1
|
Liu H, Gu W, Lu Y, Ding L, Guo Y, Zou G, Wu W, Zheng D, Liu C, Wang C, Cao Y, Li J. Exploration of Phage-Agrochemical Interaction Based on a Novel Potent Phage LPRS20-Targeting Ralstonia solanacearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28005-28018. [PMID: 39360931 DOI: 10.1021/acs.jafc.4c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Phage therapy has the potential to alleviate plant bacterial wilt. However, the knowledge gap concerning the phage-agrochemical interaction impedes the broader application of phages in agriculture. This study characterized a phage isolate and investigated its interactions with agrochemicals. A novel species within the Ampunavirus genus was proposed, serving phage LPRS20 as a type phage with a broad lytic range and significant antibacterial activity against Ralstonia solanacearum strains infecting tobacco, chili, or tomato. Sensory evaluation of the morphology of tobacco leaves suggested that phage application resulted in negligible harm to plants. Investigations into phage-agrochemical interactions revealed synergisms when LPRS20 was delivered 4 h before thiodiazole-copper as well as LPRS20 in combination with low-concentration berberine. Overall, our findings reveal that phage LPRS20 represents a novel, effective, and eco-friendly biocontrol agent against tobacco bacterial wilt in vivo and in vitro and contributes to the potential integration of phages and agrochemicals for controlling soil-borne pathogens.
Collapse
Affiliation(s)
- Huai Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjie Gu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yusheng Lu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lili Ding
- Agricultural Science and Technology Research Center of Chaozhou, Chaozhou 521000, China
| | - Yating Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Geng Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiqing Wu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Diyuan Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Chong Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chenyang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, College of Life Science and Technology, College of Veterinary Medicine, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
2
|
Franco Ortega S, Fields B, Narino Rojas D, Mikonranta L, Holmes M, Harper AL, Friman V. Phage biocontrol success of bacterial wilt depends on synergistic interactions with resident rhizosphere microbiota. Microb Biotechnol 2024; 17:e70049. [PMID: 39539110 PMCID: PMC11561305 DOI: 10.1111/1751-7915.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Phages can successfully be used in vitro and in planta to biocontrol the phytopathogenic Ralstonia solanacearum bacterium-the causal agent of bacterial wilt disease. However, phage biocontrol outcomes are still variable, and it is unclear what causes this. In this study, we assessed the efficiency of four phages in controlled in vitro and in planta experiments in all one- and two-phage combinations. We found that using phages in combination did not improve the phage biocontrol efficiency relative to single phage treatments, while certain phages and their combinations were more effective than the others. High intra-treatment variability in phage efficiency was observed across all phage treatments, which was associated with clear shifts in microbiome composition, a reduction in R. solanacearum and an increase in phage densities. We further identified the bacterial taxa that were associated with these 'shifted' microbiomes and conducted additional plant growth experiments, demonstrating that some of the enriched bacterial species could protect plants from R. solanacearum infections-a pattern which was also observed using partial least squares path modelling (PLS-PM). Together, these results suggest that phages could open niche space for beneficial bacteria by reducing pathogen densities and that variability in phage biocontrol outcomes is rhizosphere microbiome-dependent, which can introduce between-replicate variation, even in controlled greenhouse conditions.
Collapse
Affiliation(s)
| | - Bryden Fields
- Department of BiologyUniversity of YorkYorkUK
- Present address:
Fera Science Ltd., York BioTech CampusSand HuttonYorkUK
| | - Daniel Narino Rojas
- Department of BiologyUniversity of YorkYorkUK
- Centre for Novel Agricultural Products, Department of BiologyUniversity of YorkYorkUK
| | | | | | - Andrea L. Harper
- Department of BiologyUniversity of YorkYorkUK
- Centre for Novel Agricultural Products, Department of BiologyUniversity of YorkYorkUK
| | - Ville‐Petri Friman
- Department of BiologyUniversity of YorkYorkUK
- Present address:
Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
3
|
Thomas BO, Lechner SL, Ross HC, Joris BR, Glick BR, Stegelmeier AA. Friends and Foes: Bacteria of the Hydroponic Plant Microbiome. PLANTS (BASEL, SWITZERLAND) 2024; 13:3069. [PMID: 39519984 PMCID: PMC11548230 DOI: 10.3390/plants13213069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Hydroponic greenhouses and vertical farms provide an alternative crop production strategy in regions that experience low temperatures, suboptimal sunlight, or inadequate soil quality. However, hydroponic systems are soilless and, therefore, have vastly different bacterial microbiota than plants grown in soil. This review highlights some of the most prevalent plant growth-promoting bacteria (PGPB) and destructive phytopathogenic bacteria that dominate hydroponic systems. A complete understanding of which bacteria increase hydroponic crop yields and ways to mitigate crop loss from disease are critical to advancing microbiome research. The section focussing on plant growth-promoting bacteria highlights putative biological pathways for growth promotion and evidence of increased crop productivity in hydroponic systems by these organisms. Seven genera are examined in detail, including Pseudomonas, Bacillus, Azospirillum, Azotobacter, Rhizobium, Paenibacillus, and Paraburkholderia. In contrast, the review of hydroponic phytopathogens explores the mechanisms of disease, studies of disease incidence in greenhouse crops, and disease control strategies. Economically relevant diseases caused by Xanthomonas, Erwinia, Agrobacterium, Ralstonia, Clavibacter, Pectobacterium, and Pseudomonas are discussed. The conditions that make Pseudomonas both a friend and a foe, depending on the species, environment, and gene expression, provide insights into the complexity of plant-bacterial interactions. By amalgamating information on both beneficial and pathogenic bacteria in hydroponics, researchers and greenhouse growers can be better informed on how bacteria impact modern crop production systems.
Collapse
Affiliation(s)
- Brianna O. Thomas
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | - Shelby L. Lechner
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | - Hannah C. Ross
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada (B.R.J.)
| | - Benjamin R. Joris
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada (B.R.J.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | | |
Collapse
|
4
|
Aoun N, Georgoulis SJ, Avalos JK, Grulla KJ, Miqueo K, Tom C, Lowe-Power TM. A pangenomic atlas reveals eco-evolutionary dynamics that shape type VI secretion systems in plant-pathogenic Ralstonia. mBio 2024; 15:e0032324. [PMID: 39191402 PMCID: PMC11481896 DOI: 10.1128/mbio.00323-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Soilborne Ralstonia solanacearum species complex (RSSC) pathogens disrupt microbial communities as they invade roots and fatally wilt plants. RSSC pathogens secrete antimicrobial toxins using a type VI secretion system (T6SS). To investigate how evolution and ecology have shaped the T6SS of these bacterial pathogens, we analyzed the T6SS gene content and architecture across the RSSC and their evolutionary relatives. Our analysis reveals that two ecologically similar Burkholderiaceae taxa, xylem-pathogenic RSSC and Paracidovorax, have convergently evolved to wield large arsenals of T6SS toxins. To understand the mechanisms underlying genomic enrichment of T6SS toxins, we compiled an atlas of 1,066 auxiliary T6SS toxin clusters ("aux" clusters) across 99 high-quality RSSC genomes. We classified 25 types of aux clusters with toxins that predominantly target lipids, nucleic acids, or unknown cellular substrates. The aux clusters were located in diverse genetic neighborhoods and had complex phylogenetic distributions, suggesting frequent horizontal gene flow. Phages and other mobile genetic elements account for most of the aux cluster acquisition on the chromosome but very little on the megaplasmid. Nevertheless, RSSC genomes were more enriched in aux clusters on the megaplasmid. Although the single, ancestral T6SS was broadly conserved in the RSSC, the T6SS has been convergently lost in atypical, non-soilborne lineages. Overall, our data suggest dynamic interplay between the lifestyle of RSSC lineages and the evolution of T6SSes with robust arsenals of toxins. This pangenomic atlas poises the RSSC as an emerging, tractable model to understand the role of the T6SS in shaping pathogen populations.IMPORTANCEWe explored the eco-evolutionary dynamics that shape the inter-microbial warfare mechanisms of a globally significant plant pathogen, the Ralstonia solanacearum species complex. We discovered that most Ralstonia wilt pathogens have evolved extensive and diverse repertoires of type VI secretion system-associated antimicrobial toxins. These expansive toxin arsenals potentially enhance the ability of Ralstonia pathogens to invade plant microbiomes, enabling them to rapidly colonize and kill their host plants. We devised a classification system to categorize the Ralstonia toxins. Interestingly, many of the toxin gene clusters are encoded on mobile genetic elements, including prophages, which may be mutualistic symbionts that enhance the inter-microbial competitiveness of Ralstonia wilt pathogens. Moreover, our findings suggest that the convergent loss of this multi-gene trait contributes to genome reduction in two vector-transmitted lineages of Ralstonia pathogens. Our findings demonstrate that the interplay between microbial ecology and pathogen lifestyle shapes the evolution of a genetically complex antimicrobial weapon.
Collapse
Affiliation(s)
- Nathalie Aoun
- Department of Plant Pathology, University of California, Davis, California, USA
| | | | - Jason K. Avalos
- Department of Plant Pathology, University of California, Davis, California, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Kimberly J. Grulla
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Kasey Miqueo
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Cloe Tom
- Department of Plant Pathology, University of California, Davis, California, USA
| | | |
Collapse
|
5
|
Huang B, Ge L, Xiang D, Tan G, Liu L, Yang L, Jing Y, Liu Q, Chen W, Li Y, He H, Sun H, Pan Q, Yi K. Isolation, characterization, and genomic analysis of a lytic bacteriophage, PQ43W, with the potential of controlling bacterial wilt. Front Microbiol 2024; 15:1396213. [PMID: 39149212 PMCID: PMC11324598 DOI: 10.3389/fmicb.2024.1396213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 08/17/2024] Open
Abstract
Bacterial wilt (BW) is a devastating plant disease caused by the soil-borne bacterium Ralstonia solanacearum species complex (Rssc). Numerous efforts have been exerted to control BW, but effective, economical, and environmentally friendly approaches are still not available. Bacteriophages are a promising resource for the control of bacterial diseases, including BW. So, in this study, a crop BW pathogen of lytic bacteriophage was isolated and named PQ43W. Biological characterization revealed PQ43W had a short latent period of 15 min, 74 PFU/cell of brust sizes, and good stability at a wide range temperatures and pH but a weak resistance against UV radiation. Sequencing revealed phage PQ43W contained a circular double-stranded DNA genome of 47,156 bp with 65 predicted open reading frames (ORFs) and genome annotation showed good environmental security for the PQ43W that no tRNA, antibiotic resistance, or virulence genes contained. Taxonomic classification showed PQ43W belongs to a novel genus of subfamily Kantovirinae under Caudoviricetes. Subsequently, a dose of PQ43W for phage therapy in controlling crop BW was determined: 108 PFU*20 mL per plant with non-invasive irrigation root application twice by pot experiment. Finally, a field experiment of PQ43W showed a significantly better control effect in crop BW than the conventional bactericide Zhongshengmycin. Therefore, bacteriophage PQ43W is an effective bio-control resource for controlling BW diseases, especially for crop cultivation.
Collapse
Affiliation(s)
- Binbin Huang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Long Ge
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
| | - Dong Xiang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Ge Tan
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Lijia Liu
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Lei Yang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yongfeng Jing
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ye Li
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Haoxin He
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Huzhi Sun
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
| | - Qiang Pan
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
- Institute of Special Food, Qingdao Agricultural University, Qingdao, China
| | - Ke Yi
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| |
Collapse
|
6
|
Motoche-Monar C, Andrade D, Pijal WD, Hidrobo F, Armas R, Sánchez-Real E, Rocha-Chauca G, Castillo JA. CRISPRals: A Web Database for Assessing the CRISPR Defense System in the Ralstonia solanacearum Species Complex to Avoid Phage Resistance. PHYTOPATHOLOGY 2024; 114:1462-1465. [PMID: 38427684 DOI: 10.1094/phyto-01-24-0010-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has been widely characterized as a defense system against phages and other invading elements in bacteria and archaea. A low percentage of Ralstonia solanacearum species complex (RSSC) strains possess the CRISPR array and the CRISPR-associated proteins (Cas) that would confer immunity against various phages. To provide a wide-range screen of the CRISPR presence in the RSSC, we analyzed 378 genomes of RSSC strains to find the CRISPR locus. We found that 20.1, 14.3, and 54.5% of the R. solanacearum, R. pseudosolanacearum, and R. syzygii strains, respectively, possess the CRISPR locus. In addition, we performed further analysis to identify the respective phages that are restricted by the CRISPR arrays. We found 252 different phages infecting different strains of the RSSC, by means of the identification of similarities between the protospacers in phages and spacers in bacteria. We compiled this information in a database with web access called CRISPRals (https://crisprals.yachaytech.edu.ec/). Additionally, we made available a number of tools to detect and identify CRISPR array and Cas genes in genomic sequences that could be uploaded by users. Finally, a matching tool to relate bacteria spacer with phage protospacer sequences is available. CRISPRals is a valuable resource for the scientific community that contributes to the study of bacteria-phage interaction and a starting point that will help to design efficient phage therapy strategies.
Collapse
Affiliation(s)
- Cristofer Motoche-Monar
- Phage Therapy Group, School of Biological Sciences and Engineering, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Diego Andrade
- Phage Therapy Group, School of Mathematical and Computational Sciences, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Washington D Pijal
- Phage Therapy Group, School of Mathematical and Computational Sciences, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Francisco Hidrobo
- Phage Therapy Group, School of Mathematical and Computational Sciences, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Rolando Armas
- Phage Therapy Group, School of Mathematical and Computational Sciences, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Emily Sánchez-Real
- Phage Therapy Group, School of Biological Sciences and Engineering, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - Gabriela Rocha-Chauca
- Phage Therapy Group, School of Biological Sciences and Engineering, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| | - José A Castillo
- Phage Therapy Group, School of Biological Sciences and Engineering, Yachay Tech University, Hcda San José y Proyecto Yachay, 100115, Imbabura, Ecuador
| |
Collapse
|
7
|
Erdrich SH, Schurr U, Frunzke J, Arsova B. Seed coating with phages for sustainable plant biocontrol of plant pathogens and influence of the seed coat mucilage. Microb Biotechnol 2024; 17:e14507. [PMID: 38884488 PMCID: PMC11181459 DOI: 10.1111/1751-7915.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Pathogens resistant to classical control strategies pose a significant threat to crop yield, with seeds being a major transmission route. Bacteriophages, viruses targeting bacteria, offer an environmentally sustainable biocontrol solution. In this study, we isolated and characterized two novel phages, Athelas and Alfirin, which infect Pseudomonas syringae and Agrobacterium fabrum, respectively, and included the recently published Pfeifenkraut phage infecting Xanthomonas translucens. Using a simple immersion method, phages coated onto seeds successfully lysed bacteria post air-drying. The seed coat mucilage (SCM), a polysaccharide-polymer matrix exuded by seeds, plays a critical role in phage binding. Seeds with removed mucilage formed five to 10 times less lysis zones compared to those with mucilage. The podovirus Athelas showed the highest mucilage dependency. Phages from the Autographiviridae family also depended on mucilage for seed adhesion. Comparative analysis of Arabidopsis SCM mutants suggested the diffusible cellulose as a key component for phage binding. Long-term activity tests demonstrated high phage stability on seed surfaces and significantly increasing seedling survival rates in the presence of pathogens. Using non-virulent host strains enhanced phage presence on seeds but also has potential limitations. These findings highlight phage-based interventions as promising, sustainable strategies for combating pathogen resistance and improving crop yield.
Collapse
Affiliation(s)
- Sebastian H. Erdrich
- Forschungszentrum JülichDepartment for Plant Sciences (IBG‐2), Institute of Bio‐ and GeosciencesJülichGermany
- Forschungszentrum JülichDepartment for Biotechnology (IBG‐1), Institute of Bio‐ and GeosciencesJülichGermany
| | - Ulrich Schurr
- Forschungszentrum JülichDepartment for Plant Sciences (IBG‐2), Institute of Bio‐ and GeosciencesJülichGermany
| | - Julia Frunzke
- Forschungszentrum JülichDepartment for Biotechnology (IBG‐1), Institute of Bio‐ and GeosciencesJülichGermany
| | - Borjana Arsova
- Forschungszentrum JülichDepartment for Plant Sciences (IBG‐2), Institute of Bio‐ and GeosciencesJülichGermany
| |
Collapse
|
8
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
9
|
Wang X, Tang Y, Yue X, Wang S, Yang K, Xu Y, Shen Q, Friman VP, Wei Z. The role of rhizosphere phages in soil health. FEMS Microbiol Ecol 2024; 100:fiae052. [PMID: 38678007 PMCID: PMC11065364 DOI: 10.1093/femsec/fiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
While the One Health framework has emphasized the importance of soil microbiomes for plant and human health, one of the most diverse and abundant groups-bacterial viruses, i.e. phages-has been mostly neglected. This perspective reviews the significance of phages for plant health in rhizosphere and explores their ecological and evolutionary impacts on soil ecosystems. We first summarize our current understanding of the diversity and ecological roles of phages in soil microbiomes in terms of nutrient cycling, top-down density regulation, and pathogen suppression. We then consider how phages drive bacterial evolution in soils by promoting horizontal gene transfer, encoding auxiliary metabolic genes that increase host bacterial fitness, and selecting for phage-resistant mutants with altered ecology due to trade-offs with pathogen competitiveness and virulence. Finally, we consider challenges and avenues for phage research in soil ecosystems and how to elucidate the significance of phages for microbial ecology and evolution and soil ecosystem functioning in the future. We conclude that similar to bacteria, phages likely play important roles in connecting different One Health compartments, affecting microbiome diversity and functions in soils. From the applied perspective, phages could offer novel approaches to modulate and optimize microbial and microbe-plant interactions to enhance soil health.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yike Tang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiufeng Yue
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Tang Y, Zhou M, Yang C, Liu R, Du H, Ma M. Advances in isolated phages that affect Ralstonia solanacearum and their application in the biocontrol of bacterial wilt in plants. Lett Appl Microbiol 2024; 77:ovae037. [PMID: 38573829 DOI: 10.1093/lambio/ovae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Bacterial wilt is a widespread and devastating disease that impacts the production of numerous crucial crops worldwide. The main causative agent of the disease is Ralstonia solanacearum. Due to the pathogen's broad host range and prolonged survival in the soil, it is challenging to control the disease with conventional strategies. Therefore, it is of great importance to develop effective alternative disease control strategies. In recent years, phage therapy has emerged as an environmentally friendly and sustainable biocontrol alternative, demonstrating significant potential in controlling this severe disease. This paper summarized basic information about isolated phages that infect R. solanacearum, and presented some examples of their application in the biocontrol of bacterial wilt. The risks of phage application and future prospect in this area were also discussed. Overall, R. solanacearum phages have been isolated from various regions and environments worldwide. These phages belong mainly to the Inoviridae, Autographiviridae, Peduoviridae, and Cystoviridae families, with some being unclassified. Studies on the application of these phages have demonstrated their ability to reduce pathogenicity of R. solanacearum through direct lysis or indirect alteration of the pathogen's physiological properties. These findings suggested bacteriophage is a promising tool for biocontrol of bacterial wilt in plants.
Collapse
Affiliation(s)
- You Tang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Moxi Zhou
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Chuyun Yang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Rong Liu
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Hongyi Du
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Ming Ma
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| |
Collapse
|
11
|
Biosca EG, Delgado Santander R, Morán F, Figàs-Segura À, Vázquez R, Català-Senent JF, Álvarez B. First European Erwinia amylovora Lytic Bacteriophage Cocktails Effective in the Host: Characterization and Prospects for Fire Blight Biocontrol. BIOLOGY 2024; 13:176. [PMID: 38534446 DOI: 10.3390/biology13030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Fire blight, caused by the plant-pathogenic bacterium Erwinia amylovora, is a highly contagious and difficult-to-control disease due to its efficient dissemination and survival and the scarcity of effective control methods. Copper and antibiotics are the most used treatments but pose environmental and human health risks. Bacteriophages (phages) constitute an ecological, safe, and sustainable fire blight control alternative. The goal of this study was to search for specific E. amylovora phages from plant material, soil, and water samples in Mediterranean environments. A collection of phages able to specifically infect and lyse E. amylovora strains was generated from former fire blight-affected orchards in Eastern Spain. Following in vitro characterization, assays in immature fruit revealed that preventively applying some of the phages or their combinations delayed the onset of fire blight symptoms and reduced the disease's severity, suggesting their biocontrol potential in Spain and other countries. The morphological and molecular characterization of the selected E. amylovora phages classified them as members of the class Caudoviricetes (former Myoviridae family) and genus Kolesnikvirus. This study reveals Mediterranean settings as plausible sources of E. amylovora-specific bacteriophages and provides the first effective European phage cocktails in plant material for the development of sustainable fire blight management measures.
Collapse
Affiliation(s)
- Elena G Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Ricardo Delgado Santander
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Irrigated Agriculture Research and Extension Center, Department of Plant Pathology, Washington State University, Prosser, WA 99350, USA
| | - Félix Morán
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Àngela Figàs-Segura
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Rosa Vázquez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | | | - Belén Álvarez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Departamento de Investigación Aplicada y Extensión Agraria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28805 Madrid, Spain
| |
Collapse
|
12
|
Tiwari I, Bhojiya AA, Prasad R, Porwal S, Varma A, Choudhary DK. Putative Role of Anti-microbial Peptide Recovered from Lactiplantibacillus spp. in Biocontrol Activity. Curr Microbiol 2024; 81:88. [PMID: 38311656 DOI: 10.1007/s00284-023-03586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/12/2023] [Indexed: 02/06/2024]
Abstract
Antimicrobial peptides (AMPs) stand as a promising alternative to conventional pesticides, leveraging a multifaceted approach to combat plant pathogens. This study focuses on identifying and characterizing the AMP produced by Lactiplantibacillus argentoratensis strain IT, demonstrating potent antibacterial activity against various harmful microorganisms. Evaluation of AMPs' antibacterial activity was conducted through an agar well diffusion assay, a reliable method for assessing secondary metabolite antimicrobial efficacy. The study unveils the antimicrobial potential of the purified extract obtained from Lactiplantibacillus argentoratensis IT, isolated from goat milk. Notably, the AMP exhibited robust antibacterial activity against phytopathogens affecting solanaceous crops, including the Gram-negative Ralstonia solanacearum. Expression conditions and purification methods were optimized to identify the peptide's mass and sequence, utilizing LC-MS and SDS-PAGE. This paper underscores the application potential of Lactiplantibacillus spp. IT as a biocontrol agent for managing bacterial infectious diseases in plants. Results indicate optimal AMP production at 37 °C, with a culture broth pH of 5 during fermentation. The obtained peptide sequence corresponded to peaks at 842.5 and 2866.4 m/z ratio, with a molecular weight of approximately 5 kDa according to tricine SDS-PAGE analysis. In conclusion, this study lays the foundation for utilizing Lactiplantibacillus spp. IT derived AMPs in plant biocontrol strategies, showcasing their efficacy against bacterial phytopathogens. These findings contribute valuable insights for advancing sustainable agricultural practices.
Collapse
Affiliation(s)
- Ishan Tiwari
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Ali Asger Bhojiya
- Department of Botany, U.S. Ostwal P.G. College, Mangalwad, Chittorgarh, Rajasthan, 312024, India
| | - Ram Prasad
- Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Shalini Porwal
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, 201313, India
| | | |
Collapse
|
13
|
Halawa EM. Challenges of bacteriophages application in controlling bacterial plant diseases and how to overcome them. J Genet Eng Biotechnol 2023; 21:98. [PMID: 37815601 PMCID: PMC10564689 DOI: 10.1186/s43141-023-00549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Due to the emergence of antibiotic-resistant bacteria in agricultural sector, controlling bacterial plant diseases using antibiotics has become challenging. Researchers have turned to alternative methods, such as using bacteriophages as a biocide for plants instead of antibiotics, to control pathogenic bacterial plant diseases. However, the application of bacteriophages as a biocide in agriculture faces several challenges that may impede its success. In this review article, we discuss the various issues that could lead to the failure of its application. We also propose solutions to address each problem to increase awareness and familiarity before implementing the method to better ensure its success.
Collapse
Affiliation(s)
- Esraa M Halawa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
14
|
Bertolini E, Figàs-Segura À, Álvarez B, Biosca EG. Development of TaqMan Real-Time PCR Protocols for Simultaneous Detection and Quantification of the Bacterial Pathogen Ralstonia solanacearum and Their Specific Lytic Bacteriophages. Viruses 2023; 15:v15040841. [PMID: 37112822 PMCID: PMC10145937 DOI: 10.3390/v15040841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Ralstonia solanacearum is the causal agent of bacterial wilt, one of the most destructive diseases of solanaceous plants, affecting staple crops worldwide. The bacterium survives in water, soil, and other reservoirs, and is difficult to control. In this sense, the use of three specific lytic R. solanacearum bacteriophages was recently patented for bacterial wilt biocontrol in environmental water and in plants. To optimize their applications, the phages and the bacterium need to be accurately monitored and quantified, which is laborious and time-consuming with biological methods. In this work, primers and TaqMan probes were designed, and duplex and multiplex real-time quantitative PCR (qPCR) protocols were developed and optimized for the simultaneous quantification of R. solanacearum and their phages. The quantification range was established from 108 to 10 PFU/mL for the phages and from 108 to 102 CFU/mL for R. solanacearum. Additionally, the multiplex qPCR protocol was validated for the detection and quantification of the phages with a limit ranging from 102 targets/mL in water and plant extracts to 103 targets/g in soil, and the target bacterium with a limit ranging from 103 targets/mL in water and plant extracts to 104 targets/g in soil, using direct methods of sample preparation.
Collapse
Affiliation(s)
- Edson Bertolini
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil
| | - Àngela Figàs-Segura
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Belén Álvarez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Departamento de Investigación Aplicada y Extensión Agraria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28805 Alcalá de Henares, Spain
| | - Elena G. Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
- Correspondence:
| |
Collapse
|
15
|
Wang Z, Luo W, Cheng S, Zhang H, Zong J, Zhang Z. Ralstonia solanacearum - A soil borne hidden enemy of plants: Research development in management strategies, their action mechanism and challenges. FRONTIERS IN PLANT SCIENCE 2023; 14:1141902. [PMID: 36909396 PMCID: PMC9998985 DOI: 10.3389/fpls.2023.1141902] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Plant pathogens present in soil cause severe losses to plants every year. Among them, Ralstonia solanacearum, because of its destructive nature, is the world's second most damaging bacterial phytopathogen. Over 310 species of plants belonging to 42 plant families are infected by this deadly pathogen. Around the world, the bacterial wilt (BW) disease causes yield losses that range from 20 to 100%. Control measures for managing this pathogen comprises several diverse approaches. Regardless of whether several control methods are developed to manage the BW disease, efficient management strategies with eco-friendly effects and the desired level of effective control is still awaited and there is need to developed effective management methods to eliminate this fetal disease in several crops under field conditions. An analysis of development in the management strategies will provide an effective way to search and develop control methods with desirable level of effectiveness. In this review, we discussed and analyzed the information reported on the development of various management strategies for the management of R. solanacearum along with the comprehensive presentation on action mechanism of these management strategies. We have also made an effort to summarize the challenges that make hurdle in the effective management of this deadly pathogen. The analysis of the information in this review article will assist in future implications of management strategies and help in developing effective control measures with more efficacy.
Collapse
Affiliation(s)
- Zhaojun Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Wenbo Luo
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Shujia Cheng
- Economy College of Changchun University, Changchun, China
| | - Hongjie Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Jing Zong
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| | - Zhe Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China
- School of Environment, Northeast Normal University, Changchun, China
| |
Collapse
|
16
|
In through the Out Door: A Functional Virulence Factor Secretion System Is Necessary for Phage Infection in Ralstonia solanacearum. mBio 2022; 13:e0147522. [PMID: 36314808 PMCID: PMC9765573 DOI: 10.1128/mbio.01475-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Bacteriophages put intense selective pressure on microbes, which must evolve diverse resistance mechanisms to survive continuous phage attacks. We used a library of spontaneous Bacteriophage Insensitive Mutants (BIMs) to learn how the plant pathogen Ralstonia solanacearum resists the virulent lytic podophage phiAP1. Phenotypic and genetic characterization of many BIMs suggested that the R. solanacearum Type II Secretion System (T2SS) plays a key role in phiAP1 infection. Using precision engineered mutations that permit T2SS assembly but either inactivate the T2SS GspE ATPase or sterically block the secretion portal, we demonstrated that phiAP1 needs a functional T2SS to infect R. solanacearum. This distinction between the static presence of T2SS components, which is necessary but not sufficient for phage sensitivity, and the energized and functional T2SS, which is sufficient, implies that binding interactions alone cannot explain the role of the T2SS in phiAP1 infection. Rather, our results imply that some aspect of the resetting of the T2SS, such as disassembly of the pseudopilus, is required. Because R. solanacearum secretes multiple virulence factors via the T2SS, acquiring resistance to phiAP1 also dramatically reduced R. solanacearum virulence on tomato plants. This acute fitness trade-off suggests this group of phages may be a sustainable control strategy for an important crop disease. IMPORTANCE Ralstonia solanacearum is a destructive plant pathogen that causes lethal bacterial wilt disease in hundreds of diverse plant hosts, including many economically important crops. Phages that kill R. solanacearum could offer effective and environmentally friendly wilt disease control, but only if the bacterium cannot easily evolve resistance. Encouragingly, most R. solanacearum mutants resistant to the virulent lytic phage phiAP1 no longer secreted multiple virulence factors and had much reduced fitness and virulence on tomato plants. Further analysis revealed that phage phiAP1 needs a functional type II secretion system to infect R. solanacearum, suggesting this podophage uses a novel infection mechanism.
Collapse
|
17
|
Garvey M. Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics (Basel) 2022; 11:1324. [PMID: 36289982 PMCID: PMC9598955 DOI: 10.3390/antibiotics11101324] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Food safety and sustainable food production is an important part of the Sustainable Development goals aiming to safeguard the health and wellbeing of humans, animals and the environment. Foodborne illness is a major cause of morbidity and mortality, particularly as the global crisis of antimicrobial resistance proliferates. In order to actively move towards sustainable food production, it is imperative that green biocontrol options are implemented to prevent and mitigate infectious disease in food production. Replacing current chemical pesticides, antimicrobials and disinfectants with green, organic options such as biopesticides is a step towards a sustainable future. Bacteriophages, virus which infect and kill bacteria are an area of great potential as biocontrol agents in agriculture and aquaculture. Lytic bacteriophages offer many advantages over traditional chemical-based solutions to control microbiological contamination in the food industry. The innate specificity for target bacterial species, their natural presence in the environment and biocompatibility with animal and humans means phages are a practical biocontrol candidate at all stages of food production, from farm-to-fork. Phages have demonstrated efficacy as bio-sanitisation and bio-preservation agents against many foodborne pathogens, with activity against biofilm communities also evident. Additionally, phages have long been recognised for their potential as therapeutics, prophylactically and metaphylactically. Further investigation is warranted however, to overcome their limitations such as formulation and stability issues, phage resistance mechanisms and transmission of bacterial virulence factors.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
18
|
Yan J, Lin N, Wang X, Chen X, Wang H, Lin Q, Zhou X, Zhang L, Liao L. Markerless gene deletion in Ralstonia solanacearum based on its natural transformation competence. Front Microbiol 2022; 13:977580. [PMID: 36177460 PMCID: PMC9512648 DOI: 10.3389/fmicb.2022.977580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Ralstonia solanacearum species complex (RSSC) is a group of Gram-negative bacterial pathogen capable of infecting numerous plants and crops, causing severe vascular wilt diseases. Functional analysis of the genes associated with bacterial virulence is critical for elucidating the molecular mechanisms that govern the bacterial pathogenicity. To this end, an efficient gene deletion method would be of great help. In this study, we set to develop an efficient and simple markerless gene deletion method by exploiting its natural transformation competence and the FLP/FRT recombination system. We found that natural transformation using PCR products provided much higher transformation frequency than the plasmid-based triparental mating and electroporation. We thus generated the gene deletion fusion PCR fragments by incorporating the upstream and downstream DNA fragments of the target gene and an antibiotic resistance gene flanked by FRT sites, and delivered the PCR products into R. solanacearum cells through natural transformation. Using this method, we knocked out the epsB and phcA genes, which are associated with exopolysaccharide (EPS) biosynthesis and regulation, respectively, in several R. solanacearum strains isolated from different host plants at a frequency from 5 (1E-08) to 45 (1E-08). To remove the antibiotic marker gene, the plasmid expressing the FLP enzyme was introduced into the above knockout mutants, which enabled removal of the marker gene. The effective combination of natural transformation and the FLP/FRT recombination system thus offers a simple and efficient method for functional study of putative virulence genes and for elucidation of R. solanacearum pathogenic mechanisms.
Collapse
Affiliation(s)
- Jinli Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Nuoqiao Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoqing Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xuemei Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Huishan Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qiqi Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Lianhui Zhang,
| | - Lisheng Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Lisheng Liao,
| |
Collapse
|
19
|
Liu M, Tian Y, Zaki HEM, Ahmed T, Yao R, Yan C, Leptihn S, Loh B, Shahid MS, Wang F, Chen J, Li B. Phage Resistance Reduced the Pathogenicity of Xanthomonas oryzae pv. oryzae on Rice. Viruses 2022; 14:v14081770. [PMID: 36016392 PMCID: PMC9416502 DOI: 10.3390/v14081770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Plants grow together with microbes that have both negative and positive impacts on the host, while prokaryotes are in turn also hosts for viruses, co-evolving together in a complex interrelationship. Most research focuses on the interaction of either bacterial pathogens interacting with the plant host, or the impact on viruses on their pathogenic bacterial hosts. Few studies have investigated the co-evolution of bacterial pathogens with their host plants as well as with their bacterial viruses. In this work, we aimed to identify the genes that were associated with both phage sensitivity and host pathogenicity of the bacterium Xanthomonas oryzae pv. oryzae (Xoo), which is the most important bacterial rice pathogen. Using the Tn5 transposon mutation technology, we created a library of Xoo strain C2 comprising 4524 mutants, which were subsequently tested for phage infectability. The phage infection tests showed that less than 1% of the mutants (n = 36) were resistant to phage infection, which was attributed to the Tn5 insertion in 19 genes. Interestingly, three out of 19 genes that conveyed resistance to the phage resulted in reduced pathogenicity to rice seedlings compared to the wild type. We identified three genes involved in both phage infection and bacterial virulence, which were studied by knockout mutants and complementation experiments. All of the three knockout mutants were resistant to infection by phage X2, while the complemented strains restored the susceptibility to the bacterial virus. Surprisingly, the genes are also essential for pathogenicity, which we confirmed by single knockout mutants corresponding to the Tn5 mutants. All three genes are involved in lipopolysaccharide synthesis, thus changing the cell envelope surface molecule composition. Our work shows a possible balance in terms of the connection between bacterial virulence and phage resistance, supporting the deployment of phages for the biocontrol of plant pathogens.
Collapse
Affiliation(s)
- Mengju Liu
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ye Tian
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Rong Yao
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Sebastian Leptihn
- University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China
| | - Belinda Loh
- Fraunhofer Institute for Cell Therapy & Immunology (IZI), Department of Vaccines and Infection Models, Perlickstr. 1, 04103 Leipzig, Germany
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Fang Wang
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
- Correspondence: (F.W.); (J.C.); (B.L.) Tel.: +86-0571-88982412 (B.L.)
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (F.W.); (J.C.); (B.L.) Tel.: +86-0571-88982412 (B.L.)
| | - Bin Li
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (F.W.); (J.C.); (B.L.) Tel.: +86-0571-88982412 (B.L.)
| |
Collapse
|
20
|
Lipid-rich endo-metabolites from a vertically transmitted fungal endophyte Penicillium sp. PM031 attenuate virulence factors of phytopathogenic Ralstonia solanacearum. Microbiol Res 2022; 261:127058. [DOI: 10.1016/j.micres.2022.127058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/15/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
|
21
|
Sae-Ueng U, Bhunchoth A, Phironrit N, Treetong A, Sapcharoenkun C, Chatchawankanphanich O, Leartsakulpanich U, Chitnumsub P. Thermoresponsive C22 phage stiffness modulates the phage infectivity. Sci Rep 2022; 12:13001. [PMID: 35906255 PMCID: PMC9338302 DOI: 10.1038/s41598-022-16795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022] Open
Abstract
Bacteriophages offer a sustainable alternative for controlling crop disease. However, the lack of knowledge on phage infection mechanisms makes phage-based biological control varying and ineffective. In this work, we interrogated the temperature dependence of the infection and thermo-responsive behavior of the C22 phage. This soilborne podovirus is capable of lysing Ralstonia solanacearum, causing bacterial wilt disease. We revealed that the C22 phage could better infect the pathogenic host cell when incubated at low temperatures (25, 30 °C) than at high temperatures (35, 40 °C). Measurement of the C22 phage stiffness revealed that the phage stiffness at low temperatures was 2–3 times larger than at high temperatures. In addition, the imaging results showed that more C22 phage particles were attached to the cell surface at low temperatures than at high temperatures, associating the phage stiffness and the phage attachment. The result suggests that the structure and stiffness modulation in response to temperature change improve infection, providing mechanistic insight into the C22 phage lytic cycle. Our study signifies the need to understand phage responses to the fluctuating environment for effective phage-based biocontrol implementation.
Collapse
Affiliation(s)
- Udom Sae-Ueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Anjana Bhunchoth
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Namthip Phironrit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chaweewan Sapcharoenkun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
22
|
Wang K, Chen D, Liu Q, Zhu P, Sun M, Peng D. Isolation and Characterization of Novel Lytic Bacteriophage vB_RsoP_BMB50 infecting Ralstonia solanacearum. Curr Microbiol 2022; 79:245. [PMID: 35834130 DOI: 10.1007/s00284-022-02940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Ralstonia solanacearum is a soil-borne phytopathogen, and it can cause bacterial wilt disease in a variety of key crops around the world, thus resulting in enormous financial losses. However, there is a lack of effective, green, and safe prevention and control measures against increasingly devastating bacterial wilt disease. Bacteriophages (phages) are considered as potential biocontrol agents against bacterial wilt disease. Although many phages infecting R. solanacearum have been isolated, so far, these Ralstonia phages are still insufficient to deal with the diversity of the bacteria of R. solanacearum. In this study, a novel lytic bacteriophage vB_RsoP_BMB50 infecting multiple R. solanacearum was isolated from tomato fields in Dalian, China. Transmission electron microscopy and genomics analysis indicated that vB_RsoP_BMB50 belonged to the subfamily Okabevirinae, Autographiviridae family, and order Caudovirales, and it comprised a double-stranded DNA with a full length of 43,665 bp and a mean G+C content of 61.79%, containing 53 open reading frames (ORFs). This novel phage exhibited a large burst size, high temperature stability (4-50 °C), and strong pH tolerance (pH 5-10). Comparative analyses and phylogenetic analyses revealed that vB_RsoP_BMB50 represented a novel Ralstonia phage genus since it exhibited a low sequence similarity to other phages in the GenBank database. Due to its broad lytic spectrum, high thermal stability, and strong pH tolerance, vB_RsoP_BMB50 is considered as an effective candidate biocontrol agent against bacterial wilt disease caused by R. solanacearum.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dawei Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Quanrong Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
23
|
Erdrich SH, Sharma V, Schurr U, Arsova B, Frunzke J. Isolation of Novel Xanthomonas Phages Infecting the Plant Pathogens X. translucens and X. campestris. Viruses 2022; 14:1449. [PMID: 35891434 PMCID: PMC9316219 DOI: 10.3390/v14071449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
The genus of Xanthomonas contains many well-known plant pathogens with the ability to infect some of the most important crop plants, thereby causing significant economic damage. Unfortunately, classical pest-control strategies are neither particularly efficient nor sustainable and we are, therefore, in demand of alternatives. Here, we present the isolation and characterization of seven novel phages infecting the plant-pathogenic species Xanthomonas translucens and Xanthomonas campestris. Transmission electron microscopy revealed that all phages show a siphovirion morphology. The analysis of genome sequences and plaque morphologies are in agreement with a lytic lifestyle of the phages making them suitable candidates for biocontrol. Moreover, three of the isolated phages form the new genus "Shirevirus". All seven phages belong to four distinct clusters underpinning their phylogenetic diversity. Altogether, this study presents the first characterized isolates for the plant pathogen X. translucens and expands the number of available phages for plant biocontrol.
Collapse
Affiliation(s)
- Sebastian H. Erdrich
- Institute of Bio- and Geosciences, Department for Plant Sciences (IBG-2), Forschungszentrum Jülich, 52425 Jülich, Germany; (S.H.E.); (U.S.); (B.A.)
| | - Vikas Sharma
- Institute of Bio- and Geosciences, Department for Biotechnology (IBG-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Ulrich Schurr
- Institute of Bio- and Geosciences, Department for Plant Sciences (IBG-2), Forschungszentrum Jülich, 52425 Jülich, Germany; (S.H.E.); (U.S.); (B.A.)
| | - Borjana Arsova
- Institute of Bio- and Geosciences, Department for Plant Sciences (IBG-2), Forschungszentrum Jülich, 52425 Jülich, Germany; (S.H.E.); (U.S.); (B.A.)
| | - Julia Frunzke
- Institute of Bio- and Geosciences, Department for Biotechnology (IBG-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| |
Collapse
|
24
|
Biocontrol of bacterial wilt in tomato with a cocktail of lytic bacteriophages. Appl Microbiol Biotechnol 2022; 106:3837-3848. [PMID: 35562488 DOI: 10.1007/s00253-022-11962-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/02/2022]
Abstract
Bacteriophages (phages) have been proposed as promising alternative pesticides against various bacterial diseases of crops. However, the efficacy of phages in managing plant bacterial diseases is variable and poorly understood in natural settings. In this study, two lytic phages, RpT1 and RpY2, were investigated for their biocontrol potential against bacterial wilt by Ralstonia pseudosolanacearum invasion in tomato plants. The two phages possess similar morphology and genome organization to those of the Autographiviridae family with a broad host range. Treatment with the two phages (alone or in combination) resulted in a significant reduction in bacterial wilt incidence. Three days post-treatment with phages, which was performed after R. pseudosolanacearum inoculation with a specified density of 108 PFU (plaque forming units)/g of soil, led to the most effective biocontrol activity compared to other treatments and a lower density of phage. A phage cocktail containing both RpT1 and RpY2 suppressed disease symptoms in agricultural soils, mimicking their ability to control diseases in natural settings. Furthermore, supplementation with specific adjuvants enhanced the biocontrol potential of both phages. The persistence of the two phages under various environmental conditions indicates their stable activity in soils. Consequently, the consistent biocontrol activity of these phages provides insights into the proper application, timing, and density of phages for effective phage therapy in bacterial wilt control in tomato. KEY POINTS: • Biocontrol potential of phages in natural settings individually and as a cocktail. • Apparent long-term persistence of phages in natural soils, various temperatures, and pH. • An effective approach for developing phages for biocontrol.
Collapse
|
25
|
Korniienko N, Kharina A, Zrelovs N, Jindřichová B, Moravec T, Budzanivska I, Burketová L, Kalachova T. Isolation and Characterization of Two Lytic Phages Efficient Against Phytopathogenic Bacteria From Pseudomonas and Xanthomonas Genera. Front Microbiol 2022; 13:853593. [PMID: 35547140 PMCID: PMC9083414 DOI: 10.3389/fmicb.2022.853593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas syringae is a bacterial pathogen that causes yield losses in various economically important plant species. At the same time, P. syringae pv. tomato (Pst) is one of the best-studied bacterial phytopathogens and a popular model organism. In this study, we report on the isolation of two phages from the market-bought pepper fruit showing symptoms of bacterial speck. These Pseudomonas phages were named Eir4 and Eisa9 and characterized using traditional microbiological methods and whole-genome sequencing followed by various bioinformatics approaches. Both of the isolated phages were capable only of the lytic life cycle and were efficient against several pathovars from Pseudomonas and Xanthomonas genera. With the combination of transmission electron microscopy (TEM) virion morphology inspection and comparative genomics analyses, both of the phages were classified as members of the Autographiviridae family with different degrees of novelty within the known phage diversity. Eir4, but not Eisa9, phage application significantly decreased the propagation of Pst in the leaf tissues of Arabidopsis thaliana plants. The biological properties of Eir4 phage allow us to propose it as a potential biocontrol agent for use in the prevention of Pst-associated bacterioses and also as a model organism for the future research of mechanisms of phage-host interactions in different plant systems.
Collapse
Affiliation(s)
- Nataliia Korniienko
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Educational and Scientific Center (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Alla Kharina
- Educational and Scientific Center (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Rīga, Latvia
| | - Barbora Jindřichová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Tomaš Moravec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Iryna Budzanivska
- Educational and Scientific Center (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Lenka Burketová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Tetiana Kalachova
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
26
|
Viability, Stability and Biocontrol Activity in Planta of Specific Ralstonia solanacearum Bacteriophages after Their Conservation Prior to Commercialization and Use. Viruses 2022; 14:v14020183. [PMID: 35215777 PMCID: PMC8876693 DOI: 10.3390/v14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Ralstonia solanacearum is a pathogen that causes bacterial wilt producing severe damage in staple solanaceous crops. Traditional control has low efficacy and/or environmental impact. Recently, the bases of a new biotechnological method by lytic bacteriophages vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 with specific activity against R. solanacearum were established. However, some aspects remain unknown, such as the survival and maintenance of the lytic activity after submission to a preservation method as the lyophilization. To this end, viability and stability of lyophilized vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 and their capacity for bacterial wilt biocontrol have been determined against one pathogenic Spanish reference strain of R. solanacearum in susceptible tomato plants in different conditions and making use of various cryoprotectants. The assays carried out have shown satisfactory results with respect to the viability and stability of the bacteriophages after the lyophilization process, maintaining high titers throughout the experimental period, and with respect to the capacity of the bacteriophages for the biological control of bacterial wilt, controlling this disease in more than 50% of the plants. The results offer good prospects for the use of lyophilization as a conservation method for the lytic bacteriophages of R. solanacearum in view of their commercialization as biocontrol agents.
Collapse
|
27
|
Farooq T, Hussain MD, Shakeel MT, Tariqjaveed M, Aslam MN, Naqvi SAH, Amjad R, Tang Y, She X, He Z. Deploying Viruses against Phytobacteria: Potential Use of Phage Cocktails as a Multifaceted Approach to Combat Resistant Bacterial Plant Pathogens. Viruses 2022; 14:171. [PMID: 35215763 PMCID: PMC8879233 DOI: 10.3390/v14020171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Plants in nature are under the persistent intimidation of severe microbial diseases, threatening a sustainable food production system. Plant-bacterial pathogens are a major concern in the contemporary era, resulting in reduced plant growth and productivity. Plant antibiotics and chemical-based bactericides have been extensively used to evade plant bacterial diseases. To counteract this pressure, bacteria have evolved an array of resistance mechanisms, including innate and adaptive immune systems. The emergence of resistant bacteria and detrimental consequences of antimicrobial compounds on the environment and human health, accentuates the development of an alternative disease evacuation strategy. The phage cocktail therapy is a multidimensional approach effectively employed for the biocontrol of diverse resistant bacterial infections without affecting the fauna and flora. Phages engage a diverse set of counter defense strategies to undermine wide-ranging anti-phage defense mechanisms of bacterial pathogens. Microbial ecology, evolution, and dynamics of the interactions between phage and plant-bacterial pathogens lead to the engineering of robust phage cocktail therapeutics for the mitigation of devastating phytobacterial diseases. In this review, we highlight the concrete and fundamental determinants in the development and application of phage cocktails and their underlying mechanism, combating resistant plant-bacterial pathogens. Additionally, we provide recent advances in the use of phage cocktail therapy against phytobacteria for the biocontrol of devastating plant diseases.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Muhammad Dilshad Hussain
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, China;
| | - Muhammad Taimoor Shakeel
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Rizwa Amjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| |
Collapse
|
28
|
Biosca EG, Català-Senent JF, Figàs-Segura À, Bertolini E, López MM, Álvarez B. Genomic Analysis of the First European Bacteriophages with Depolymerase Activity and Biocontrol Efficacy against the Phytopathogen Ralstonia solanacearum. Viruses 2021; 13:v13122539. [PMID: 34960808 PMCID: PMC8703784 DOI: 10.3390/v13122539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
Ralstonia solanacearum is the causative agent of bacterial wilt, one of the most destructive plant diseases. While chemical control has an environmental impact, biological control strategies can allow sustainable agrosystems. Three lytic bacteriophages (phages) of R. solanacearum with biocontrol capacity in environmental water and plants were isolated from river water in Europe but not fully analysed, their genomic characterization being fundamental to understand their biology. In this work, the phage genomes were sequenced and subjected to bioinformatic analysis. The morphology was also observed by electron microscopy. Phylogenetic analyses were performed with a selection of phages able to infect R. solanacearum and the closely related phytopathogenic species R. pseudosolanacearum. The results indicated that the genomes of vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 range from 40,688 to 41,158 bp with almost 59% GC-contents, 52 ORFs in vRsoP-WF2 and vRsoP-WM2, and 53 in vRsoP-WR2 but, with only 22 or 23 predicted proteins with functional homologs in databases. Among them, two lysins and one exopolysaccharide (EPS) depolymerase, this type of depolymerase being identified in R. solanacearum phages for the first time. These three European phages belong to the same novel species within the Gyeongsanvirus, Autographiviridae family (formerly Podoviridae). These genomic data will contribute to a better understanding of the abilities of these phages to damage host cells and, consequently, to an improvement in the biological control of R. solanacearum.
Collapse
Affiliation(s)
- Elena G. Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Correspondence:
| | - José Francisco Català-Senent
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Centro de Investigación Príncipe Felipe, Unidad de Bioinformática y Bioestadística, 46012 Valencia, Spain
| | - Àngela Figàs-Segura
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
| | - Edson Bertolini
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91540-000, Brazil
| | - María M. López
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain;
| | - Belén Álvarez
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain; (J.F.C.-S.); (À.F.-S.); (E.B.); (B.Á.)
- Departamento de Investigación Aplicada y Extensión Agraria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28800 Alcalá de Henares, Spain
| |
Collapse
|
29
|
Ahmad AA, Addy HS, Huang Q. Biological and Molecular Characterization of a Jumbo Bacteriophage Infecting Plant Pathogenic Ralstonia solanacearum Species Complex Strains. Front Microbiol 2021; 12:741600. [PMID: 34646257 PMCID: PMC8504454 DOI: 10.3389/fmicb.2021.741600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
A jumbo phage infecting Ralstonia solanacearum species complex strains, designated RsoM2USA, was isolated from soil of a tomato field in Florida, United States, and belongs to the family Myoviridae. The phage has a long latent period of 270 min and completed its infection cycle in 360 min with a burst size of approximately 32 particles per cell. With a genome size of 343,806 bp, phage RsoM2USA is the largest Ralstonia-infecting phage sequenced and reported to date. Out of the 486 ORFs annotated for RsoM2USA, only 80 could be assigned putative functions in replication, transcription, translation including 44 tRNAs, and structure with the main structural proteins experimentally confirmed. Phylogenetic analyses placed RsoM2USA in the same clade as Xanthomonas phage XacN1, prompting a proposal of a new genus for the two jumbo phages. Jumbo phage RsoM2USA is a lytic phage and has a wide host range, infecting each of the three newly established Ralstonia species: R. solanacearum, R. pseudosolanacearum, and R. syzygii, and significantly reduced the virulence of its susceptible R. solanacearum strain RUN302 in tomato plants, suggesting that this jumbo phage has the potential to be developed into an effective control against diseases caused by R. solanacearum species complex strains.
Collapse
Affiliation(s)
- Abdelmonim Ali Ahmad
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Hardian Susilo Addy
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
- Department of Plant Protection, Faculty of Agriculture, University of Jember, Jember, Indonesia
| | - Qi Huang
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
30
|
Salazar MM, Pupo MT, Brown AMV. Co-Occurrence of Viruses, Plant Pathogens, and Symbionts in an Underexplored Hemipteran Clade. Front Cell Infect Microbiol 2021; 11:715998. [PMID: 34513731 PMCID: PMC8426549 DOI: 10.3389/fcimb.2021.715998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 12/05/2022] Open
Abstract
Interactions between insect symbionts and plant pathogens are dynamic and complex, sometimes involving direct antagonism or synergy and sometimes involving ecological and evolutionary leaps, as insect symbionts transmit through plant tissues or plant pathogens transition to become insect symbionts. Hemipterans such as aphids, whiteflies, psyllids, leafhoppers, and planthoppers are well-studied plant pests that host diverse symbionts and vector plant pathogens. The related hemipteran treehoppers (family Membracidae) are less well-studied but offer a potentially new and diverse array of symbionts and plant pathogenic interactions through their distinct woody plant hosts and ecological interactions with diverse tending hymenopteran taxa. To explore membracid symbiont–pathogen diversity and co-occurrence, this study performed shotgun metagenomic sequencing on 20 samples (16 species) of treehopper, and characterized putative symbionts and pathogens using a combination of rapid blast database searches and phylogenetic analysis of assembled scaffolds and correlation analysis. Among the 8.7 billion base pairs of scaffolds assembled were matches to 9 potential plant pathogens, 12 potential primary and secondary insect endosymbionts, numerous bacteriophages, and other viruses, entomopathogens, and fungi. Notable discoveries include a divergent Brenneria plant pathogen-like organism, several bee-like Bombella and Asaia strains, novel strains of Arsenophonus-like and Sodalis-like symbionts, Ralstonia sp. and Ralstonia-type phages, Serratia sp., and APSE-type phages and bracoviruses. There were several short Phytoplasma and Spiroplasma matches, but there was no indication of plant viruses in these data. Clusters of positively correlated microbes such as yeast-like symbionts and Ralstonia, viruses and Serratia, and APSE phage with parasitoid-type bracoviruses suggest directions for future analyses. Together, results indicate membracids offer a rich palette for future study of symbiont–plant pathogen interactions.
Collapse
Affiliation(s)
- McKinlee M Salazar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Mônica T Pupo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
31
|
Green Synthesis of ZnO Nanoparticles Using <i>Ca</i><i>esalpinia sappan</i> Leaf Extracts and its Antibacterial Activity on <i>Ralstonia solanacearum</i>. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.52.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract. Zinc oxide nanoparticles (ZnO NPs) are known to be one of the multifunctional inorganic nanoparticles with its application in the treatment of bacterial pathogens, especially when synthesized through green nanotechnology. In this study, ZnO NPs were successfully synthesized through co-precipitation method and its antibacterial activity against Ralstonia solanacearum was evaluated. Surface morphology through scanning electron microscope (SEM) exhibited an agglomerated rod-like structures, with a mean particle size of 180.9 nm. Phytochemical screening was performed through various chemical qualitative tests, to which the presence of terpenoids and cardiac glycosides in Caesalpinia sappan leaves was confirmed in the aqueous extract. Five treatments were evaluated against R. Solanacearum in terms of their zone of inhibition. The highest zone of inhibition from the different concentrations was observed from the positive control (Gentamicin) with a mean value of 34.47 mm, followed by 0.57 g/mL ZnO NPs with a mean value of 21.69 mm, and no zone of inhibition on the negative control, 0.28 g/mL, and 0.19 g/mL of synthesized ZnO NPs. Antibacterial activity of ZnO using disc diffusion method resulted in a significant zone of inhibition which proves that synthesized nanoparticles can be used as a potent antibacterial agent against R. solanacearum.
Collapse
|
32
|
Phages in Food Industry Biocontrol and Bioremediation. Antibiotics (Basel) 2021; 10:antibiotics10070786. [PMID: 34203362 PMCID: PMC8300737 DOI: 10.3390/antibiotics10070786] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Bacteriophages are ubiquitous in nature and their use is a current promising alternative in biological control. Multidrug resistant (MDR) bacterial strains are present in the livestock industry and phages are attractive candidates to eliminate them and their biofilms. This alternative therapy also reduces the non-desirable effects produced by chemicals on food. The World Health Organization (WHO) estimates that around 420,000 people die due to a foodborne illness annually, suggesting that an improvement in food biocontrol is desirable. This review summarizes relevant studies of phage use in biocontrol focusing on treatments in live animals, plants, surfaces, foods, wastewaters and bioremediation.
Collapse
|
33
|
Cristobal-Cueto P, García-Quintanilla A, Esteban J, García-Quintanilla M. Phages in Food Industry Biocontrol and Bioremediation. Antibiotics (Basel) 2021; 10:antibiotics10070786. [PMID: 34203362 DOI: 10.3390/antibiotic6as10070786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 05/28/2023] Open
Abstract
Bacteriophages are ubiquitous in nature and their use is a current promising alternative in biological control. Multidrug resistant (MDR) bacterial strains are present in the livestock industry and phages are attractive candidates to eliminate them and their biofilms. This alternative therapy also reduces the non-desirable effects produced by chemicals on food. The World Health Organization (WHO) estimates that around 420,000 people die due to a foodborne illness annually, suggesting that an improvement in food biocontrol is desirable. This review summarizes relevant studies of phage use in biocontrol focusing on treatments in live animals, plants, surfaces, foods, wastewaters and bioremediation.
Collapse
Affiliation(s)
- Pablo Cristobal-Cueto
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | - Alberto García-Quintanilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Calle Profesor García Gonzalez, 2, 41012 Seville, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | | |
Collapse
|
34
|
Elsayed TR, Grosch R, Smalla K. Potato plant spheres and to a lesser extent the soil type influence the proportion and diversity of bacterial isolates with in vitro antagonistic activity towards Ralstonia solanacearum. FEMS Microbiol Ecol 2021; 97:6155061. [PMID: 33674848 DOI: 10.1093/femsec/fiab038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ralstonia solanacearum biovar2-race3 (Rs r3b2) is an epidemic soil-borne bacterial phytopathogen causing brown rot disease in potato. In this study, we assessed how three soil types stored at the same field site influenced the proportion and diversity of bacterial isolates with in vitro antagonistic activity towards Rs in bulk soil and different potato plant spheres (rhizosphere, endorhiza and endocaulosphere; ecto- and endosphere of seed and yield tubers). In general, the plate counts observed for each sample type were not significantly different. A total of 96 colonies per sample type was picked and screened for in vitro antagonistic activity against Rs. Antagonists were obtained from all bulk soils and plant spheres with the highest proportion obtained from the endorhiza and endocaulosphere of potato plants. BOX-PCR fingerprints of antagonists showed that some were specific for particular plant spheres independent of the soil type, while others originated from different plant spheres of a particular soil type. The majority of antagonists belonged to Pseudomonas. A high proportion of antagonists produced siderophores, and interestingly antagonists from potato tubers frequently carried multiple antibiotic production genes. Our data showed an enrichment of bacteria with genes or traits potentially involved in biocontrol in the rhizosphere and in endophytic compartments. We report that the proportion and diversity of in vitro antagonists towards Rs isolated from bulk soil and different spheres of potato plants grown under field conditions in three different soil types was mainly shaped by the plant sphere and to a lesser extent by the soil type. Bacteria with antagonistic activity towards Ralstonia solanacearum were isolated from all plant spheres and bulk soils but their proportion was highest in endophytic compartments.
Collapse
Affiliation(s)
- Tarek R Elsayed
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany.,Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Plant-Microbe Systems, Großbeeren, Germany
| | - Kornelia Smalla
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
35
|
Sasaki R, Miyashita S, Ando S, Ito K, Fukuhara T, Takahashi H. Isolation and Characterization of a Novel Jumbo Phage from Leaf Litter Compost and Its Suppressive Effect on Rice Seedling Rot Diseases. Viruses 2021; 13:v13040591. [PMID: 33807245 PMCID: PMC8066314 DOI: 10.3390/v13040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Jumbo phages have DNA genomes larger than 200 kbp in large virions composed of an icosahedral head, tail, and other adsorption structures, and they are known to be abundant biological substances in nature. In this study, phages in leaf litter compost were screened for their potential to suppress rice seedling rot disease caused by the bacterium Burkholderia glumae, and a novel phage was identified in a filtrate-enriched suspension of leaf litter compost. The phage particles consisted of a rigid tailed icosahedral head and contained a DNA genome of 227,105 bp. The phage could lyse five strains of B. glumae and six strains of Burkholderia plantarii. The phage was named jumbo Burkholderia phage FLC6. Proteomic tree analysis revealed that phage FLC6 belongs to the same clade as two jumbo Ralstonia phages, namely RSF1 and RSL2, which are members of the genus Chiangmaivirus (family: Myoviridae; order: Caudovirales). Interestingly, FLC6 could also lyse two strains of Ralstonia pseudosolanacearum, the causal agent of bacterial wilt, suggesting that FLC6 has a broad host range that may make it especially advantageous as a bio-control agent for several bacterial diseases in economically important crops. The novel jumbo phage FLC6 may enable leaf litter compost to suppress several bacterial diseases and may itself be useful for controlling plant diseases in crop cultivation.
Collapse
Affiliation(s)
- Ryota Sasaki
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Kumiko Ito
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan;
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza-Aoba, Sendai 980-0845, Japan; (R.S.); (S.M.); (S.A.); (K.I.)
- Correspondence: ; Tel.: +81-812-2757-4300
| |
Collapse
|
36
|
Trotereau A, Boyer C, Bornard I, Pécheur MJB, Schouler C, Torres-Barceló C. High genomic diversity of novel phages infecting the plant pathogen Ralstonia solanacearum, isolated in Mauritius and Reunion islands. Sci Rep 2021; 11:5382. [PMID: 33686106 PMCID: PMC7940629 DOI: 10.1038/s41598-021-84305-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/11/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is among the most important plant diseases worldwide, severely affecting a high number of crops and ornamental plants in tropical regions. Only a limited number of phages infecting R. solanacearum have been isolated over the years, despite the importance of this bacterium and the associated plant disease. The antibacterial effect or morphological traits of these R. solanacearum viruses have been well studied, but not their genomic features, which need deeper consideration. This study reports the full genome of 23 new phages infecting RSSC isolated from agricultural samples collected in Mauritius and Reunion islands, particularly affected by this plant bacterial pathogen and considered biodiversity hotspots in the Southwest Indian Ocean. The complete genomic information and phylogenetic classification is provided, revealing high genetic diversity between them and weak similarities with previous related phages. The results support our proposal of 13 new species and seven new genera of R. solanacearum phages. Our findings highlight the wide prevalence of phages of RSSC in infected agricultural settings and the underlying genetic diversity. Discoveries of this kind lead more insight into the diversity of phages in general and to optimizing their use as biocontrol agents of bacterial diseases of plants in agriculture.
Collapse
Affiliation(s)
| | - Claudine Boyer
- Plant Populations and Bio-aggressors in Tropical Ecosystems, Saint Pierre, Reunion, France
| | | | | | | | - Clara Torres-Barceló
- Plant Populations and Bio-aggressors in Tropical Ecosystems, Saint Pierre, Reunion, France. .,Plant Pathology, INRAE, 84140, Montfavet, France.
| |
Collapse
|
37
|
Molina F, Simancas A, Ramírez M, Tabla R, Roa I, Rebollo JE. A New Pipeline for Designing Phage Cocktails Based on Phage-Bacteria Infection Networks. Front Microbiol 2021; 12:564532. [PMID: 33664712 PMCID: PMC7920989 DOI: 10.3389/fmicb.2021.564532] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, the spread of antibiotic-resistant bacteria and efforts to preserve food microbiota have induced renewed interest in phage therapy. Phage cocktails, instead of a single phage, are commonly used as antibacterial agents since the hosts are unlikely to become resistant to several phages simultaneously. While the spectrum of activity might increase with cocktail complexity, excessive phages could produce side effects, such as the horizontal transfer of genes that augment the fitness of host strains, dysbiosis or high manufacturing costs. Therefore, cocktail formulation represents a compromise between achieving substantial reduction in the bacterial loads and restricting its complexity. Despite the abovementioned points, the observed bacterial load reduction does not increase significantly with the size of phage cocktails, indicating the requirement for a systematic approach to their design. In this work, the information provided by host range matrices was analyzed after building phage-bacteria infection networks (PBINs). To this end, we conducted a meta-analysis of 35 host range matrices, including recently published studies and new datasets comprising Escherichia coli strains isolated during ripening of artisanal raw milk cheese and virulent coliphages from ewes' feces. The nestedness temperature, which reflects the host range hierarchy of the phages, was determined from bipartite host range matrices using heuristic (Nestedness Temperature Calculator) and genetic (BinMatNest) algorithms. The latter optimizes matrix packing, leading to lower temperatures, i.e., it simplifies the identification of the phages with the broadest host range. The structure of infection networks suggests that generalist phages (and not specialist phages) tend to succeed in infecting less susceptible bacteria. A new metric (Φ), which considers some properties of the host range matrices (fill, temperature, and number of bacteria), is proposed as an estimator of phage cocktail size. To identify the best candidates, agglomerative hierarchical clustering using Ward's method was implemented. Finally, a cocktail was formulated for the biocontrol of cheese-isolated E. coli, reducing bacterial counts by five orders of magnitude.
Collapse
Affiliation(s)
- Felipe Molina
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Alfredo Simancas
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Manuel Ramírez
- Microbiology, Department of Biomedical Sciences, University of Extremadura, Badajoz, Spain
| | - Rafael Tabla
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - Isidro Roa
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - José Emilio Rebollo
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| |
Collapse
|
38
|
Kessell AK, McCullough HC, Auchtung JM, Bernstein HC, Song HS. Predictive interactome modeling for precision microbiome engineering. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
39
|
Holtappels D, Fortuna K, Lavigne R, Wagemans J. The future of phage biocontrol in integrated plant protection for sustainable crop production. Curr Opin Biotechnol 2020; 68:60-71. [PMID: 33176252 DOI: 10.1016/j.copbio.2020.08.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Bacterial phytopathogens significantly reduce crop yields and hence, pose a threat to the food supply of our increasing world population. In this context, bacteriophages are investigated as potential sustainable biocontrol agents. Here, recent advances in phage biocontrol are reviewed and considered within the framework of integrated plant protection strategies. This shows that understanding the pathogen's biology is crucial to develop a targeted strategy, tailored to individual pathosystems and driven by biotechnological insights. Moreover, the potential synergy of phages in contemporary farming practices based on the Internet of Things is proposed, potentially enabling a timely and cost-efficient treatment of plants at an early stage of the disease. Finally, these prospects are placed in the regulatory context of virus-oriented integrated pest control.
Collapse
Affiliation(s)
| | - Kiandro Fortuna
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Belgium.
| |
Collapse
|
40
|
Thanh NC, Nagayoshi Y, Fujino Y, Iiyama K, Furuya N, Hiromasa Y, Iwamoto T, Doi K. Characterization and Genome Structure of Virulent Phage EspM4VN to Control Enterobacter sp. M4 Isolated From Plant Soft Rot. Front Microbiol 2020; 11:885. [PMID: 32582040 PMCID: PMC7283392 DOI: 10.3389/fmicb.2020.00885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Enterobacter sp. M4 and other bacterial strains were isolated from plant soft rot disease. Virulent phages such as EspM4VN isolated from soil are trending biological controls for plant disease. This phage has an icosahedral head (100 nm in diameter), a neck, and a contractile sheath (100 nm long and 18 nm wide). It belongs to the Ackermannviridae family and resembles Shigella phage Ag3 and Dickeya phages JA15 and XF4. We report herein that EspM4VN was stable from 10°C to 50°C and pH 4 to 10 but deactivated at 70°C and pH 3 and 12. This phage formed clear plaques only on Enterobacter sp. M4 among tested bacterial strains. A one-step growth curve showed that the latent phase was 20 min, rise period was 10 min, and an average of 122 phage particles were released from each absorbed cell. We found the phage’s genome size was 160,766 bp and that it annotated 219 open reading frames. The genome organization of EspM4VN has high similarity with the Salmonella phage SKML-39; Dickeya phages Coodle, PP35, JA15, and Limestone; and Shigella phage Ag3. The phage EspM4VN has five tRNA species, four tail-spike proteins, and a thymidylate synthase. Phylogenetic analysis based on structural proteins and enzymes indicated that EspM4VN was identified as a member of the genus Agtrevirus, subfamily Aglimvirinae, family Ackermannviridae.
Collapse
Affiliation(s)
- Nguyen Cong Thanh
- Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.,Plant Protection Research Institute, Hanoi, Vietnam
| | - Yuko Nagayoshi
- Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Fujino
- Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Iiyama
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Naruto Furuya
- Laboratory of Plant Pathology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yasuaki Hiromasa
- Attached Promotive Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takeo Iwamoto
- Core Research Facilities for Basic Science, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsumi Doi
- Microbial Genetics Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
41
|
Castillo JA, Secaira-Morocho H, Maldonado S, Sarmiento KN. Diversity and Evolutionary Dynamics of Antiphage Defense Systems in Ralstonia solanacearum Species Complex. Front Microbiol 2020; 11:961. [PMID: 32508782 PMCID: PMC7251935 DOI: 10.3389/fmicb.2020.00961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Over the years, many researchers have reported a great diversity of bacteriophages infecting members of the Ralstonia solanacearum species complex (RSSC). This diversity has driven bacterial evolution by leading the emergence and maintenance of bacterial defense systems to combat phage infection. In this work, we present an in silico study of the arsenal of defense systems that RSSC harbors and their evolutionary history. For this purpose, we used a combination of genomic, phylogenetic and associative methods. We found that in addition to the CRISPR-Cas system already reported, there are eight other antiphage defense systems including the well-known Restriction-Modification and Toxin-Antitoxin systems. Furthermore, we found a tenth defense system, which is dedicated to reducing the incidence of plasmid transformation in bacteria. We undertook an analysis of the gene gain and loss patterns of the defense systems in 15 genomes of RSSC. Results indicate that the dynamics are inclined toward the gain of defense genes as opposed to the rest of the genes that were preferably lost throughout evolution. This was confirmed by evidence on independent gene acquisition that has occurred by profuse horizontal transfer. The mutation and recombination rates were calculated as a proxy of evolutionary rates. Again, genes encoding the defense systems follow different rates of evolution respect to the rest of the genes. These results lead us to conclude that the evolution of RSSC defense systems is highly dynamic and responds to a different evolutionary regime than the rest of the genes in the genomes of RSSC.
Collapse
Affiliation(s)
- José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Henry Secaira-Morocho
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Stephanie Maldonado
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Katlheen N Sarmiento
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|