding of the physiology of M. tuberculosis during TB disease. Specifically, we review how host-associated stressors influence bacterial characteristics such as metabolic activity, membrane potential, redox status and the mycobacterial cell wall. Further, we highlight that flow cytometry offers unprecedented opportunities for insight into bacterial population heterogeneity, which is increasingly appreciated as an important determinant of disease outcome. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Trisha Parbhoo
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Samantha L. Sampson
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Jacoba M. Mouton
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
18
|
Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chem Biol Interact 2020; 325:109125. [PMID: 32376238 PMCID: PMC7196551 DOI: 10.1016/j.cbi.2020.109125] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
The apparent predicament of the representative chemotherapy for managing respiratory distress calls for an obligatory deliberation for identifying the pharmaceuticals that effectively counter the contemporary intricacies associated with target disease. Multiple, complex regulatory pathways manifest chronic pulmonary disorders, which require chemotherapeutics that produce composite inhibitory effect. The cost effective natural product based molecules hold a high fervor to meet the prospects posed by current respiratory-distress therapy by sparing the tedious drug design and development archetypes, present a robust standing for the possible replacement of the fading practice of poly-pharmacology, and ensure the subversion of a potential disease relapse. This study summarizes the experimental evidences on natural products moieties and their components that illustrates therapeutic efficacy on respiratory disorders. Plant derived therapeutics for managing chronic respiratory disorders. Activity of natural product based molecules on key regulatory pathways of COPD. Preclinical evidence for the efficacy of natural product moieties. Clinical significance of plant derived molecules in pulmonary distress.
Collapse
|
19
|
Abstract
The control of tuberculosis (TB) is hampered by the emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) strains, defined as resistant to at least isoniazid and rifampin, the two bactericidal drugs essential for the treatment of the disease. Due to the worldwide estimate of almost half a million incident cases of MDR/rifampin-resistant TB, it is important to continuously update the knowledge on the mechanisms involved in the development of this phenomenon. Clinical, biological and microbiological reasons account for the generation of resistance, including: (i) nonadherence of patients to their therapy, and/or errors of physicians in therapy management, (ii) complexity and poor vascularization of granulomatous lesions, which obstruct drug distribution to some sites, resulting in resistance development, (iii) intrinsic drug resistance of tubercle bacilli, (iv) formation of non-replicating, drug-tolerant bacilli inside the granulomas, (v) development of mutations in Mtb genes, which are the most important molecular mechanisms of resistance. This review provides a comprehensive overview of these issues, and releases up-dated information on the therapeutic strategies recently endorsed and recommended by the World Health Organization to facilitate the clinical and microbiological management of drug-resistant TB at the global level, with attention also to the most recent diagnostic methods.
Collapse
|