1
|
Kracmarova-Farren M, Alexova E, Kodatova A, Mercl F, Szakova J, Tlustos P, Demnerova K, Stiborova H. Biochar-induced changes in soil microbial communities: a comparison of two feedstocks and pyrolysis temperatures. ENVIRONMENTAL MICROBIOME 2024; 19:87. [PMID: 39516989 PMCID: PMC11549753 DOI: 10.1186/s40793-024-00631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The application of a biochar in agronomical soil offers a dual benefit of improving soil quality and sustainable waste recycling. However, utilizing new organic waste sources requires exploring the biochar's production conditions and application parameters. Woodchips (W) and bone-meat residues (BM) after mechanical deboning from a poultry slaughterhouse were subjected to pyrolysis at 300 °C and 500 °C and applied to cambisol and luvisol soils at ratios of 2% and 5% (w/w). RESULTS Initially, the impact of these biochar amendments on soil prokaryotes was studied over the course of one year. The influence of biochar variants was further studied on prokaryotes and fungi living in the soil, rhizosphere, and roots of Triticum aestivum L., as well as on soil enzymatic activity. Feedstock type, pyrolysis temperature, application dose, and soil type all played significant roles in shaping both soil and endophytic microbial communities. BM treated at a lower pyrolysis temperature of 300 °C increased the relative abundance of Pseudomonadota while causing a substantial decrease in soil microbial diversity. Conversely, BM prepared at 500 °C favored the growth of microbes known for their involvement in various nutrient cycles. The W biochar, especially when pyrolysed at 500 °C, notably affected microbial communities, particularly in acidic cambisol compared to luvisol. In cambisol, biochar treatments had a significant impact on prokaryotic root endophytes of T. aestivum L. Additionally, variations in prokaryotic community structure of the rhizosphere depended on the increasing distance from the root system (2, 4, and 6 mm). The BM biochar enhanced the activity of acid phosphatase, whereas the W biochar increased the activity of enzymes involved in the carbon cycle (β-glucosidase, β-xylosidase, and β-N-acetylglucosaminidase). CONCLUSIONS These results collectively suggest, that under appropriate production conditions, biochar can exert a positive influence on soil microorganisms, with their response closely tied to the biochar feedstock composition. Such insights are crucial for optimizing biochar application in agricultural practices to enhance soil health.
Collapse
Affiliation(s)
- Martina Kracmarova-Farren
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Eliska Alexova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Anezka Kodatova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Filip Mercl
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Jirina Szakova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Pavel Tlustos
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic.
| |
Collapse
|
2
|
Quan L, Sun M, Qin C, Wang A, Wen Q, Liu H, Shi L, Hu F, Zhou J, Chen Y, Shen Z, Xia Y. Rice husk biochar is more effective in blocking the cadmium and lead accumulation in two Brassica vegetables grown on a contaminated field than sugarcane bagasse biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:471. [PMID: 39387995 DOI: 10.1007/s10653-024-02245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Heavy metal-contaminated soil has a great impact on yield reduction of vegetable crops and soil microbial community destruction. Biochar-derived waste biomass is one of the most commonly applied soil conditioners in heavy metal-contaminated soil. Different heavy metal-contaminated soil added with suitable biochars represent an intriguing way of the safe production of crops. This study investigated the effects of two types of biochar [rice husk biochar (RHB) and sugarcane bagasse biochar (SBB)] on Cd and Pb accumulation in Shanghaiqing (SHQ, a variety of Brassica campestris L.) and Fengyou 737 (FY, a variety of Brassica napus), as well as on the soil microbial community, through a field experiment. RHB and SBB were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Brunauer-Emmet-Teller method. The results showed that RHB and SBB displayed the higher pH, cation exchange capacity and pore properties, and the addition of RHB and SBB enhanced soil pH and rhizosphere microorganisms promoting vegetables yield. RHB treatments were more effective than SBB in reducing upward transfer of Cd and Pb, blocking the accumulation of Cd and Pb in the edible parts of SHQ and FY, and decreasing soil Cd and Pb bioavailability. Additionally, RHB and SBB changed the composition of the rhizosphere soil microbial community. The application of biochar promoted the growth of ecologically beneficial bacteria (Nitrospira, Opitutus, and Gemmatimonas) and fungi (Mortierella and Holtermanniella), whereas reducing the enrichment of plant pathogenic fungi (Alternaria, Stagonosporopsis, Lectera, and Periconia) in rhizosphere soil. Our findings demonstrated that the application of RHB significantly reduces Cd and Pb accumulation in the edible parts by decreasing the soil Cd and Pb bioavailability and altering the rhizosphere microbial community composition in two Brassica vegetables grown on Cd/Pb-contaminated soils. Thus, the application of two biochar, especially RHB is a feasible strategy for the safe production of vegetable crops in Cd/Pb co-contaminated soils.
Collapse
Affiliation(s)
- Lingtong Quan
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengni Sun
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun Qin
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiguo Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qiucheng Wen
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Huan Liu
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Liang Shi
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yahua Chen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
4
|
Lu J, Liu Y, Zhang R, Hu Z, Xue K, Dong B. Biochar inoculated with Pseudomonas putida alleviates its inhibitory effect on biodegradation pathways in phenanthrene-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132550. [PMID: 37729712 DOI: 10.1016/j.jhazmat.2023.132550] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Controversial results are reported whereby biodegradation of polycyclic aromatic hydrocarbons (PAHs) can be promoted or inhibited by biochar amendment of soil. Metabolomics was applied to analyze the metabolic profiles of amendment with biochar (BB) and biochar inoculated with functional bacteria (Pseudomonas putida) (BP) involved in phenanthrene (PHE) degradation. Additionally, metagenomic analysis was utilized to assess the impact of different treatments on PHE degradation by soil microorganisms. Results indicated that BB treatment decreased the PHE biodegradation of the soil indigenous bacterial consortium, but BP treatment alleviated this inhibitory effect. Metabolomics revealed the differential metabolite 9-phenanthrol was absent in the BB treatment, but was found in the control group (CK), and in the treatment inoculated with the Pseudomonas putida (Ps) and the BP treatment. Metagenomic analysis showed that biochar decreased the abundance of the cytochrome P450 monooxygenase (CYP116), which was detected in the Pseudomonas putida, thus alleviating the inhibitory effect of biochar on PHE degradation. Moreover, a noticeable delayed increase of functional gene abundance and enzymes abundance in the BB treatment was observed in the PHE degradation pathway. Our findings elucidate the mechanism of inhibition with biochar amendment and the alleviating effect of biochar inoculated with degrading bacteria.
Collapse
Affiliation(s)
- Jinfeng Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuexian Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruili Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhengyi Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Biya Dong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Petreje M, Sněhota M, Chorazy T, Novotný M, Rybová B, Hečková P. Performance study of an innovative concept of hybrid constructed wetland-extensive green roof with growing media amended with recycled materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117151. [PMID: 36638720 DOI: 10.1016/j.jenvman.2022.117151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Implementation of green roofs requires a large amount of primary material, especially for constructing the growing media layer. In addition, irrigation of green roofs with potable water is uneconomical and unsustainable. The novel hybrid green roof system proposed in this paper is in line with the principles of circular economy as it incorporates recycled materials into green roof growing media and greywater for irrigation. Two experimental beds were built to evaluate the concept of treating greywater in a constructed wetland prior to using it to irrigate a dual-layer extensive green roof. The growing media in both two extensive green roof beds contained ca. 37.5% by volume of recycled crushed building rubble containing a large proportion of brick. One of the two beds additionally contained 9.5% by volume of sewage sludge-based biochar. The concept of the hybrid roof and novel growing media was evaluated based on laboratory analysis of the growing media and on onsite measurements of hydraulic and thermal performance. The growing media amended with recycled materials developed in this study had hydrophysical properties comparable to commercially available growing media without recycled materials. Observations made during one vegetation season from June to October and a ten day-intensive water quality monitoring campaign during September 2020 showed that the constructed wetland significantly reduced total nitrogen and orthophosphate concentrations in pre-treated greywater. Due to the irrigation method employed, in which water flowed predominantly through drainage mats below the growing media, nutrient-leaching by the irrigation water was avoided. Concentrations of nutrients in the effluent were observed to increase only in response to precipitation. The temperature peak of the bottom green roof layer was shifted by almost 9 h from the peak in air temperature, and temperature fluctuations were significantly reduced. Vegetation on the bed amended with biochar demonstrated more vigorous growth due to available nutrients in the biochar which increased the rate of temperature-reducing evapotranspiration. More water evapotranspirated more water, which provided more water retention capacity confirmed by a lower runoff coefficient. Simple storage routing hydraulic modeling of hybrid green roof runoff using a nonlinear reservoir was performed.
Collapse
Affiliation(s)
- Marek Petreje
- Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, Prague 6, 166 29, Czech Republic; Czech Technical University in Prague, University Centre for Energy Efficient Buildings, Třinecká 1024, Buštehrad, 273 43, Czech Republic.
| | - Michal Sněhota
- Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, Prague 6, 166 29, Czech Republic; Czech Technical University in Prague, University Centre for Energy Efficient Buildings, Třinecká 1024, Buštehrad, 273 43, Czech Republic
| | - Tomáš Chorazy
- AdMaS Research Centre, Faculty of Civil Engineering, Brno University of Technology, Purkyňova 651/139, Brno, 612 00, Czech Republic
| | - Michal Novotný
- AdMaS Research Centre, Faculty of Civil Engineering, Brno University of Technology, Purkyňova 651/139, Brno, 612 00, Czech Republic
| | - Barbora Rybová
- Czech Technical University in Prague, University Centre for Energy Efficient Buildings, Třinecká 1024, Buštehrad, 273 43, Czech Republic
| | - Petra Hečková
- Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, Prague 6, 166 29, Czech Republic; Czech Technical University in Prague, University Centre for Energy Efficient Buildings, Třinecká 1024, Buštehrad, 273 43, Czech Republic
| |
Collapse
|
6
|
Hasnain M, Munir N, Abideen Z, Zulfiqar F, Koyro HW, El-Naggar A, Caçador I, Duarte B, Rinklebe J, Yong JWH. Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural resilience: A critical review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114408. [PMID: 36516621 DOI: 10.1016/j.ecoenv.2022.114408] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The unpredictable climatic perturbations, the expanding industrial and mining sectors, excessive agrochemicals, greater reliance on wastewater usage in cultivation, and landfill leachates, are collectively causing land degradation and affecting cultivation, thereby reducing food production globally. Biochar can generally mitigate the unfavourable effects brought about by climatic perturbations (drought, waterlogging) and degraded soils to sustain crop production. It can also reduce the bioavailability and phytotoxicity of pollutants in contaminated soils via the immobilization of inorganic and/or organic contaminants, commonly through surface complexation, electrostatic attraction, ion exchange, adsorption, and co-precipitation. When biochar is applied to soil, it typically neutralizes soil acidity, enhances cation exchange capacity, water holding capacity, soil aeration, and microbial activity. Thus, biochar has been was widely used as an amendment to ameliorate crop abiotic/biotic stress. This review discusses the effects of biochar addition under certain unfavourable conditions (salinity, drought, flooding and heavy metal stress) to improve plant resilience undergoing these perturbations. Biochar applied with other stimulants like compost, humic acid, phytohormones, microbes and nanoparticles could be synergistic in some situation to enhance plant resilience and survivorship in especially saline, waterlogged and arid conditions. Overall, biochar can provide an effective and low-cost solution, especially in nutrient-poor and highly degraded soils to sustain plant cultivation.
Collapse
Affiliation(s)
- Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, 75270, Pakistan.
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100 Pakistan.
| | - Hans Werner Koyro
- Institute of Plant Ecology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Isabel Caçador
- MARE-Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisbon; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Bernardo Duarte
- MARE-Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisbon; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| |
Collapse
|
7
|
Graziano S, Caldara M, Gullì M, Bevivino A, Maestri E, Marmiroli N. A Metagenomic and Gene Expression Analysis in Wheat (T. durum) and Maize (Z. mays) Biofertilized with PGPM and Biochar. Int J Mol Sci 2022; 23:ijms231810376. [PMID: 36142289 PMCID: PMC9499264 DOI: 10.3390/ijms231810376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Commodity crops, such as wheat and maize, are extremely dependent on chemical fertilizers, a practice contributing greatly to the increase in the contaminants in soil and water. Promising solutions are biofertilizers, i.e., microbial biostimulants that when supplemented with soil stimulate plant growth and production. Moreover, the biofertilizers can be fortified when (i) provided as multifunctional consortia and (ii) combined with biochar with a high cargo capacity. The aim of this work was to determine the molecular effects on the soil microbiome of different biofertilizers and delivery systems, highlight their physiological effects and merge the data with statistical analyses. The measurements of the physiological parameters (i.e., shoot and root biomass), transcriptomic response of genes involved in essential pathways, and characterization of the rhizosphere population were analyzed. The results demonstrated that wheat and maize supplemented with different combinations of selected microbial consortia and biochar have a positive effect on plant growth in terms of shoot and root biomass; the treatments also had a beneficial influence on the biodiversity of the indigenous rhizo-microbial community, reinforcing the connection between microbes and plants without further spreading contaminants. There was also evidence at the transcriptional level of crosstalk between microbiota and plants.
Collapse
Affiliation(s)
- Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Mariolina Gullì
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, Italy
| | - Elena Maestri
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- National Interuniversity Consortium for Environmental Sciences (CINSA), 30123 Venice, Italy
- Correspondence:
| |
Collapse
|
8
|
Lebrun M, Bouček J, Bímová KB, Kraus K, Haisel D, Kulhánek M, Omara-Ojungu C, Seyedsadr S, Beesley L, Soudek P, Petrová Š, Pohořelý M, Trakal L. Biochar in manure can suppress water stress of sugar beet (Beta vulgaris) and increase sucrose content in tubers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152772. [PMID: 34986421 DOI: 10.1016/j.scitotenv.2021.152772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Increased soil drought events threaten the yields of sugar beet (Beta vulgaris L.) and other staples of arable production in central Europe. In this study we evaluated soil moisture and nutrients as impacted by a two and five % (wt) addition of biochar, manure and their blend to a loamy-sand Regosol. Cyclical soil drought was achieved by the controlled reduction of watering by 75% in pot experiments. Ongoing soil moisture and nutrient measurements were taken, and physiological parameters of sugar beet plants were analysed three weeks after the induced drought. At the end of the experiment (16 weeks) plants were harvested and their mass assessed, as well as their nutrient, pigment and sugar contents. In contrast to the addition of manure, soil volumetric water contents were two to three times greater after biochar amendment, compared to the control soil. Porewater analysis revealed that nutrient leaching (e.g., NO3-, K+) from manure addition to soil was reduced when biochar was blended in (by ≤86% compared to manure alone). Crop analysis showed that leaf gas exchanges were moderated during drought following soil amendment, and leaf and tuber yields were increased furthest when combined biochar-manure blends were applied (> 2-times compared to the control). Perhaps most importantly, the advantageous soil conditions induced by the combined biochar and manure addition also resulted in significantly increased sugar contents in plants (2.4-times) pointing to immediate practical applications of these results in the field.
Collapse
Affiliation(s)
- Manhattan Lebrun
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 78850 Thiverval-Grignon, France; Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Jiří Bouček
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 1176, 165 21 Prague 6, Suchdol, Czech Republic; Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, Praha 6 - Suchdol, 16521, Czech Republic
| | - Kateřina Berchová Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 1176, 165 21 Prague 6, Suchdol, Czech Republic
| | - Kamil Kraus
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Daniel Haisel
- Institute of Experimental Botany CAS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Martin Kulhánek
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| | - Carol Omara-Ojungu
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Samar Seyedsadr
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Luke Beesley
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Petr Soudek
- Institute of Experimental Botany CAS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Šárka Petrová
- Institute of Experimental Botany CAS CR, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | - Michael Pohořelý
- Environmental Process Engineering Laboratory, Institute of Chemical Process Fundamentals, Academy of Sciences of Czech Republic, v. v. i., Rozvojová 135, Praha 6, Suchdol 165 02, Czech Republic; Department of Power Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic.
| |
Collapse
|
9
|
Bilias F, Nikoli T, Kalderis D, Gasparatos D. Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements. TOXICS 2021; 9:184. [PMID: 34437502 PMCID: PMC8402515 DOI: 10.3390/toxics9080184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022]
Abstract
Soil contamination with potentially toxic elements (PTEs) is considered one of the most severe environmental threats, while among remediation strategies, research on the application of soil amendments has received important consideration. This review highlights the effects of biochar application on soil properties and the bioavailability of potentially toxic elements describing research areas of intense current and emerging activity. Using a visual scientometric analysis, our study shows that between 2019 and 2020, research sub-fields like earthworm activities and responses, greenhouse gass emissions, and low molecular weight organic acids have gained most of the attention when biochar was investigated for soil remediation purposes. Moreover, biomasses like rice straw, sewage sludge, and sawdust were found to be the most commonly used feedstocks for biochar production. The effect of biochar on soil chemistry and different mechanisms responsible for PTEs' immobilization with biochar, are also briefly reported. Special attention is also given to specific PTEs most commonly found at contaminated soils, including Cu, Zn, Ni, Cr, Pb, Cd, and As, and therefore are more extensively revised in this paper. This review also addresses some of the issues in developing innovative methodologies for engineered biochars, introduced alongside some suggestions which intend to form a more focused soil remediation strategy.
Collapse
Affiliation(s)
- Fotis Bilias
- Soil Science Laboratory, Soil Science and Agricultural Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Thomai Nikoli
- Laboratory of Soil Science and Plant Diagnostics, Mediterranean Agronomic Institute of Chania, 73100 Chania, Greece;
| | - Dimitrios Kalderis
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133 Chania, Greece;
| | - Dionisios Gasparatos
- Laboratory of Soil Science and Agricultural Chemistry, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
10
|
A Narrative Review of the Facts and Perspectives on Agricultural Fertilization in Europe, with a Focus on Italy. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fertilizers stand at the base of current agricultural practices, providing the nutrient sustainment required for growing plants. Most fertilizers are synthetic chemicals, whose exploitation at very high levels poses a risk to cultivated land and the whole environment. They have several drawbacks including soil degradation, water pollution, and human food safety. Currently, the urgent need to counterbalance these negative environmental impacts has opened the way for the use of natural and renewable products that may help to restore soil structure, microorganism communities, nutrient elements, and, in some cases, to positively enhance carbon soil sequestration. Here, we endeavor to reinforce the vision that effective strategies designed to mitigate negative anthropic and climate change impacts should combine, in appropriate proportions, solutions addressed to a lower and less energy intensive production of chemicals and to a more inclusive exploitation of renewable natural products as biological soil amendments. After drawing an overview of the agricultural energy demand and consumption of fertilizers in Europe in the last few years (with a particular focus on Italy), this narrative review will deal with the current and prospective use of compost, biochar, and neem cake, which are suitable natural products with well-known potential and still-to-be-discovered features, to benefit sustainable agriculture and be adopted as circular economic solutions.
Collapse
|
11
|
Kumar A, Friedman H, Tsechansky L, Graber ER. Distinctive in-planta acclimation responses to basal growth and acute heat stress were induced in Arabidopsis by cattle manure biochar. Sci Rep 2021; 11:9875. [PMID: 33972570 PMCID: PMC8110981 DOI: 10.1038/s41598-021-88856-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
In-planta mechanisms of biochar (BC)-mediated improved growth were evaluated by examining oxidative stress, metabolic, and hormonal changes of Arabidopsis wild-type plants under basal or acute heat stress (-HS/ + HS) conditions with or without BC (+ BC/-BC). The oxidative stress was evaluated by using Arabidopsis expressing redox-sensitive green fluorescent protein in the plastids (pla-roGFP2). Fresh biomass and inflorescence height were greater in + BC(‒HS) plants than in the -BC(‒HS) plants, despite similar leaf nutrient levels, photosystem II (PSII) maximal efficiencies and similar oxidative poise. Endogenous levels of jasmonic and abscisic acids were higher in the + BC(‒HS) treatment, suggesting their role in growth improvement. HS in ‒BC plants caused reductions in inflorescence height and PSII maximum quantum yield, as well as significant oxidative stress symptoms manifested by increased lipid peroxidation, greater chloroplast redox poise (oxidized form of roGFP), increased expression of DNAJ heat shock proteins and Zn-finger genes, and reduced expression of glutathione-S-transferase gene in addition to higher abscisic acid and salicylic acid levels. Oxidative stress symptoms were significantly reduced by BC. Results suggest that growth improvements by BC occurring under basal and HS conditions are induced by acclimation mechanisms to 'microstresses' associated with basal growth and to oxidative stress of HS, respectively.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Haya Friedman
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Ludmila Tsechansky
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Ellen R Graber
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
12
|
Padula A, Bambi M, Mengoni C, Greco C, Mucci N, Greco I, Masoni A, Del Duca S, Bacci G, Santini G, Fani R, Zaccaroni M. Exploring the Gut Microbiome Alteration of the European Hare ( Lepus europaeus) after Short-Term Diet Modifications. BIOLOGY 2021; 10:biology10020148. [PMID: 33668574 PMCID: PMC7918456 DOI: 10.3390/biology10020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary The composition of gut microbial communities can be altered by host diet shift. In this study, we investigated the microbiome composition of European hares and the potential changes in their gut communities after 4 days from the introduction in the diet of new nourishment. The control group was fed with standard fodder; the diet of the experimental group was integrated with apples and carrots. DNA was extracted from fresh faecal pellets and the V3-V4 hypervariable regions were amplified and sequenced using the Illumina MiSeq® platform. The amplicon sequence variants were classified into 735 bacterial genera belonging to 285 families and 36 phyla; the most abundant phyla represented by Bacteroidetes and Firmicutes. Experimental and control hares did not show statistically significant differences in their microbial communities suggesting the exposition time to a new diet should be extended to define the time frame necessary to affect microbiome composition. Abstract This study aimed to characterise the gut microbiome composition of European hares (Lepus europaeus) and its potential changes after a short-term diet modification. The high sensitivity of European hare to habitat changes makes this species a good model to analyse possible alterations in gut microbiome after the introduction of additional nourishment into the diet. In total, 20 pairs were chosen for the experiments; 10 pairs formed the control group and were fed with standard fodder. The other 10 pairs represented the experimental group, whose diet was integrated with apples and carrots. The DNA from fresh faecal pellets collected after 4 days from the start of the experiment was extracted and the V3-V4 hypervariable regions were amplified and sequenced using the Illumina MiSeq® platform. The obtained amplicon sequence variants were classified into 735 bacterial genera belonging to 285 families and 36 phyla. The control and the experimental groups appeared to have a homogenous dispersion for the two taxonomic levels analysed with the most abundant phyla represented by Bacteroidetes and Firmicutes. No difference between control and experimental samples was detected, suggesting that the short-term variation in food availability did not alter the hares’ gut microbiome. Further research is needed to estimate significant time threshold.
Collapse
Affiliation(s)
- Anna Padula
- Institute for Environmental Protection and Research, Conservation Genetics Area, Via Ca’ Fornacetta 9, Ozzano dell’Emilia, 40069 Bologna, Italy; (C.M.); (C.G.); (N.M.)
- Correspondence:
| | - Marina Bambi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (I.G.); (A.M.); (S.D.D.); (G.B.); (G.S.); (R.F.); (M.Z.)
| | - Chiara Mengoni
- Institute for Environmental Protection and Research, Conservation Genetics Area, Via Ca’ Fornacetta 9, Ozzano dell’Emilia, 40069 Bologna, Italy; (C.M.); (C.G.); (N.M.)
| | - Claudia Greco
- Institute for Environmental Protection and Research, Conservation Genetics Area, Via Ca’ Fornacetta 9, Ozzano dell’Emilia, 40069 Bologna, Italy; (C.M.); (C.G.); (N.M.)
| | - Nadia Mucci
- Institute for Environmental Protection and Research, Conservation Genetics Area, Via Ca’ Fornacetta 9, Ozzano dell’Emilia, 40069 Bologna, Italy; (C.M.); (C.G.); (N.M.)
| | - Ilaria Greco
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (I.G.); (A.M.); (S.D.D.); (G.B.); (G.S.); (R.F.); (M.Z.)
| | - Alberto Masoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (I.G.); (A.M.); (S.D.D.); (G.B.); (G.S.); (R.F.); (M.Z.)
| | - Sara Del Duca
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (I.G.); (A.M.); (S.D.D.); (G.B.); (G.S.); (R.F.); (M.Z.)
| | - Giovanni Bacci
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (I.G.); (A.M.); (S.D.D.); (G.B.); (G.S.); (R.F.); (M.Z.)
| | - Giacomo Santini
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (I.G.); (A.M.); (S.D.D.); (G.B.); (G.S.); (R.F.); (M.Z.)
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (I.G.); (A.M.); (S.D.D.); (G.B.); (G.S.); (R.F.); (M.Z.)
| | - Marco Zaccaroni
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy; (M.B.); (I.G.); (A.M.); (S.D.D.); (G.B.); (G.S.); (R.F.); (M.Z.)
| |
Collapse
|
13
|
Guarino F, Improta G, Triassi M, Cicatelli A, Castiglione S. Effects of Zinc Pollution and Compost Amendment on the Root Microbiome of a Metal Tolerant Poplar Clone. Front Microbiol 2020; 11:1677. [PMID: 32760392 PMCID: PMC7373765 DOI: 10.3389/fmicb.2020.01677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/26/2020] [Indexed: 02/02/2023] Open
Abstract
Until recently, many phytoremediation studies were focused solely on a plants ability to reclaim heavy metal (HM) polluted soil through a range of different processes, such as phytoextraction and phytostabilization. However, the interaction between plants and their own rhizosphere microbiome represents a new research frontier for phytoremediation. Our hypothesis is that rhizomicrobiome might play a key role in plant wellness and in the response to external stimuli; therefore, this study aimed to shed light the rhizomicrobiome dynamics after an organic amendment (e.g., compost) and/or HM pollution (e.g., Zn), and its relation with plant reclamation ability. To reach this goal we set up a greenhouse experiment cultivating in pot an elite black poplar clone (N12) selected in the past for its excellent ability to reclaim heavy metals. N12 saplings were grown on a soil amended with compost and/or spiked with high Zn doses. At the end of the experiment, we observed that the compost amendment strongly increased the foliar size but did not affect significantly the Zn accumulation in plant. Furthermore, the rhizomicrobiome communities (bacteria and fungi), investigated through NGS, highlighted how α diversity increased in all treatments compared to the untreated N12 saplings. Soil compost amendment, as well as Zn pollution, strongly modified the bacterial rhizomicrobiome structure. Conversely, the variation of the fungal rhizomicrobiome was only marginally affected by soil Zn addition, and only partially impaired by compost. Nevertheless, substantial alterations of the fungal community were due to both compost and Zn. Together, our experimental results revealed that organic amendment increased the bacterial resistance to external stimuli whilst, in the case of fungi, the amendment made the fungi microbiome more susceptible. Finally, the greater microbiome biodiversity does not imply, in this case, a better plant wellness or phytoremediation ability, although the microbiome plays a role in the external stimuli response supporting plant life.
Collapse
Affiliation(s)
- Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy
| |
Collapse
|