1
|
Zhang X, Jian J, Luo Z, Li G, Huang Y, Wu Y, Li D, Li L. Fabrication of edible nanocellulose chitosan bi-component film based on a novel "swell-permeate" approach. Carbohydr Polym 2024; 346:122632. [PMID: 39245500 DOI: 10.1016/j.carbpol.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
The fabrication of multi-component film with colloidal particles could be inconvenient. A novel "swell-permeate" (SP) strategy was proposed to form homogeneous multi-component films. The SP strategy allows colloidal particles to fit into the polymer network by stretching the polymer chains assisted by water. We demonstrated the strategy by creating films with polysaccharide substrates as β-cyclodextrin grafted chitosan (CS) with nanocellulose. The addition of nanocellulose significantly increased the mechanical properties and the barrier performance of the films. The size of nanocellulose particles in affecting mechanical properties was investigated by applying different length of cellulose nanocrystal (CNC), the longer of which, due to denser physical entanglements, showed a better increase to the film in the elastic modulus and tensile strength to 4.54-fold and 5.71-fold, respectively. The films were also loaded with ethyl-p-coumarate (EpCA) and had an enhanced performance in anti-microbial for Altenaria alternata, Salmonella typhi, and Escherichia coli. The anti-oxidative property was increased as well, and both effects were valid both in vitro and in ready-to-eat apples. The strategy provides a practical and convenient method for fabricating colloidal particle containing films, and the novel idea of "swell-permeate" is potentially regarded as a new solution to the challenge of ready-to-eat food quality maintenance.
Collapse
Affiliation(s)
- Xiaochen Zhang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Jiahong Jian
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Guo Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Huang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Yue Wu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China.
| | - Li Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
2
|
Wang D, Meng L, Zhang H, Liu R, Zhu Y, Tan X, Wu Y, Gao Q, Ren X, Kong Q. Exogenous L-Arginine Enhances Pathogenicity of Alternaria alternata on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification. J Fungi (Basel) 2024; 10:801. [PMID: 39590720 PMCID: PMC11595605 DOI: 10.3390/jof10110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Black spot, one of the major diseases of kiwifruit, is caused by Alternaria alternata. A comprehensive investigation into its pathogenicity mechanism is imperative in order to propose a targeted and effective control strategy. The effect of L-arginine on the pathogenicity of A. alternata and the underlying mechanisms were investigated. The results showed that treatment with 5 mM L-1 of L-arginine promoted spore germination and increased the colony diameter and lesion diameter of A. alternata in vivo and in vitro, which were 23.1% and 9.3% higher than that of the control, respectively. Exogenous L-arginine treatment also induced endogenous L-arginine and nitric oxide (NO) accumulation by activating nitric oxide synthase (NOS), arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). In addition, exogenous L-arginine triggered an increase in reactive oxygen species (ROS) levels by activating the activity and inducing gene expression upregulation of NADPH oxidase. The hydrogen peroxide (H2O2) and superoxide anion (O2.-) levels were 15.9% and 2.2 times higher, respectively, than in the control group on the second day of L-arginine treatment. Meanwhile, antioxidant enzyme activities and gene expression levels were enhanced, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR). In addition, exogenous L-arginine stimulated cell wall-degrading enzymes in vivo and in vitro by activating gene expression. These results suggested that exogenous L-arginine promoted the pathogenicity of A. alternata by inducing the accumulation of polyamines, NO, and ROS, and by activating systems of antioxidants and cell wall-degrading enzymes. The present study not only revealed the mechanism by which low concentrations of L-arginine increase the pathogenicity of A. alternata, but also provided a theoretical basis for the exclusive and precise targeting of A. alternata in kiwifruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xueyan Ren
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.)
| | - Qingjun Kong
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.)
| |
Collapse
|
3
|
Wang D, Zhang H, Meng L, Tan X, Liu R, Gao Q, Wu Y, Zhu Y, Ren X, Li Y, Kong Q. Exogenous Nitric Oxide Induces Pathogenicity of Alternaria alternata on Huangguan Pear Fruit by Regulating Reactive Oxygen Species Metabolism and Cell Wall Modification. J Fungi (Basel) 2024; 10:726. [PMID: 39452678 PMCID: PMC11508668 DOI: 10.3390/jof10100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Black spot caused by Alternaria alternata is one of the most common postharvest diseases in fruit and vegetables. A comprehensive investigation into its pathogenicity mechanism is imperative in order to propose a targeted and effective control strategy. The effect of nitric oxide (NO) on the pathogenicity of A. alternata and its underlying mechanism was studied. The results showed that treatment with 0.5 mM L-1 of sodium nitroprusside (SNP) (NO donor) increased the lesion diameter of A. alternata in vivo and in vitro, which was 22.8% and 13.2% higher than that of the control, respectively. Exogenous NO treatment also induced endogenous NO accumulation by activating nitric oxide synthase (NOS). In addition, NO triggered an increase in reactive oxygen species (ROS) levels. NO enhanced activities and gene expression levels of NADPH oxidase (NOX), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR). Moreover, NO stimulated cell wall degrading enzymes by activating the corresponding gene expression in vivo and in vitro. These results suggested that exogenous NO promoted the pathogenicity of A. alternata by inducing ROS accumulation and activating antioxidants and cell wall degrading enzymes. The present results could establish a theoretical foundation for the targeted control of the black spot disease in pear fruit.
Collapse
Affiliation(s)
- Di Wang
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Haijue Zhang
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Lingkui Meng
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Xinyu Tan
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Rong Liu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Qingchao Gao
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yan Wu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yuhan Zhu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Xueyan Ren
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qingjun Kong
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| |
Collapse
|
4
|
Tripathi A, Giri VP, Pandey S, Chauhan P, Kumar N, Verma P, Tiwari V, Verma P, Mishra A. Dismantling of necrotroph Alternaria alternata by cellular intervention of Peppermint Oil Nanoemulsion (PNE). Microb Pathog 2024; 197:107041. [PMID: 39433141 DOI: 10.1016/j.micpath.2024.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Alternaria alternata, a common necrotrophic fungal pathogen, poses a significant threat to various crops, causing substantial yield losses and quality deterioration. In the present study, we explore the potential fungicidal properties of Peppermint Oil Nanoemulsion (PNE) against A. alternata and investigate its impact on the fungal phenotype. Our previous study synthesized the PNE using a nanoemulsion approach, optimizing its formulation for enhanced stability and efficacy. The present study extended the assessment of a multidisciplinary approach to comprehensively analyze the fungicidal efficacy of PNE against A. alternata. Notably, in a liquid growth medium, 0.5 % of PNE could reduce A. alternata's biomass by 96 %. PNE-treated mycelia were stained with a nitro-blue tetrazolium (NBT) dye to assess ROS accumulation during oxidative stress induced by PNE. A higher degree of ROS generative potential of PNE has appeared in 72 h treated mycelia. PNE-treated mycelium showed cell wall alterations, with red fluorescence peaking at 0.5 %, indicating a dose-dependent effect compared to the untreated control. Consequently, PNE treatment led to a significant early hour increase in electrical conductivity (EC), extended to 306.03-353.33 μS/cm compared to 277.67-280.33 μS/cm untreated control. Scanning Electron Microscopy (SEM) analysis of A. alternata reflects the osmotic imbalance and structural damage in mycelia as the obvious cause of fungal inhibition. In addition, a phenotype microarray analysis of PNE-treated A. alternata mycelia revealed a significant phenotypic loss in 37 out of 708 substrates, potentially impacting metabolic pathways essential for fungi's functional processes. The study found that downregulation of genes like Cre A, NmrA, SOD, IMP, EfP, and Erg, which are linked to A. alternata's stress coping mechanisms, leads to alterations in survival and adaptation. Additionally, understanding the phenotypic changes induced by PNE contributes to our knowledge of the mode of action of this nanoemulsion against A. alternata. In conclusion, this study provides a comprehensive analysis of the fungicidal and phenotypic effects of PNE, offering a promising avenue for sustainable fungal control. The implications of our research extend to the development of novel, natural fungicidal agents for agricultural applications.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ved Prakash Giri
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India
| | - Shipra Pandey
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Chauhan
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; School of Sciences, P P Savani University, Kosamba, Surat, 394125, India
| | - Navinit Kumar
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pratibha Verma
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinita Tiwari
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priya Verma
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aradhana Mishra
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Pongpom M, Khamto N, Sukantamala P, Kalawil T, Wangsanut T. Identification of Homeobox Transcription Factors in a Dimorphic Fungus Talaromyces marneffei and Protein-Protein Interaction Prediction of RfeB. J Fungi (Basel) 2024; 10:687. [PMID: 39452639 PMCID: PMC11508405 DOI: 10.3390/jof10100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungus that can cause life-threatening systemic mycoses, particularly in immunocompromised individuals. Fungal homeobox transcription factors control various developmental processes, including the regulation of sexual reproduction, morphology, metabolism, and virulence. However, the function of homeobox proteins in T. marneffei has not been fully explored. Here, we searched the T. marneffei genome for the total homeobox transcription factors and predicted their biological relevance by performing gene expression analysis in different cell types, including conidia, mycelia, yeasts, and during phase transition. RfeB is selected for further computational analysis since (i) its transcripts were differentially expressed in different phases of T. marneffei, and (ii) this protein contains the highly conserved protein-protein interaction region (IR), which could be important for pathobiology and have therapeutic application. To assess the structure-function of the IR region, in silico alanine substitutions were performed at three-conserved IR residues (Asp276, Glu279, and Gln282) of RfeB, generating a triple RfeB mutated protein. Using 3D modeling and molecular dynamics simulations, we compared the protein complex formation of wild-type and mutated RfeB proteins with the putative partner candidate TmSwi5. Our results demonstrated that the mutated RfeB protein exhibited increased free binding energy, elevated protein compactness, and a reduced number of atomic contacts, suggesting disrupted protein stability and interaction. Notably, our model revealed that the IR residues primarily stabilized the RfeB binding sites located in the central region (CR). This computational approach for protein mutagenesis could provide a foundation for future experimental studies on the functional characterization of RfeB and other homeodomain-containing proteins in T. marneffei.
Collapse
Affiliation(s)
- Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Thitisuda Kalawil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| | - Tanaporn Wangsanut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| |
Collapse
|
6
|
Javed HU, Kularathnage ND, Du J, Liu R, Yang Z, Zhong S, Zhou J, Hussain M, Shu X, Zeng LY. A novel synthesized Vanillin-Based Deep Eutectic Agent (V-DEA) mitigates postharvest fungal decay and improve shelf life and quality of cherry tomatoes. Food Chem 2024; 453:139612. [PMID: 38772306 DOI: 10.1016/j.foodchem.2024.139612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Fusarium oxysporum and Botrytis cinerea are the main pathogens that cause fruit decay and reduce the postharvest shelf life of cherry tomatoes. Boosting the potency of natural products requires implementing structural modification to combat postharvest pathogens. Herein, we developed a novel Vanillin-Deep Eutectic Agent (V-DEA) from natural compounds and evaluated its effectiveness against tomato fruit rot pathogens. The results demonstrated that V-DEA suppressed mycelium growth and spore germination of F. oxysporum and B. cinerea by enhancing cell membrane permeability, increasing lipid peroxidation, and inhibiting enzyme activities. Importantly, using 8-mM V-DEA successfully prevented postharvest decay in cherry tomatoes, while 4-mM significantly extended their shelf life by reducing weight loss and shriveling, and enhancing key fruit qualities such as total soluble solids, ascorbic acid, tartaric acid, and lycopene. In conclusion, V-DEA exhibits dual properties as a potent pathogen inhibitor and antioxidant activity, thus prolonging the shelf life of cherry tomatoes.
Collapse
Affiliation(s)
- Hafiz Umer Javed
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi, China; Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Nuwan D Kularathnage
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jiaxiu Du
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ruofan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiqing Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Sixia Zhong
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiajie Zhou
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Muzammil Hussain
- College of Life Science and Oceanography, Shenzhen University, 518071 Shenzhen, China
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Li-Yan Zeng
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
7
|
Yang M, Smit S, de Ridder D, Feng J, Liu T, Xu J, van der Lee TAJ, Zhang H, Chen W. Adaptation of Fusarium Head Blight Pathogens to Changes in Agricultural Practices and Human Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401899. [PMID: 39099330 PMCID: PMC11423162 DOI: 10.1002/advs.202401899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/28/2024] [Indexed: 08/06/2024]
Abstract
Fusarium head blight (FHB) is one of the most destructive wheat diseases worldwide. To understand the impact of human migration and changes in agricultural practices on crop pathogens, here population genomic analysis with 245 representative strains from a collection of 4,427 field isolates of Fusarium asiaticum, the causal agent of FHB in Southern China is conducted. Three populations with distinct evolution trajectories are identifies over the last 10,000 years that can be correlated with historically documented changes in agricultural practices due to human migration caused by the Southern Expeditions during the Jin Dynasty. The gradual decrease of 3ADON-producing isolates from north to south along with the population structure and spore dispersal patterns shows the long-distance (>250 km) dispersal of F. asiaticum. These insights into population dynamics and evolutionary history of FHB pathogens are corroborated by a genome-wide analysis with strains originating from Japan, South America, and the USA, confirming the adaptation of FHB pathogens to cropping systems and human migration.
Collapse
Affiliation(s)
- Meixin Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB, 6708, The Netherlands
| | - Sandra Smit
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB, 6708, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB, 6708, The Netherlands
| | - Jie Feng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Tianshui, 741200, P. R. China
| | - Jinrong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Theo A J van der Lee
- Biointeractions and Plant Health, Wageningen Plant Research, Droevendaalsesteeg 1, Wageningen, PB, 6708, The Netherlands
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Tianshui, 741200, P. R. China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| |
Collapse
|
8
|
Shu C, Sun X, Cao J, Droby S, Jiang W. Antifungal efficiency and mechanisms of ethyl ferulate against postharvest pathogens. Int J Food Microbiol 2024; 417:110710. [PMID: 38643598 DOI: 10.1016/j.ijfoodmicro.2024.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Postharvest loss caused by a range of pathogens necessitates exploring novel antifungal compounds that are safe and efficient in managing the pathogens. This study evaluated the antifungal activity of ethyl ferulate (EF) and explored its mechanisms of action against Alternaria alternata, Aspergillus niger, Botrytis cinerea, Penicillium expansum, Penicillium digitatum, Geotrichum candidum and evaluated its potential to inhibit postharvest decay. The results demonstrated that EF exerts potent antifungal activity against a wide board of postharvest pathogens. Results also revealed that its antifungal mechanism is multifaceted: EF may be involved in binding to and disturbing the integrity of the fungal plasma membrane, causing leakage of intracellular content and losing normal morphology and ultrastructure. EF also induced oxidative stress in the pathogen, causing membrane lipid peroxidation and malondialdehyde accumulation. EF inhibited the critical gene expression of the pathogen, affecting its metabolic regulation, antioxidant metabolism, and cell wall degrading enzymes. EF exhibited antifungal inhibitory activity when applied directly into peel wounds or after incorporation with chitosan coating. Due to its wide board and efficient antifungal activity, EF has the potential to provide a promising alternative to manage postharvest decay.
Collapse
Affiliation(s)
- Chang Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing 100083, China; United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA; Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Xiuxiu Sun
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing 100083, China
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization, the Volcani Center, 68 Ha Maccabim Road, Rishon LeZion 7505101, Israel
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing 100083, China.
| |
Collapse
|
9
|
Qi C, Zhang H, Chen W, Liu W. Curcumin: An innovative approach for postharvest control of Alternaria alternata induced black rot in cherry tomatoes. Fungal Biol 2024; 128:1691-1697. [PMID: 38575242 DOI: 10.1016/j.funbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Curcumin, a natural bioactive compound derived from Curcuma longa, has been widely recognized for its antifungal properties. In this study, we investigated the effects of curcumin on the phytopathogenic fungus Alternaria alternata and its pathogenicity in cherry tomato fruit. The results demonstrated that curcumin treatment significantly inhibited mycelial growth and spore germination of A. alternata in a dose-dependent manner. Scanning electron microscopy revealed alterations in the morphology of A. alternata mycelia treated with curcumin. Furthermore, curcumin treatment led to an increase in malondialdehyde and hydrogen peroxide contents, indicating cell membrane damage in A. alternata. Moreover, curcumin exhibited a remarkable inhibitory effect on the incidence and lesion diameters of black rot caused by A. alternata in cherry tomato fruit. Gene expression analysis revealed upregulation of defense-related genes (POD, SOD, and CAT) in tomato fruit treated with curcumin. Additionally, curcumin treatment resulted in decreased activity of exocellular pathogenic enzymes (polygalacturonase, pectin lyase, and endo-1,4-β-d-glucanase) in A. alternata. Overall, our findings highlight the potential of curcumin as an effective antifungal agent against A. alternata, providing insights into its inhibitory mechanisms on mycelial growth, spore germination, and pathogenicity in cherry tomato fruit.
Collapse
Affiliation(s)
- Chenchen Qi
- College of Economics and Management, Xinjiang Agricultural University, Urumqi, 830000, PR China.
| | - Haijing Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China.
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China.
| | - Weizhong Liu
- College of Economics and Management, Xinjiang Agricultural University, Urumqi, 830000, PR China.
| |
Collapse
|
10
|
Iglesias-Guevara D, Sánchez-Torres P. Characterization of antifungal properties of avocado leaves and majagua flowers extracts and their potential application to control Alternaria alternata. Int J Food Microbiol 2024; 413:110579. [PMID: 38277871 DOI: 10.1016/j.ijfoodmicro.2024.110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Plant extracts are used as an alternative to a wide range of foods against different types of fungal pathogens. In the present study, the extracts of avocado leaves (Persea americana) and majagua flowers (Talipariti elatum) were tested according to their antifungal activity against different fungi. The most promising extracts were those of majagua flowers that were applied lyophilized and in aqueous extract, being very effective against Alternaria alternata and reaching a 50 % in vitro reduction. Antifungal properties were also evaluated during infection of apples by A. alternata. A decrease in infection progression was confirmed with up to a 30 % reduction in disease incidence and a 20 % reduction in disease severity. Majagua extracts were also tested combined with edible pectin coatings, greatly increasing their effectiveness up 60 % reduction. Thus, extracts of majagua could provide a feasible alternative to control fungal pathogens during postharvest.
Collapse
Affiliation(s)
- Dairon Iglesias-Guevara
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain; Faculty of Pharmacy and Food (IFAL), Havana University, Havana, Cuba
| | - Paloma Sánchez-Torres
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
11
|
Wu PC, Choo YL, Wei SY, Yago JI, Chung KR. Contribution of Autophagy to Cellular Iron Homeostasis and Stress Adaptation in Alternaria alternata. Int J Mol Sci 2024; 25:1123. [PMID: 38256200 PMCID: PMC10816921 DOI: 10.3390/ijms25021123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The tangerine pathotype of Alternaria alternata produces the Alternaria citri toxin (ACT), which elicits a host immune response characterized by the increase in harmful reactive oxygen species (ROS) production. ROS detoxification in A. alternata relies on the degradation of peroxisomes through autophagy and iron acquisition using siderophores. In this study, we investigated the role of autophagy in regulating siderophore and iron homeostasis in A. alternata. Our results showed that autophagy positively influences siderophore production and iron uptake. The A. alternata strains deficient in autophagy-related genes 1 and 8 (ΔAaatg1 and ΔAaatg8) could not thrive without iron, and their adaptability to high-iron environments was also reduced. Furthermore, the ability of autophagy-deficient strains to withstand ROS was compromised. Notably, autophagy deficiency significantly reduced the production of dimerumic acid (DMA), a siderophore in A. alternata, which may contribute to ROS detoxification. Compared to the wild-type strain, ΔAaatg8 was defective in cellular iron balances. We also observed iron-induced autophagy and lipid peroxidation in A. alternata. To summarize, our study indicates that autophagy and maintaining iron homeostasis are interconnected and contribute to the stress resistance and the virulence of A. alternata. These results provide new insights into the complex interplay connecting autophagy, iron metabolism, and fungal pathogenesis in A. alternata.
Collapse
Affiliation(s)
- Pei-Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| | - Yen-Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| | - Sian-Yong Wei
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| | - Jonar I. Yago
- Plant Science Department, College of Agriculture, Nueva Vizcaya State University, Bayombong 3700, Philippines;
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| |
Collapse
|
12
|
Chen Y, Cao Y, Jiao C, Sun X, Gai Y, Zhu Z, Li H. The Alternaria alternata StuA transcription factor interacting with the pH-responsive regulator PacC for the biosynthesis of host-selective toxin and virulence in citrus. Microbiol Spectr 2023; 11:e0233523. [PMID: 37812002 PMCID: PMC10715145 DOI: 10.1128/spectrum.02335-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/19/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE In this study, we used Alternaria alternata as a biological model to report the role of StuA in phytopathogenic fungi. Our findings indicated that StuA is required for Alternaria citri toxin (ACT) biosynthesis and fungal virulence. In addition, StuA physically interacts with PacC. Disruption of stuA or pacC led to decreased expression of seven toxin biosynthetic genes (ACCT) and toxin production. PacC could recognize and bind to the promoter regions of ACTT6 and ACTTR. Our results revealed a previously unrecognized (StuA-PacC)→ACTTR module for the biosynthesis of ACT in A. alternata, which also provides a framework for the study of StuA in other fungi.
Collapse
Affiliation(s)
- Yanan Chen
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Yingzi Cao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chen Jiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Yunpeng Gai
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zengrong Zhu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Hongye Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Godana EA, Yang Q, Zhang X, Zhao L, Wang K, Dhanasekaran S, Mehari TG, Zhang H. Biotechnological and Biocontrol Approaches for Mitigating Postharvest Diseases Caused by Fungal Pathogens and Their Mycotoxins in Fruits: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17584-17596. [PMID: 37938803 DOI: 10.1021/acs.jafc.3c06448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Postharvest diseases caused by fungal pathogens are significant contributors to the postharvest losses of fruits. Moreover, some fungal pathogens produce mycotoxins, which further compromise the safety and quality of fruits. In this review, the potential of biotechnological and biocontrol approaches for mitigating postharvest diseases and mycotoxins in fruits is explored. The review begins by discussing the impact of postharvest diseases on fruit quality and postharvest losses. Next, it provides an overview of major postharvest diseases caused by fungal pathogens. Subsequently, it delves into the role of biotechnological approaches in controlling these diseases. The review also explored the application of biocontrol agents, such as antagonistic yeasts, bacteria, and fungi, which can suppress pathogen growth. Furthermore, future trends and challenges in these two approaches are discussed in detail. Overall, this review can provide insights into promising biotechnological and biocontrol strategies for managing postharvest diseases and mycotoxins in fruits.
Collapse
Affiliation(s)
- Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | | | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
14
|
Zhang S, Miao W, Liu Y, Jiang J, Chen S, Chen F, Guan Z. Jasmonate signaling drives defense responses against Alternaria alternata in chrysanthemum. BMC Genomics 2023; 24:553. [PMID: 37723458 PMCID: PMC10507968 DOI: 10.1186/s12864-023-09671-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Black spot disease caused by the necrotrophic fungus Alternaria spp. is one of the most devastating diseases affecting Chrysanthemum morifolium. There is currently no effective way to prevent chrysanthemum black spot. RESULTS We revealed that pre-treatment of chrysanthemum leaves with the methy jasmonate (MeJA) significantly reduces their susceptibility to Alternaria alternata. To understand how MeJA treatment induces resistance, we monitored the dynamics of metabolites and the transcriptome in leaves after MeJA treatment following A. alternata infection. JA signaling affected the resistance of plants to pathogens through cell wall modification, Ca2+ regulation, reactive oxygen species (ROS) regulation, mitogen-activated protein kinase cascade and hormonal signaling processes, and the accumulation of anti-fungal and anti-oxidant metabolites. Furthermore, the expression of genes associated with these functions was verified by reverse transcription quantitative PCR and transgenic assays. CONCLUSION Our findings indicate that MeJA pre-treatment could be a potential orchestrator of a broad-spectrum defense response that may help establish an ecologically friendly pest control strategy and offer a promising way of priming plants to induce defense responses against A. alternata.
Collapse
Affiliation(s)
- Shuhuan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Weihao Miao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration On Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
15
|
Guo J, Ren H, Ijaz M, Qi X, Ahmed T, You Y, Li G, Yu Z, Islam MS, Ali HM, Sun L, Li B. The completed genome sequence of Pestalotiopsis versicolor, a pathogenic ascomycete fungus with implications for bayberry production. Genomics 2023; 115:110695. [PMID: 37558012 DOI: 10.1016/j.ygeno.2023.110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
The pathogenic fungus Pestalotiopsis versicolor is a major etiological agent of fungal twig blight disease affecting bayberry trees. However, the lack of complete genome sequence information for this crucial pathogenic fungus hinders the molecular and genetic investigation of its pathogenic mechanism. To address this knowledge gap, we have generated the complete genome sequence of P. versicolor strain XJ27, employing a combination of Illumina, PacBio, and Hi-C sequencing technologies. This comprehensive genome sequence, comprising 7 chromosomes with an N50 contig size of 7,275,017 bp, a GC content ratio of 50.16%, and a total size of 50.80 Mb, encompasses 13,971 predicted coding genes. By performing comparative genomic analysis between P. versicolor and the genomes of eleven plant-pathogenic fungi, as well as three closely related fungi within the same group, we have gained initial insights into its evolutionary trajectory, particularly through gene family analysis. These findings shed light on the distinctive characteristics and evolutionary history of P. versicolor. Importantly, the availability of this high-quality genetic resource will serve as a foundational tool for investigating the biology, molecular pathogenesis, and virulence of P. versicolor. Furthermore, it will facilitate the development of more potent antifungal medications by uncovering potential vulnerabilities in its genetic makeup.
Collapse
Affiliation(s)
- Junning Guo
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Yuxin You
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Gang Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mohammad Shafiqul Islam
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Li Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Liu J, Wang C, Kong L, Yang Y, Cui X, Li K, Nian H. Rho2 involved in development, stress response and pathogenicity of Fusarium oxysporum. World J Microbiol Biotechnol 2023; 39:272. [PMID: 37548840 DOI: 10.1007/s11274-023-03720-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Rho GTPases regulate the activity of cell wall biosynthesis, actin assembly and polar cell secretion. However, the function of Rho GTPase in filamentous fungi is poorly understood. To understand the role of Rho2 GTPase in Fusarium oxysporum, which is one of root rot pathogens of Panax notoginseng, △rho2 mutant was constructed. Phenotypes of △rho2, including conidiation, germination of spores, stresses (osmotic-, cell membrane-, cell wall disturbing-, metal-, and high temperature-) tolerance and pathogenicity were analyzed. The results showed that the growth of △rho2 was destroyed under cell wall disturbing stress and high temperature stress, suggesting that Rho2 regulated the response of F. oxysporum to cell wall synthesis inhibitors and high temperature stress. Germination of spores and pathogenicity to P. notoginseng were reduced in △rho2 mutant. Western blot results showed that rho2 deletion increased the phosphorylation level of Mpk1. To identify genes regulated by Rho2, transcriptome sequencing was carried out. 2477 genes were identified as upregulated genes and 2177 genes were identified as downregulated genes after rho2 was deleted. These genes provide clues for further study of rho2 function.
Collapse
Affiliation(s)
- Jia Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chengsong Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongjuan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
17
|
Priyashantha AKH, Dai DQ, Bhat DJ, Stephenson SL, Promputtha I, Kaushik P, Tibpromma S, Karunarathna SC. Plant-Fungi Interactions: Where It Goes? BIOLOGY 2023; 12:809. [PMID: 37372094 PMCID: PMC10295453 DOI: 10.3390/biology12060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Fungi live different lifestyles-including pathogenic and symbiotic-by interacting with living plants. Recently, there has been a substantial increase in the study of phytopathogenic fungi and their interactions with plants. Symbiotic relationships with plants appear to be lagging behind, although progressive. Phytopathogenic fungi cause diseases in plants and put pressure on survival. Plants fight back against such pathogens through complicated self-defense mechanisms. However, phytopathogenic fungi develop virulent responses to overcome plant defense reactions, thus continuing their deteriorative impacts. Symbiotic relationships positively influence both plants and fungi. More interestingly, they also help plants protect themselves from pathogens. In light of the nonstop discovery of novel fungi and their strains, it is imperative to pay more attention to plant-fungi interactions. Both plants and fungi are responsive to environmental changes, therefore construction of their interaction effects has emerged as a new field of study. In this review, we first attempt to highlight the evolutionary aspect of plant-fungi interactions, then the mechanism of plants to avoid the negative impact of pathogenic fungi, and fungal strategies to overcome the plant defensive responses once they have been invaded, and finally the changes of such interactions under the different environmental conditions.
Collapse
Affiliation(s)
- A. K. Hasith Priyashantha
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Darbhe J. Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Biology Division, Vishnugupta Vishwavidyapeetam, Gokarna 581326, India
| | - Steven L. Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
- National Institute of Fundamental Studies (NIFS), Hantana Road, Kandy 20000, Sri Lanka
| |
Collapse
|
18
|
Wu JJ, Wu PC, Yago JI, Chung KR. The Regulatory Hub of Siderophore Biosynthesis in the Phytopathogenic Fungus Alternaria alternata. J Fungi (Basel) 2023; 9:jof9040427. [PMID: 37108881 PMCID: PMC10146468 DOI: 10.3390/jof9040427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
A GATA zinc finger-containing repressor (AaSreA) suppresses siderophore biosynthesis in the phytopathogenic fungus Alternaria alternata under iron-replete conditions. In this study, targeted gene deletion revealed two bZIP-containing transcription factors (AaHapX and AaAtf1) and three CCAAT-binding proteins (AaHapB, AaHapC, and AaHapE) that positively regulate gene expression in siderophore production. This is a novel phenotype regarding Atf1 and siderophore biosynthesis. Quantitative RT-PCR analyses revealed that only AaHapX and AaSreA were regulated by iron. AaSreA and AaHapX form a transcriptional feedback negative loop to regulate iron acquisition in response to the availability of environmental iron. Under iron-limited conditions, AaAtf1 enhanced the expression of AaNps6, thus playing a positive role in siderophore production. However, under nutrient-rich conditions, AaAtf1 plays a negative role in resistance to sugar-induced osmotic stress, and AaHapX plays a negative role in resistance to salt-induced osmotic stress. Virulence assays performed on detached citrus leaves revealed that AaHapX and AaAtf1 play no role in fungal pathogenicity. However, fungal strains carrying the AaHapB, AaHapC, or AaHapE deletion failed to incite necrotic lesions, likely due to severe growth deficiency. Our results revealed that siderophore biosynthesis and iron homeostasis are regulated by a well-organized network in A. alternata.
Collapse
|
19
|
Bai N, Xie M, Liu Q, Wang W, Liu Y, Yang J. AoSte12 Is Required for Mycelial Development, Conidiation, Trap Morphogenesis, and Secondary Metabolism by Regulating Hyphal Fusion in Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2023; 11:e0395722. [PMID: 36786575 PMCID: PMC10101105 DOI: 10.1128/spectrum.03957-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Nematode-trapping (NT) fungi are a unique group of carnivorous microorganisms that can capture and digest nematodes by producing ingenious trapping devices (traps). Arthrobotrys oligospora, a representative NT fungus, can develop adhesive three-dimensional networks for nematode predation. Hyphal fusion is indispensable for the trap formation of A. oligospora. Here, we characterized an orthologous Ste12 protein (AoSte12) in A. oligospora via gene disruption, DNA affinity purification sequencing (DAP-Seq), and multi-omics approaches. The disruption of the Aoste12 gene caused an increase in hyphal fusion and resulted in defects in mycelial growth, conidiation, trap morphology, and stress resistance, as well as reducing the number of nuclei and lipid droplet accumulation. Moreover, transcriptome and DAP-Seq analysis revealed that AoSte12 was involved in cellular processes associated with growth, cell fusion, the tricarboxylic acid cycle, vesicles, actin filaments, and lipid metabolism. In addition, combining metabolome with transcriptome and DAP-Seq analysis indicated that AoSte12 was involved in the mitogen-activated protein kinase signaling pathway, lipid metabolism, and secondary metabolites. A yeast two-hybrid assay revealed that AoSte12 can interact with diverse proteins, such as the MAK-2 orthologue protein Fus3, the vacuolar sorting protein Pep3, and UDP-glycosyltransferase. Our results suggest that AoSte12 plays an indispensable role in hyphal fusion and thus regulates sporulation and trap morphogenesis. These results provide deep insights into the connection between hyphal fusion and trap formation in NT fungi. IMPORTANCE Nematode-trapping (NT) fungi are an important natural enemy of nematodes and can capture their prey by producing traps. Hyphal anastomosis and fusion are important for mycelial growth and the colony morphological development of filamentous fungi and are also crucial for the trap morphogenesis of NT fungi. Arthrobotrys oligospora can form complex three-dimensional networks (traps) when sensing the presence of nematodes. This study revealed that AoSte12 is indispensable for hyphal fusion and that it regulates mycelial growth, conidiation, trap morphogenesis, stress resistance, the number of nuclei, and lipid droplet accumulation in A. oligospora. In addition, DNA affinity purification sequencing, transcriptome, and metabolome analyses further revealed that AoSte12 is involved in the mitogen-activated protein kinase pathway, lipid metabolism, and secondary metabolism. Overall, these findings expand the important role of AoSte12 in NT fungus A. oligospora and provide a broad foundation for elucidating the regulatory mechanism of trap development and the lifestyle transitions of pathogenic fungi.
Collapse
Affiliation(s)
- Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
- School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| |
Collapse
|
20
|
Hassan EA, Hifney AF, Ali EF, Sayed AM. Fungicidal activities and molecular docking of the marine alga Ulva lactuca and Punica granatum peel extracts on Alternaria tomato spot disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21872-21887. [PMID: 36279063 DOI: 10.1007/s11356-022-23733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In this study, we utilized pomegranate peel and marine algae Ulva lactuca (U. lactuca) as rich and sustained sources of bioactive compounds to combat tomato-black spot disease. n-Hexane extracts from the peel of pomegranate (Punica granatum) (PPE) and the marine algal biomass U. lactuca (ULE) were used alone and in combinations to verify their impact against Alternaria alternata (A. alternata). The applied extracts exhibited severe destructive effects on both fungal growth and structure such as mycelia malformation, underdeveloped conidia, cell wall deformation, and shrinkage. Moreover, increased deformations and protrusions, and notch-like structures, were noticed in A. alternata mycelia treated with mixed extracts (PPE and ULE) compared to all other treatments. The protein and reduced sugar contents in tomato fruits were significantly increased in the infected fruits with A. alternata. The highest enzyme activities of pectinase, cellulase, catalase (CAT), and ascorbate peroxidase (APX) were recorded in infected tomatoes in comparison with the healthy ones. Molecular docking studies showed that each extract is rich with bioactive compounds that have a promising inhibition effect on A. alternata cellulases. Pomegranate and Ulva extract showed promising antifungal activity against A. alternata which revealed their feasibility and applicability as biocontrol agents in postharvest disease management and food preservation against fungal pathogens.
Collapse
Affiliation(s)
- Elhagag A Hassan
- Botany and Microbiology Department, Faculty of Science, Assiut University, P.O. Box 71526, Assiut, Egypt
| | - Awatief F Hifney
- Botany and Microbiology Department, Faculty of Science, Assiut University, P.O. Box 71526, Assiut, Egypt
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany.
| |
Collapse
|
21
|
Choo CYL, Wu PC, Yago JI, Chung KR. The Pex3-mediated peroxisome biogenesis plays a critical role in metabolic biosynthesis, stress response, and pathogenicity in Alternaria alternata. Microbiol Res 2023; 266:127236. [DOI: 10.1016/j.micres.2022.127236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
22
|
Li H, Zhang Y, Gao C, Gao Q, Cheng Y, Zhao M, Guan J. Mycotoxin Production and the Relationship between Microbial Diversity and Mycotoxins in Pyrus bretschneideri Rehd cv. Huangguan Pear. Toxins (Basel) 2022; 14:699. [PMID: 36287968 PMCID: PMC9610726 DOI: 10.3390/toxins14100699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are generated by a series of fungal pathogens in postharvest fruit, resulting in serious health threat to consumers and great economic loss to the fruit storage industry. The microbial differences between rotten and healthy fruit during storage and their relationship with mycotoxin production have not been fully studied. In this study, differences in microbial diversity between rotten and healthy fruit after 30 days of storage at ambient temperature were investigated using high-throughput sequencing technology in 'Huangguan' pear (Pyrus bretschneideri Rehd cv. Huangguan) harvested from five different producing regions of Hebei province, China. The bacterial genus Gluconobacter was much more abundant in rotten fruit (76.24%) than that in healthy fruit (32.36%). In addition, Komagataeibacter and Acetobacter were also relatively higher in abundance in rotten fruit. In contrast, bacterial genera Pantoea, Alistipes, Muribaculaceae, Lactobacillus, and Ruminococcaceae_UCG were found to be more abundant in healthy fruit. Fungal genera including Botryosphaeria, Colletotrichum, Valsa, Alternaria, Rosellinia, Fusarium, and Trichothecium were found to be abundant in rotten fruit. The results of principal coordinate analysis (PCoA) showed that there were significant differences in the microbial diversity of different regions. PAT (patulin) was detected in all rotten fruit samples, while tenuazonic acid (TeA), alternariol (AOH), and alternariolmonomethyl ether (AME) were only detected in samples collected from one region (Weixian). Canonical correlation analysis (CCA) and Pearson correlation analysis showed that the abundance of Alistipes and Pantoea were negatively correlated with the contents of PAT, suggesting that bacterial genera Alistipes and Pantoea have potential in reducing mycotoxin production in 'Huangguan' pear.
Collapse
Affiliation(s)
- Huimin Li
- School of Landscape and Ecological Engineering, Hebei Engineering University, Handan 056021, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Yang Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Congcong Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Qi Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Min Zhao
- School of Landscape and Ecological Engineering, Hebei Engineering University, Handan 056021, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
23
|
Wu P, Choo CYL, Lu H, Wei X, Chen Y, Yago JI, Chung K. Pexophagy is critical for fungal development, stress response, and virulence in Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2022; 23:1538-1554. [PMID: 35810316 PMCID: PMC9452759 DOI: 10.1111/mpp.13247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/09/2023]
Abstract
Alternaria alternata can resist high levels of reactive oxygen species (ROS). The protective roles of autophagy or autophagy-mediated degradation of peroxisomes (termed pexophagy) against oxidative stress remain unclear. The present study, using transmission electron microscopy and fluorescence microscopy coupled with a GFP-AaAtg8 proteolysis assay and an mCherry tagging assay with peroxisomal targeting tripeptides, demonstrated that hydrogen peroxide (H2 O2 ) and nitrogen depletion induced autophagy and pexophagy. Experimental evidence showed that H2 O2 triggered autophagy and the translocation of peroxisomes into the vacuoles. Mutational inactivation of the AaAtg8 gene in A. alternata led to autophagy impairment, resulting in the accumulation of peroxisomes, increased ROS sensitivity, and decreased virulence. Compared to the wild type, ΔAaAtg8 failed to detoxify ROS effectively, leading to ROS accumulation. Deleting AaAtg8 down-regulated the expression of genes encoding an NADPH oxidase and a Yap1 transcription factor, both involved in ROS resistance. Deleting AaAtg8 affected the development of conidia and appressorium-like structures. Deleting AaAtg8 also compromised the integrity of the cell wall. Reintroduction of a functional copy of AaAtg8 in the mutant completely restored all defective phenotypes. Although ΔAaAtg8 produced wild-type toxin levels in axenic culture, the mutant induced a lower level of H2 O2 and smaller necrotic lesions on citrus leaves. In addition to H2 O2 , nitrogen starvation triggered peroxisome turnover. We concluded that ΔAaAtg8 failed to degrade peroxisomes effectively, leading to the accumulation of peroxisomes and the reduction of the stress response. Autophagy-mediated peroxisome turnover could increase cell adaptability and survival under oxidative stress and starvation conditions.
Collapse
Affiliation(s)
- Pei‐Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Celine Yen Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Hsin‐Yu Lu
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Xian‐Yong Wei
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Yu‐Kun Chen
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Jonar I. Yago
- Plant Science Department, College of AgricultureNueva Vizcaya State UniversityBayombongPhilippines
| | - Kuang‐Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
24
|
Orrego A, Gavilán MC, Arévalos A, Ortíz B, Gaete Humada B, Pineda-Fretez A, Romero-Rodríguez MC, Flores Giubi ME, Kohli MM, Iehisa JCM. Identification of reference genes and their validation for gene expression analysis in phytopathogenic fungus Macrophomina phaseolina. PLoS One 2022; 17:e0272603. [PMID: 35930568 PMCID: PMC9355225 DOI: 10.1371/journal.pone.0272603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/23/2022] [Indexed: 11/19/2022] Open
Abstract
Macrophomina phaseolina is a soil-borne pathogenic fungus that infects a wide range of crop species and causes severe yield losses. Although the genome of the fungus has been sequenced, the molecular basis of its virulence has not been determined. Identification of up-regulated genes during fungal infection is important to understand the mechanism involved in its virulence. To ensure reliable quantification, expression of target genes needs to be normalized on the basis of certain reference genes. However, in the case of M. phaseolina, reference genes or their expression analysis have not been reported in the literature. Therefore, the objective of this study was to evaluate 12 candidate reference genes for the expression analysis of M. phaseolina genes by applying three different fungal growth conditions: a) during root and stem infection of soybean, b) in culture media with and without soybean leaf infusion and c) by inoculating a cut-stem. Based on BestKeeper, geNorm and NormFinder algorithms, CYP1 was identified as the best recommended reference gene followed by EF1β for expression analysis of fungal gene during soybean root infection. Besides Mp08158, CYP1 gene was found suitable when M. phaseolina was grown in potato-dextrose broth with leaf infusion. In the case of cut-stem inoculation, Mp08158 and Mp11185 genes were found to be most stable. To validate the selected reference genes, expression analysis of two cutinase genes was performed. In general, the expression patterns were similar when the target genes were normalized against most or least stable gene. However, in some cases different expression pattern can be obtained when least stable gene is used for normalization. We believe that the reference genes identified and validated in this study will be useful for gene expression analysis during host infection with M. phaseolina.
Collapse
Affiliation(s)
- Adriana Orrego
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Cecilia Gavilán
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Aníbal Arévalos
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Belén Ortíz
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Belén Gaete Humada
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Amiliana Pineda-Fretez
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Cristina Romero-Rodríguez
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Eugenia Flores Giubi
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Man Mohan Kohli
- Cámara Paraguaya de Exportadores y Comercializadores de Cereales y Oleaginosas (CAPECO), Asunción, Paraguay
| | - Julio C. M. Iehisa
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
- * E-mail:
| |
Collapse
|
25
|
Transcriptome analysis reveals putative pathogenesis genes in Alternaria panax during infecting Panax notoginseng leaves. Genes Genomics 2022; 44:855-866. [PMID: 35622230 DOI: 10.1007/s13258-022-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Alternaria panax is the causative agent of black spot disease in Panax notoginseng, which causes significant yield loss. However, the molecular mechanisms underlying its pathogenicity remain mostly unknown. OBJECTIVE We sequenced the transcriptome of A. panax during infecting P. notoginseng leaves using next-generation RNA-seq to understand the molecular aspects of black spot disease. METHODS In this study, we sequenced the A. panax transcriptome during infecting P. notoginseng leaves through next-generation sequencing to explore the pathogenesis genes that may be responsible for black spot disease on P. notoginseng. RESULT The de novo transcriptome assembly of A. panax produced 23,036 unigenes, of which 18,096 genes were functionally annotated by at least one protein database. GO enrichment analysis and KEGG pathways of differentially up-regulated genes suggest that most genes are associated with metabolic processes, catalytic activity, starch, and sucrose metabolism during infection. Many pathogenesis-associated genes, including genes encoding secreted proteins, candidate secreted effectors, cell wall degrading enzymes, transcription factors, and transporters, were up-regulated in A. panax during infection. In addition, the secondary metabolite biosynthesis genes, including cytochrome P450, and nonribosomal peptide synthetases, were also identified in this study. CONCLUSIONS Differential gene expression analysis has confirmed that A. panax infection was mainly present in the middle and final stages. The findings show that these pathogenesis-associated genes in A. panax may be critical for the P. notoginseng black spots disease.
Collapse
|
26
|
Lu HY, Huang YL, Wu PC, Wei XY, Yago JI, Chung KR. A zinc finger suppressor involved in stress resistance, cell wall integrity, conidiogenesis, and autophagy in the necrotrophic fungal pathogen Alternaria alternata. Microbiol Res 2022; 263:127106. [PMID: 35839700 DOI: 10.1016/j.micres.2022.127106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
The tangerine pathotype of Alternaria alternata can withstand high-level reactive oxygen species (ROS). By analyzing loss- and gain-of-function mutants, this study demonstrated that a Cys2His2 zinc finger-containing transcription regulator, A. alternata Stress Response Regulator 1 (AaSRR1), plays a negative role in resistance to peroxides and singlet-oxygen-generating compounds. AaSRR1 plays no role in cellular susceptibility or resistance to superoxide-producing compounds. AaSRR1 also negatively regulates conidiogenesis, maintenance of cell wall and membrane integrities, and chitin biosynthesis. Some wild-type hyphae displayed necrosis after exposure to 30 mM H2O2, whereas AaSRR1 deficient mutant (ΔAaSRR1) hyphae had visible granules and vacuoles. sGFP-AaATG8 proteolysis assays revealed that H2O2 and starvation could trigger autophagy formation in both wild type and ΔAaSRR1. Autophagy occurred at higher rates in ΔAaSRR1 than wild type under both conditions, particularly after H2O2 treatments, indicating that autophagy might contribute to ROS resistance. Upon exposure to H2O2 or under starvation, AaSRR1 was translocated into the nucleus, even though the expression of AaSRR1 was decreased. AaSRR1 is required for vegetative growth but is dispensable for fungal virulence as assayed on detached calamondin leaves. AaSRR1 suppressed the expression of the gene encoding a HOG1 mitogen-activated protein (MAP) kinase implicated in ROS resistance. Mutation of AaSRR1 increased catalase activity but decreased superoxide dismutase activity, leading to fewer ROS accumulation in the cytosol. Nevertheless, our results indicated that AaSRR1 is a transcription suppressor for ROS resistance. This study also revealed tradeoffs between stress responses and hyphal growth in A. alternata.
Collapse
Affiliation(s)
- Hsin-Yu Lu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Ling Huang
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
| | - Pei-Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Xian-Yong Wei
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jonar I Yago
- Plant Science Department, College of Agriculture, Nueva Vizcaya State University, Bayombong, Nueva Vizcaya 3700, Philippines
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
27
|
Meng S, Huang S, Liu J, Gai Y, Li M, Duan S, Zhang S, Sun X, Yang Q, Wang Y, Xu K, Ma H. Histone Methylation Is Required for Virulence, Conidiation, and Multi-Stress Resistance of Alternaria alternata. Front Microbiol 2022; 13:924476. [PMID: 35783406 PMCID: PMC9245015 DOI: 10.3389/fmicb.2022.924476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Histone methylation, which is critical for transcriptional regulation and various biological processes in eukaryotes, is a reversible dynamic process regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs). This study determined the function of 5 HMTs (AaDot1, AaHMT1, AaHnrnp, AaSet1, and AaSet2) and 1 HDMs (AaGhd2) in the phytopathogenic fungus Alternaria alternata by analyzing targeted gene deletion mutants. The vegetative growth, conidiation, and pathogenicity of ∆AaSet1 and ∆AaSet2 were severely inhibited indicating that AaSet1 and AaSet2 play critical roles in cell development in A. alternata. Multiple stresses analysis revealed that both AaSet1 and AaSet2 were involved in the adaptation to cell wall interference agents and osmotic stress. Meanwhile, ∆AaSet1 and ∆AaSet2 displayed serious vegetative growth defects in sole carbon source medium, indicating that AaSet1 and AaSet2 play an important role in carbon source utilization. In addition, ∆AaSet2 colony displayed white in color, while the wild-type colony was dark brown, indicating AaSet2 is an essential gene for melanin biosynthesis in A. alternata. AaSet2 was required for the resistance to oxidative stress. On the other hand, all of ∆AaDot1, ∆AaHMT1, and ∆AaGhd2 mutants displayed wild-type phenotype in vegetative growth, multi-stress resistance, pathogenicity, carbon source utilization, and melanin biosynthesis. To explore the regulatory mechanism of AaSet1 and AaSet2, RNA-seq of these mutants and wild-type strain was performed. Phenotypes mentioned above correlated well with the differentially expressed genes in ∆AaSet1 and ∆AaSet2 according to the KEGG and GO enrichment results. Overall, our study provides genetic evidence that defines the central role of HMTs and HDMs in the pathological and biological functions of A. alternata.
Collapse
Affiliation(s)
- Shuai Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Suya Huang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jinhua Liu
- Natural Medicine Institute of Zhejiang YangShengTang Co., LTD, Hangzhou, China
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Min Li
- China-USA Citrus Huanglongbing Joint Laboratory (GNU-UF Joint Lab), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Shuo Duan
- China-USA Citrus Huanglongbing Joint Laboratory (GNU-UF Joint Lab), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Shuting Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Qi Yang
- Linyi Inspection and Testing Center, Linyi, China
| | - Yuchun Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
28
|
Sclerotinia sclerotiorum SsCut1 Modulates Virulence and Cutinase Activity. J Fungi (Basel) 2022; 8:jof8050526. [PMID: 35628781 PMCID: PMC9143608 DOI: 10.3390/jof8050526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
The plant cuticle is one of the protective layers of the external surface of plant tissues. Plants use the cuticle layer to reduce water loss and resist pathogen infection. Fungi release cell wall-degrading enzymes to destroy the epidermis of plants to achieve the purpose of infection. Sclerotinia sclerotiorum secretes a large amount of cutinase to disrupt the cuticle layer of plants during the infection process. In order to further understand the role of cutinase in the pathogenic process of S. sclerotiorum, the S. sclerotiorum cutinsae 1 (SsCut1) gene was cloned and analyzed. The protein SsCut1 contains the conserved cutinase domain and a fungal cellulose-binding domain. RT-qPCR results showed that the expression of SsCut1 was significantly upregulated during infection. Split-Marker recombination was utilized for the deletion of the SsCut1 gene, ΔSsCut1 mutants showed reduced cutinase activity and virulence, but the deletion of the SsCut1 gene had no effect on the growth rate, colony morphology, oxalic acid production, infection cushion formation and sclerotial development. Complementation with the wild-type SsCut1 allele restored the cutinase activity and virulence to the wild-type level. Interestingly, expression of SsCut1 in plants can trigger defense responses, but it also enhanced plant susceptibility to SsCut1 gene knock-out mutants. Taken together, our finding demonstrated that the SsCut1 gene promotes the virulence of S. sclerotiorum by enhancing its cutinase activity.
Collapse
|
29
|
Gámez-Arjona FM, Vitale S, Voxeur A, Dora S, Müller S, Sancho-Andrés G, Montesinos JC, Di Pietro A, Sánchez-Rodríguez C. Impairment of the cellulose degradation machinery enhances Fusarium oxysporum virulence but limits its reproductive fitness. SCIENCE ADVANCES 2022; 8:eabl9734. [PMID: 35442735 PMCID: PMC9020665 DOI: 10.1126/sciadv.abl9734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fungal pathogens grow in the apoplastic space, in constant contact with the plant cell wall (CW) that hinders microbe progression while representing a source of nutrients. Although numerous fungal CW modifying proteins have been identified, their role during host colonization remains underexplored. Here, we show that the root-infecting plant pathogen Fusarium oxysporum (Fo) does not require its complete arsenal of cellulases to infect the host plant. Quite the opposite: Fo mutants impaired in cellulose degradation become hypervirulent by enhancing the secretion of virulence factors. On the other hand, the reduction in cellulase activity had a severe negative effect on saprophytic growth and microconidia production during the final stages of the Fo infection cycle. These findings enhance our understanding of the function of plant CW degradation on the outcome of host-microbe interactions and reveal an unexpected role of cellulose degradation in a pathogen's reproductive success.
Collapse
Affiliation(s)
| | - Stefania Vitale
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Aline Voxeur
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Susanne Dora
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sascha Müller
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | | | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | | |
Collapse
|
30
|
Peng X, Zhang Y, Wan C, Gan Z, Chen C, Chen J. Antofine Triggers the Resistance Against Penicillium italicum in Ponkan Fruit by Driving AsA-GSH Cycle and ROS-Scavenging System. Front Microbiol 2022; 13:874430. [PMID: 35495682 PMCID: PMC9039625 DOI: 10.3389/fmicb.2022.874430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Postharvest fungal infection can accelerate the quality deterioration of Ponkan fruit and reduce its commodity value. Penicillium italicum is the causal pathogen of blue mold in harvested citrus fruits, not only causing huge fungal decay but also leading to quality deterioration. In our preliminary study, antofine (ATF) was found to have a great potential for significant in vitro suppression of P. italicum growth. However, the regulatory mechanism underpinning ATF-triggered resistance against P. italicum in citrus fruit remains unclear. Here, the protective effects of ATF treatment on blue mold development in harvested Ponkan fruit involving the enhancement of ROS-scavenging system were investigated. Results showed that ATF treatment delayed blue mold development and peel firmness loss. Moreover, the increase of electrolyte leakage, O2 •- production, and malonyldialdehyde accumulation was significantly inhibited by ATF treatment. The ATF-treated Ponkan fruit maintained an elevated antioxidant capacity, as evidenced by inducted the increase in glutathione (GSH) content, delayed the declines of ascorbic acid (AsA) content and GSH/oxidized GSH ratio, and enhanced the activities of superoxide dismutase, catalase, peroxidase, and six key AsA-GSH cycle-related enzymes, along with their encoding gene expressions, thereby maintaining ROS homeostasis and reducing postharvest blue mold in harvested Ponkan fruit. Collectively, the current study revealed a control mechanism based on ATF-triggered resistance and maintenance of a higher redox state by driving AsA-GSH cycle and ROS-scavenging system in P. italicum-infected Ponkan fruit.
Collapse
Affiliation(s)
| | | | | | | | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Preservation and Non-destruction Testing of Fruits and Vegetables, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | | |
Collapse
|
31
|
Chen Y, Zhang Z, Tian S, Li B. Application of -omic technologies in postharvest pathology: Recent advances and perspectives. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Arya GC, Cohen H. The Multifaceted Roles of Fungal Cutinases during Infection. J Fungi (Basel) 2022; 8:199. [PMID: 35205953 PMCID: PMC8879710 DOI: 10.3390/jof8020199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 01/25/2023] Open
Abstract
Cuticles cover the aerial epidermis cells of terrestrial plants and thus represent the first line of defence against invading pathogens, which must overcome this hydrophobic barrier to colonise the inner cells of the host plant. The cuticle is largely built from the cutin polymer, which consists of C16 and C18 fatty acids attached to a glycerol backbone that are further modified with terminal and mid-chain hydroxyl, epoxy, and carboxy groups, all cross-linked by ester bonds. To breach the cuticle barrier, pathogenic fungal species employ cutinases-extracellular secreted enzymes with the capacity to hydrolyse the ester linkages between cutin monomers. Herein, we explore the multifaceted roles that fungal cutinases play during the major four stages of infection: (i) spore landing and adhesion to the host plant cuticle; (ii) spore germination on the host plant cuticle; (iii) spore germ tube elongation and the formation of penetrating structures; and (iv) penetration of the host plant cuticle and inner tissue colonisation. Using previous evidence from the literature and a comprehensive molecular phylogenetic tree of cutinases, we discuss the notion whether the lifestyle of a given fungal species can predict the activity nature of its cutinases.
Collapse
Affiliation(s)
- Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
33
|
Freitas CSA, Maciel LF, Corrêa Dos Santos RA, Costa OMMM, Maia FCB, Rabelo RS, Franco HCJ, Alves E, Consonni SR, Freitas RO, Persinoti GF, Oliveira JVDC. Bacterial volatile organic compounds induce adverse ultrastructural changes and DNA damage to the sugarcane pathogenic fungus Thielaviopsis ethacetica. Environ Microbiol 2022; 24:1430-1453. [PMID: 34995419 DOI: 10.1111/1462-2920.15876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Due to an increasing demand for sustainable agricultural practices, the adoption of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as an eco-friendly alternative to the use of agrochemicals. Here, we identified three Pseudomonas strains that were able to inhibit, in vitro, up to 80% of mycelial growth of the phytopathogenic fungus Thielaviopsis ethacetica, the causal agent of pineapple sett rot disease in sugarcane. Using GC/MS, we found that these bacteria produced 62 different VOCs, and further functional validation revealed compounds with high antagonistic activity to T. ethacetica. Transcriptomic analysis of the fungal response to VOCs indicated that these metabolites downregulated genes related to fungal central metabolism, such as those involved in carbohydrate metabolism. Interestingly, genes related to the DNA damage response were upregulated, and micro-FTIR analysis corroborated our hypothesis that VOCs triggered DNA damage. Electron microscopy analysis showed critical morphological changes in mycelia treated with VOCs. Altogether, these results indicated that VOCs hampered fungal growth and could lead to cell death. This study represents the first demonstration of the molecular mechanisms involved in the antagonism of sugarcane phytopathogens by VOCs and reinforces that VOCs can be a sustainable alternative for use in phytopathogen biocontrol.
Collapse
Affiliation(s)
- Carla Sant Anna Freitas
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.,Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lucas Ferreira Maciel
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Renato Augusto Corrêa Dos Santos
- Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ohanna Maria Menezes Medeiro Costa
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Francisco Carlos Barbosa Maia
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Renata Santos Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Eduardo Alves
- Laboratory of Electron Microscopy and Ultrastructural Analysis, Plant Pathology Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raul Oliveira Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.,Genetics and Molecular Biology Graduate Program, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
34
|
Chen Y, Cao Y, Gai Y, Ma H, Zhu Z, Chung KR, Li H. Genome-Wide Identification and Functional Characterization of GATA Transcription Factor Gene Family in Alternaria alternata. J Fungi (Basel) 2021; 7:jof7121013. [PMID: 34946995 PMCID: PMC8706292 DOI: 10.3390/jof7121013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
In the present study, we identified six GATA transcription factors (AaAreA, AaAreB, AaLreA, AaLreB, AaNsdD, and AaSreA) and characterized their functions in response to environmental stress and virulence in the tangerine pathotype of Alternaria alternata. The targeted gene knockout of each of the GATA-coding genes decreased the growth to varying degrees. The mutation of AaAreA, AaAreB, AaLreB, or AaNsdD decreased the conidiation. All the GATA transcription factors were found to be required for tolerance to cumyl hydroperoxide and tert-butyl-hydroperoxide (oxidants) and Congo red (a cell-wall-destructing agent). Pathogenicity assays assessed on detached citrus leaves revealed that mutations of AaAreA, AaLreA, AaLreB, or AaNsdD significantly decreased the fungal virulence. A comparative transcriptome analysis between the ∆AreA mutant and the wild-type strain revealed that the inactivation of AaAreA led to alterations in the expression of genes involved in a number of biological processes, including oxidoreductase activity, amino acid metabolism, and secondary metabolite biogenesis. Taken together, our findings revealed that GATA-coding genes play diverse roles in response to environmental stress and are important regulators involved in fungal development, conidiation, ROS detoxification, as well as pathogenesis. This study, for the first time, systemically underlines the critical role of GATA transcription factors in response to environmental stress and virulence in A. alternata.
Collapse
Affiliation(s)
- Yanan Chen
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Yingzi Cao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Yunpeng Gai
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Haijie Ma
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Zengrong Zhu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Hongye Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- Correspondence: ; Tel.: +86-13634190823
| |
Collapse
|
35
|
Gai Y, Li L, Liu B, Ma H, Chen Y, Zheng F, Sun X, Wang M, Jiao C, Li H. Distinct and essential roles of bZIP transcription factors in the stress response and pathogenesis in Alternaria alternata. Microbiol Res 2021; 256:126915. [PMID: 34953292 DOI: 10.1016/j.micres.2021.126915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/05/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022]
Abstract
The ability to cope with environmental abiotic stress and biotic stress is crucial for the survival of plants and microorganisms, which enable them to occupy multiple niches in the environment. Previous studies have shown that transcription factors play crucial roles in regulating various biological processes including multiple stress tolerance and response in eukaryotes. This work identified multiple critical transcription factor genes, metabolic pathways and gene ontology (GO) terms related to abiotic stress response were broadly activated by analyzing the transcriptome of phytopathogenic fungus Alternaria alternata under metal ions stresses, oxidative stress, salt stresses, and host-pathogen interaction. We investigated the biological functions and regulatory roles of the bZIP transcriptional factor (TF) genes in the phytopathogenic fungus A.alternata by analyzing targeted gene disrupted mutants. Morphological analysis provides evidence that the bZIP transcription factors (Gcn4, MeaB, Atf1, the ER stress regulator Hac1, and the all development altered-1 gene Ada1) are required for morphogenesis as the colony morphology of these gene deletion mutants was significantly different from that of the wild-type. In addition, bZIPs are involved in the resistance to multiple stresses such as oxidative stress (Ada1, Yap1, MetR) and virulence (Hac1, MetR, Yap1, Ada1) at varying degrees. Transcriptome data demonstrated that the inactivation of bZIPs (Hac1, Atf1, Ada1 and Yap1) significantly affected many genes in multiple critical metabolism pathways and gene ontology (GO) terms. Moreover,the ΔHac1 mutants displayed reduced aerial hypha and are hypersensitivity to endoplasmic reticulum disruptors such as tunicamycin and dithiothreitol. Transcriptome analysis showed that inactivation of Hac1 significantly affected the proteasome process and its downstream unfolded protein binding, indicating that Hac1 participates in the endoplasmic reticulum stress response through the conserved unfolded protein response. Taken together, our findings reveal that bZIP transcription factors function as key regulators of fungal morphogenesis, abiotic stress response and pathogenesis, and expand our understanding of how microbial pathogens utilize these genes to deal with environmental stresses and achieve successful infection in the host plant.
Collapse
Affiliation(s)
- Yunpeng Gai
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China; School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Lei Li
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510640, China
| | - Bing Liu
- Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Haijie Ma
- School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Yanan Chen
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fang Zheng
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xuepeng Sun
- School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chen Jiao
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hongye Li
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
36
|
John E, Singh KB, Oliver RP, Tan K. Transcription factor control of virulence in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2021; 22:858-881. [PMID: 33973705 PMCID: PMC8232033 DOI: 10.1111/mpp.13056] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Plant-pathogenic fungi are a significant threat to economic and food security worldwide. Novel protection strategies are required and therefore it is critical we understand the mechanisms by which these pathogens cause disease. Virulence factors and pathogenicity genes have been identified, but in many cases their roles remain elusive. It is becoming increasingly clear that gene regulation is vital to enable plant infection and transcription factors play an essential role. Efforts to determine their regulatory functions in plant-pathogenic fungi have expanded since the annotation of fungal genomes revealed the ubiquity of transcription factors from a broad range of families. This review establishes the significance of transcription factors as regulatory elements in plant-pathogenic fungi and provides a systematic overview of those that have been functionally characterized. Detailed analysis is provided on regulators from well-characterized families controlling various aspects of fungal metabolism, development, stress tolerance, and the production of virulence factors such as effectors and secondary metabolites. This covers conserved transcription factors with either specialized or nonspecialized roles, as well as recently identified regulators targeting key virulence pathways. Fundamental knowledge of transcription factor regulation in plant-pathogenic fungi provides avenues to identify novel virulence factors and improve our understanding of the regulatory networks linked to pathogen evolution, while transcription factors can themselves be specifically targeted for disease control. Areas requiring further insight regarding the molecular mechanisms and/or specific classes of transcription factors are identified, and direction for future investigation is presented.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Karam B. Singh
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationFloreatWestern AustraliaAustralia
| | - Richard P. Oliver
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kar‐Chun Tan
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
37
|
Gai Y, Ma H, Chen Y, Li L, Cao Y, Wang M, Sun X, Jiao C, Riely BK, Li H. Chromosome-Scale Genome Sequence of Alternaria alternata Causing Alternaria Brown Spot of Citrus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:726-732. [PMID: 33689393 DOI: 10.1094/mpmi-10-20-0278-sc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alternaria brown spot (ABS), caused by Alternaria alternata, is an economically important fungal disease of citrus worldwide. The ABS pathogen A. alternata tangerine pathotype can produce a host-specific ACT toxin, which is regulated by ACT toxin gene cluster located in the conditionally dispensable chromosome (CDC). Previously, we have assembled a draft genome of A. alternata tangerine pathotype strain Z7, which comprises 165 contigs. In this study, we report a chromosome-level genome assembly of A. alternata Z7 through the combination of Oxford Nanopore sequencing and Illumina sequencing technologies. The assembly of A. alternata Z7 had a total size of 34.28 Mb, with a GC content of 51.01% and contig N50 of 3.08 Mb. The genome is encompassed 12,067 protein-coding genes, 34 ribosomal RNAs, and 107 transfer RNAs. Interestingly, A. alternata Z7 is composed of 10 essential chromosomes and 2 CDCs, which is consistent with the experimental evidences of pulsed-field gel electrophoresis. To our best knowledge, this is the first chromosome-level genome assembly of A. alternata. In addition, a database for citrus-related Alternaria genomes has been established to provide public resources for the sequences, annotation and comparative genomics data of Alternaria spp. The improved genome sequence and annotation at the chromosome level is a significant step toward a better understanding of the pathogenicity of A. alternata. The database will be updated regularly whenever the genomes of newly isolated Alternaria spp. are available. The citrus-related Alternaria genomes database is open accessible through the Citrus Fungal Disease Database.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yunpeng Gai
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Haijie Ma
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yanan Chen
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lei Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yingzi Cao
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mingshuang Wang
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xuepeng Sun
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, U.S.A
| | - Chen Jiao
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, U.S.A
| | - Brendan K Riely
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Yang J, Chen YZ, Yu-Xuan W, Tao L, Zhang YD, Wang SR, Zhang GC, Zhang J. Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104859. [PMID: 33993955 DOI: 10.1016/j.pestbp.2021.104859] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Vanillin is a natural antimicrobial agent; however, there are few reports on its antifungal effect on postharvest pathogenic fungi. This study aimed to investigate the in vivo and in vitro antifungal activities of vanillin against gray mold (caused by B. cinerea) and black rot (caused by A. alternata) of cherry tomato fruit and to explain its possible mechanism of action. Vanillin strongly inhibits Botrytis cinerea and Alternaria alternata mycelial growth, spore germination, and germ tube elongation in a concentration-dependent manner (P<0.05). In vivo experiments showed that 4000 mg L-1 vanillin treatment inhibited cherry tomato gray mold and black rot occurrence. Besides, intercellular electrolytes, soluble proteins, and soluble sugars leakage indicated that 50 or 100 mg L-1 vanillin treatment increased Botrytis cinerea and Alternaria alternata membrane permeability. The increase of malondialdehyde and hydrogen peroxide contents confirmed that 50 or 100 mg L-1 vanillin treatment damages the pathogen membranes. Importantly, vanillin treatment inhibited the pathogenicity-related enzyme activities of the two pathogens to reduce their infection ability, among them PL enzyme activity in A. alternata was most inhibited, reducing by 94.7 % at 6 h treated with 100 mg L-1 vanillin. The hyphae morphology of the two pathogens changed, the mycelia were severely damaged, and the hyphae surface was deformed, shrunk, or even broken after 100 mg L-1 vanillin treatment. In summary, vanillin had a substantial inhibitory effect on postharvest gray mold and black rot in cherry tomato fruit. Therefore, vanillin can be an effective alternative to prevent and control cherry tomato postharvest diseases.
Collapse
Affiliation(s)
- Jing Yang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Yun-Ze Chen
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Wu Yu-Xuan
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Li Tao
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Yun-Di Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Shu-Ren Wang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| | - Guo-Cai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China.
| | - Jie Zhang
- Key Laboratory of Saline-Alkali Vegetation Recovery and Reconstruction, Ministry of Education, School of Life Science, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, PR China
| |
Collapse
|
39
|
Delivering the goods: Fungal secretion modulates virulence during host–pathogen interactions. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, Yao X, Ruan JJ, Xu BL. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front Microbiol 2021; 12:670135. [PMID: 34122383 PMCID: PMC8192705 DOI: 10.3389/fmicb.2021.670135] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Phytopathogenic fungi decrease crop yield and quality and cause huge losses in agricultural production. To prevent the occurrence of crop diseases and insect pests, farmers have to use many synthetic chemical pesticides. The extensive use of these pesticides has resulted in a series of environmental and ecological problems, such as the increase in resistant weed populations, soil compaction, and water pollution, which seriously affect the sustainable development of agriculture. This review discusses the main advances in research on plant-pathogenic fungi in terms of their pathogenic factors such as cell wall-degrading enzymes, toxins, growth regulators, effector proteins, and fungal viruses, as well as their application as biocontrol agents for plant pests, diseases, and weeds. Finally, further studies on plant-pathogenic fungal resources with better biocontrol effects can help find new beneficial microbial resources that can control diseases.
Collapse
Affiliation(s)
- Yan Peng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Shi J Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, Schools of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yong Tang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jian P Cheng
- College of Agriculture, Guizhou University, Guiyang, China
| | - An J Gao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jing J Ruan
- College of Agriculture, Guizhou University, Guiyang, China
| | - Bing L Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
41
|
Witte TE, Villeneuve N, Boddy CN, Overy DP. Accessory Chromosome-Acquired Secondary Metabolism in Plant Pathogenic Fungi: The Evolution of Biotrophs Into Host-Specific Pathogens. Front Microbiol 2021; 12:664276. [PMID: 33968000 PMCID: PMC8102738 DOI: 10.3389/fmicb.2021.664276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Accessory chromosomes are strain- or pathotype-specific chromosomes that exist in addition to the core chromosomes of a species and are generally not considered essential to the survival of the organism. Among pathogenic fungal species, accessory chromosomes harbor pathogenicity or virulence factor genes, several of which are known to encode for secondary metabolites that are involved in plant tissue invasion. Accessory chromosomes are of particular interest due to their capacity for horizontal transfer between strains and their dynamic "crosstalk" with core chromosomes. This review focuses exclusively on secondary metabolism (including mycotoxin biosynthesis) associated with accessory chromosomes in filamentous fungi and the role accessory chromosomes play in the evolution of secondary metabolite gene clusters. Untargeted metabolomics profiling in conjunction with genome sequencing provides an effective means of linking secondary metabolite products with their respective biosynthetic gene clusters that reside on accessory chromosomes. While the majority of literature describing accessory chromosome-associated toxin biosynthesis comes from studies of Alternaria pathotypes, the recent discovery of accessory chromosome-associated biosynthetic genes in Fusarium species offer fresh insights into the evolution of biosynthetic enzymes such as non-ribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs) and regulatory mechanisms governing their expression.
Collapse
Affiliation(s)
- Thomas E. Witte
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas Villeneuve
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Christopher N. Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - David P. Overy
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| |
Collapse
|
42
|
Li L, Ma H, Zheng F, Chen Y, Wang M, Jiao C, Li H, Gai Y. The transcription regulator ACTR controls ACT-toxin biosynthesis and pathogenicity in the tangerine pathotype of Alternaria alternata. Microbiol Res 2021; 248:126747. [PMID: 33740671 DOI: 10.1016/j.micres.2021.126747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
The host-selective ACT toxin is essential for the pathogenesis of the citrus fungal pathogen Alternaria alternata. However, the mechanism of ACT-toxin gene clusters ACT-toxin biosynthesis regulated by is still poorly understood. The biosynthesis of ACT toxin is mainly regulated by multiple ACT toxin genes located in the secondary metabolite gene cluster. In this study, we reported a transcription regulator ACTR contributes ACT toxin biosynthesis through mediating ACT toxin synthesis gene ACTS4 in Alternaria alternata. We generated ACTR-disrupted and -silenced mutants in the tangerine pathotype of A. alternata. Phenotype analysis showed that the ACTR mutants displayed a significant loss of ACT toxin production and a decreased virulence on citrus leaves whereas the vegetative growth and sporulation were not affected, indicating an essential role of ACTR in both ACT toxin biosynthesis and pathogenicity. To elucidate the transcription network of ACTR, we performed RNA-Seq experiments on wild-type and ACTR null mutant and identified genes that were differentially expressed between two genotypes. Transcriptome profiling and RT-qPCR analysis demonstrated that the ACT toxin biosynthetic gene ACTS4 is down-regulated in ACTR mutant. We generated ACTS4 knock-down mutant and found that the pathogenicity of ACTS4 mutant was severely impaired. Interestingly, both ACTR and ACTS4 are not involved in the response to different abiotic stresses including oxidative stress, salt stress, cell-wall disrupting regents, and metal ion stress, indicating the function of these two genes is highly specific. In conclusion, our results highlight the important regulatory role of ACTR in ACT toxin biosynthesis through mediating ACT toxin synthesis gene ACTS4 and underline the essential role of in the tangerine pathotype of A. alternata.
Collapse
Affiliation(s)
- Lei Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China; College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, China
| | - Haijie Ma
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China; School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Fang Zheng
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yanan Chen
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meiqin Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, China
| | - Chen Jiao
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China; Boyce Thompson Institute, Ithaca, NY, USA
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yunpeng Gai
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
43
|
The critical role of MetR/ MetB/ MetC/ MetX in cysteine and methionine metabolism, fungal development and virulence of Alternaria alternata. Appl Environ Microbiol 2021; 87:AEM.01911-20. [PMID: 33277273 PMCID: PMC7851696 DOI: 10.1128/aem.01911-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Methionine is a unique sulfur-containing amino acid, which plays an important role in biological protein synthesis and various cellular processes. Here, we characterized the biological functions of AaMetB, AaMetC, and AaMetX in the tangerine pathotype of Alternaria alternata Morphological analysis showed that the mutants lacking AaMetB, AaMetC, or AaMetX resulted in less aerial hypha and fewer conidia in artificial media. Pathogenicity analysis showed that AaMetB, AaMetC, and AaMetX are required for full virulence. The defects in vegetative growth, conidiation and virulence of ΔMetB, ΔMetC, and ΔMetX can be restored by exogenous methionine and homocysteine, indicating that AaMetB, AaMetC, and AaMetX are required for methionine biosynthesis. However, exogenous cysteine only restored the growth and virulence defects of ΔMetR but not ΔMetB/C/X, suggesting that AaMetR is essential for cysteine biosynthesis. Oxidant sensitivity assay showed that only ΔMetR is sensitive to H2O2 and many ROS-generating compounds, indicating that AaMetR is essential for oxidative tolerance. Interestingly, fungicides indoor bioassays showed that only the ΔMetR mutants are susceptive to chlorothalonil, a fungicide that could bind to the cysteine of glyceraldehyde-3-phosphate dehydrogenase. Comparative transcriptome analysis showed that the inactivation of MetB, MetC, MetX, or MetR significantly affected the expression of methionine metabolism-related genes. Moreover, the inactivation of AaMetR significantly affected the expression of many genes related to glutathione metabolism, which is essential for ROS tolerance. Taken together, our study provides genetic evidence to define the critical roles of AaMetB, AaMetC, AaMetX, and AaMetR in cysteine and methionine metabolism, fungal development and virulence of Alternaria alternata IMPORTANCE The transcription factor METR regulating methionine metabolism is essential for reactive oxygen species (ROS) tolerance and virulence in many phytopathogenic fungi. However, the underlying regulatory mechanism of METR involved in this process is still unclear. In the present study, we generated AaMetB, AaMetC and AaMetX deletion mutants and compared these mutants with AaMetR disrupted mutants. Interestingly, we found that AaMetB, AaMetC and AaMetX are required for vegetative growth, conidiation, and pathogenicity in Alternaria alternata, but not for ROS tolerance and cysteine metabolism. Furthermore, we found that METR is involved in the biosynthesis of cysteine, which is an essential substrate for the biosynthesis of methionine and glutathione. This study emphasizes the critical roles of MetR, MetB, MetC, MetX in the regulation of cysteine and methionine metabolism, as well as the cross-link with glutathione-mediated ROS tolerance in phytopathogenic fungi, which provides a foundation for future investigations.
Collapse
|
44
|
Complete genome sequencing and comparative CAZyme analysis of Rhodococcus sp. PAMC28705 and PAMC28707 provide insight into their biotechnological and phytopathogenic potential. Arch Microbiol 2021; 203:1731-1742. [PMID: 33459813 DOI: 10.1007/s00203-020-02177-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Study of carbohydrate-active enzymes (CAZymes) can reveal information about the lifestyle and behavior of an organism. Rhodococcus species is well known for xenobiotic metabolism; however, their carbohydrate utilization ability has been less discussed till date. This study aimed to present the CAZyme analysis of two Rhodococcus strains, PAMC28705 and PAMC28707, isolated from lichens in Antarctica, and compare them with other Rhodococcus, Mycobacterium, and Corynebacterium strains. Genome-wide computational analysis was performed using various tools. Results showed similarities in CAZymes across all the studied genera. All three genera showed potential for significant polysaccharide utilization, including starch, cellulose, and pectin referring their biotechnological potential. Keeping in mind the pathogenic strains listed across all three genera, CAZymes associated to pathogenicity were analyzed too. Cutinase enzyme, which has been associated with phytopathogenicity, was abundant in all the studied organisms. CAZyme gene cluster of Rhodococcus sp. PAMC28705 and Rhodococcus sp. PAMC28707 showed the insertion of cutinase in the cluster, further supporting their possible phytopathogenic properties.
Collapse
|
45
|
Wang M, Ruan R, Li H. The completed genome sequence of the pathogenic ascomycete fungus Penicillium digitatum. Genomics 2021; 113:439-446. [PMID: 33421537 DOI: 10.1016/j.ygeno.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 11/19/2022]
Abstract
P. digitatum, the causative agent of green mold, is one of the most destructive pathogens in the citrus industry. To facilitate basal researches on this important plant pathogen, here we report a finished genome sequence for P. digitatum strain PDW03 using a combination of Illumina, PacBio, and Hi-C sequencing technologies. The assembly comprised 6 chromosomes from telomere to telomere and encodes approximately 9000 proteins. Genomic re-analyses identified 302 Carbohydrate-active enzymes, 420 secreted proteins, and 39 secondary metabolite (SM) gene clusters. Furthermore, we found 10 fragmentary SM clusters in the P. digitatum PDW03 genome. Pangenome analysis based on 5 P. digitatum genomes available showed that conserved orthogroups account for ~68% of the species pangenome. Taken together, this fully completed P. digitatum genome will provide an optimum resource for further researches to investigate the driving forces of fungal host switch and effectors functioning in plant-pathogen interaction.
Collapse
Affiliation(s)
- Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Ruoxin Ruan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Lv W, Kong X, Zhou C, Tang K. Pdel, Encoding a Low-Affinity cAMP Phosphodiesterase, Regulates Conidiation and Pathogenesis in Alternaria alternata Tangerine Pathotype. Front Microbiol 2020; 11:597545. [PMID: 33365022 PMCID: PMC7750186 DOI: 10.3389/fmicb.2020.597545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/16/2020] [Indexed: 11/23/2022] Open
Abstract
Based on intracellular second messenger cAMP, the cyclic AMP-protein kinase A (cAMP-PKA) pathway transforms extracellular stimuli to activate effectors and downstream signaling components, mediating physiological processes in filamentous fungi. The concentration of intracellular cAMP was regulated by adenylate cyclase biosynthesis and cAMP phosphodiesterase (PDEs) hydrolysis, which mediate signal transduction and termination. In this study, we used a gene deletion and complementary strategy to characterize the functions of AaPdel and AaPdeh genes, which encoded low-affinity PDEs (Pdel) and high-affinity PDEs (Pdeh), respectively, in Alternaria alternata. AaPdel, but not AaPdeh, was found to be a key regulator in conidiation and pathogenesis in A. alternata. ΔAaPdel showed defects in conidiation, producing approximately 65% reduced conidiation and forming lowly pigmented aberrant structures. In response to osmotic stress, ΔAaPdel was more sensitive to non-ionic osmotic stress than ionic osmotic stress. Moreover, AaPdel deletion mutants had defects in vegetative growth and hyphal growth. Further analyses showed that the high chitin content of ΔAaPdel might account for the sensitivity to Congo red. Based on the attenuated pathogenicity and lowly pigmented aberrant structures, the laccase activity analysis found that both AaPdel and AaPdeh were involved in laccase activity regulation. Our data further support the PKA-mediated cAMP signaling pathway, as we have found that AaPdel was involved in intracellular cAMP levels in A. alternata.
Collapse
Affiliation(s)
- Weiwei Lv
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Xiangwen Kong
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Kezhi Tang
- Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
47
|
Transcription Factor CfSte12 of Colletotrichum fructicola Is a Key Regulator of Early Apple Glomerella Leaf Spot Pathogenesis. Appl Environ Microbiol 2020; 87:AEM.02212-20. [PMID: 33067192 DOI: 10.1128/aem.02212-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola, is a rapidly emerging disease leading to defoliation, fruit spot, and storage fruit rot on apple in China. Little is known about the mechanisms of GLS pathogenesis. Early transcriptome analysis revealed that expression of the zinc finger transcription factor Ste12 gene in C. fructicola (CfSte12) was upregulated in appressoria and leaf infection. To investigate functions of CfSte12 during pathogenesis, we constructed gene deletion mutants (ΔCfSte12) by homologous recombination. Phenotypic analysis revealed that CfSte12 was involved in pathogenesis of nonwounded apple fruit and leaf, as well as wounded apple fruit. Subsequent histological studies revealed that loss of pathogenicity by ΔCfSte12 on apple leaf was expressed as defects of conidium germination, appressorium development, and appressorium-mediated penetration. Further RNA sequencing-based transcriptome comparison revealed that CfSte12 modulates the expression of genes related to appressorium function (e.g., genes for the tetraspanin PLS1, Gas1-like proteins, cutinases, and melanin biosynthesis) and candidate effectors likely involved in plant interaction. In sum, our results demonstrated that CfSte12 is a key regulator of early apple GLS pathogenesis in C. fructicola In addition, CfSte12 is also needed for sexual development of perithecia and ascospores.IMPORTANCE Glomerella leaf spot (GLS) is an emerging fungal disease of apple that causes huge economic losses in Asia, North America, and South America. The damage inflicted by GLS manifests in rapid necrosis of leaves, severe defoliation, and necrotic spot on the fruit surface. However, few studies have addressed mechanisms of GLS pathogenesis. In this study, we identified and characterized a key pathogenicity-related transcription factor, CfSte12, of Colletotrichum fructicola that contributes to GLS pathogenesis. We provide evidence that the CfSte12 protein regulates many important pathogenic processes of GLS, including conidium germination, appressorium formation, appressorium-mediated penetration, and colonization. CfSte12 also impacts development of structures needed for sexual reproduction which are vital for the GLS disease cycle. These results reveal a key pathogenicity-related transcription factor, CfSte12, in C. fructicola that causes GLS.
Collapse
|
48
|
Wu PC, Chen CW, Choo CYL, Chen YK, Yago JI, Chung KR. Proper Functions of Peroxisomes Are Vital for Pathogenesis of Citrus Brown Spot Disease Caused by Alternaria alternata. J Fungi (Basel) 2020; 6:jof6040248. [PMID: 33114679 PMCID: PMC7712655 DOI: 10.3390/jof6040248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 11/27/2022] Open
Abstract
In addition to the production of a host-selective toxin, the tangerine pathotype of Alternaria alternata must conquer toxic reactive oxygen species (ROS) in order to colonize host plants. The roles of a peroxin 6-coding gene (pex6) implicated in protein import into peroxisomes was functionally characterized to gain a better understanding of molecular mechanisms in ROS resistance and fungal pathogenicity. The peroxisome is a vital organelle involved in metabolisms of fatty acids and hydrogen peroxide in eukaryotes. Targeted deletion of pex6 had no impacts on the biogenesis of peroxisomes and cellular resistance to ROS. The pex6 deficient mutant (Δpex6) reduced toxin production by 40% compared to wild type and barely induce necrotic lesions on citrus leaves. Co-inoculation of purified toxin with Δpex6 conidia on citrus leaves, however, failed to fully restore lesion formation, indicating that toxin only partially contributed to the loss of Δpex6 pathogenicity. Δpex6 conidia germinated poorly and formed fewer appressorium-like structures (nonmelanized enlargement of hyphal tips) than wild type. Δpex6 hyphae grew slowly and failed to penetrate beyond the epidermal layers. Moreover, Δpex6 had thinner cell walls and lower viability. All of these defects resulting from deletion of pex6 could also account for the loss of Δpex6 pathogenicity. Overall, our results have demonstrated that proper peroxisome functions are of vital importance to pathogenesis of the tangerine pathotype of A. alternata.
Collapse
Affiliation(s)
- Pei-Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.C.); (C.Y.L.C.); (Y.-K.C.)
- Correspondence: (P.-C.W.); (K.-R.C.); Tel.: +886-4-22840780 (ext. 316) (P.-C.W.); +886-4-22840780 (ext. 301) (K.-R.C.)
| | - Chia-Wen Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.C.); (C.Y.L.C.); (Y.-K.C.)
| | - Celine Yen Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.C.); (C.Y.L.C.); (Y.-K.C.)
| | - Yu-Kun Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.C.); (C.Y.L.C.); (Y.-K.C.)
| | - Jonar I. Yago
- Plant Science Department, College of Agriculture, Nueva Vizcaya State University, Bayombong, Nueva Vizcaya 3700, Philippines;
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.C.); (C.Y.L.C.); (Y.-K.C.)
- Correspondence: (P.-C.W.); (K.-R.C.); Tel.: +886-4-22840780 (ext. 316) (P.-C.W.); +886-4-22840780 (ext. 301) (K.-R.C.)
| |
Collapse
|
49
|
Fu H, Chung K, Gai Y, Mao L, Li H. The basal transcription factor II H subunit Tfb5 is required for stress response and pathogenicity in the tangerine pathotype of Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2020; 21:1337-1352. [PMID: 32776683 PMCID: PMC7488464 DOI: 10.1111/mpp.12982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 05/16/2023]
Abstract
The basal transcription factor II H (TFIIH) is a multicomponent complex. In the present study, we characterized a TFIIH subunit Tfb5 by analysing loss- and gain-of-function mutants to gain a better understanding of the molecular mechanisms underlying stress resistance and pathogenicity in the citrus fungal pathogen Alternaria alternata. Tfb5 deficiency mutants (ΔAatfb5) decreased sporulation and pigmentation, and were impaired in the maintenance of colony surface hydrophobicity and cell wall integrity. ΔAatfb5 increased sensitivity to ultraviolet light, DNA-damaging agents, and oxidants. The expression of Aatfb5 was up-regulated in the wild type upon infection in citrus leaves, implicating the requirement of Aatfb5 in fungal pathogenesis. Biochemical and virulence assays revealed that ΔAatfb5 was defective in toxin production and cellwall-degrading enzymes, and failed to induce necrotic lesions on detached citrus leaves. Aatfb5 fused with green fluorescent protein (GFP) was localized in the cytoplasm and nucleus and physically interacted with another subunit, Tfb2, based on yeast two-hybrid and co-immunoprecipitation analyses. Transcriptome and Antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) analyses revealed the positive and negative roles of Aatfb5 in the production of various secondary metabolites and in the regulation of many metabolic and biosynthetic processes in A. alternata. Aatfb5 may play a negative role in oxidative phosphorylation and a positive role in peroxisome biosynthesis. Two cutinase-coding genes (AaCut2 and AaCut15) required for full virulence were down-regulated in ΔAatfb5. Overall, this study expands our understanding of how A. alternata uses the basal transcription factor to deal with stress and achieve successful infection in the plant host.
Collapse
Affiliation(s)
- Huilan Fu
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Kuang‐Ren Chung
- Department of Plant PathologyCollege of Agriculture and Natural ResourcesNational Chung‐Hsing UniversityTaichungTaiwan
| | - Yunpeng Gai
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Lijuan Mao
- Analysis Center of Agrobiology and Environmental SciencesFaculty of Agriculture, Life and Environment SciencesZhejiang UniversityHangzhouChina
| | - Hongye Li
- Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
50
|
Wu PC, Chen CW, Choo CYL, Chen YK, Yago JI, Chung KR. Biotin biosynthesis affected by the NADPH oxidase and lipid metabolism is required for growth, sporulation and infectivity in the citrus fungal pathogen Alternaria alternata. Microbiol Res 2020; 241:126566. [PMID: 33032167 DOI: 10.1016/j.micres.2020.126566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
The tangerine pathotype of Alternaria alternata affects many citrus cultivars, resulting in yield losses. The capability to produce the host-selective toxin and cell-wall-degrading enzymes and to mitigate toxic reactive oxygen species is crucial for A. alternata pathogenesis to citrus. Little is known about nutrient availability within citrus tissues to the fungal pathogen. In the present study, we assess the infectivity of a biotin deficiency mutant (ΔbioB) and a complementation strain (CP36) on citrus leaves to determine how biotin impacts A. alternata pathogenesis. Growth and sporulation of ΔbioB are highly dependent on biotin. ΔbioB retains its ability to acquire and transport biotin from the surrounding environment. Growth deficiency of ΔbioB can also be partially restored by the presence of oleic acid or Tween 20, suggesting the requirement of biotin in lipid metabolism. Experimental evidence indicates that de novo biotin biosynthesis is regulated by the NADPH oxidase, implicating in the production of H2O2, and is affected by the function of peroxisomes. Three genes involved in the biosynthesis of biotin are clustered and co-regulated by biotin indicating a transcriptional feedback loop activation. Infectivity assays using fungal mycelium reveal that ΔbioB cultured on medium without biotin fails to infect citrus leaves; co-inoculation with biotin fully restores infectivity. The CP36 strain re-expressing a functional copy of bioB displays wild-type growth, sporulation and virulence. Taken together, we conclude that the attainability or accessibility of biotin is extremely restricted in citrus cells. A. alternata must be able to synthesize biotin in order to utilize nutrients for growth, colonization and development within the host.
Collapse
Affiliation(s)
- Pei-Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chia-Wen Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Celine Yen Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Kun Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jonar I Yago
- Plant Science Department, College of Agriculture, Nueva Vizcaya State University, Bayombong, Nueva Vizcaya, 3700, Philippines
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|