1
|
Sun Y, Liu K, Liu Z, Liu Y, Yang X, Du B, Li X, Li N, Zhou B, Zhu X, Wang H, Peng B, Wang C. Bacillus paralicheniformis SYN-191 isolated from ginger rhizosphere soil and its growth-promoting effects in ginger farming. BMC Microbiol 2025; 25:75. [PMID: 39953394 PMCID: PMC11829480 DOI: 10.1186/s12866-025-03791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND The use of chemical fertilizers and pesticides and the farming without crop rotation may negatively impact the microbial community and the quality of the soils in ginger farm. It is important to improve soil properties to promote the healthy growth of ginger in ginger farm. RESULTS We isolated and identified the pathogenic Fusarium ramigenum from infected ginger roots. We then isolated a new Bacillus paralicheniformis strain SYN-191 from the rhizosphere soil around healthy ginger roots, and showed B. paralicheniformis SYN-91 could inhibit F. ramigenum growth, degrade proteins, dissolve silicate, and decompose cellulose. SYN-191 treatment significantly improved the agronomic traits of ginger seedlings in healthy soil and continuous cropping soil. Furthermore, SYN-191 treatment restructured the microbial microbiomes in rhizosphere soil, including reducing the number of harmful fungi, such as Fusarium, and increasing the beneficial bacterial populations such as Bacillus and Pseudomonas. Field experiments showed that SYN-191 application increased ginger yield by 26.47% (P < 0.01). Whole-genome sequencing of strain SYN-191 revealed the relevant genes for antibiotic synthesis, potassium dissolution, and cellulose decomposition. CONCLUSIONS A new plant-growth-promoting B. paralicheniformis SYN-191 was obtained. This strain could antagonize ginger root rot pathogenic fungus, improve agronomic traits and ginger yield in field, and improve the microbial community structure in the ginger rhizosphere soil. This study provides a valuable bacterial resource for overcoming obstacles in the continuous cropping of ginger.
Collapse
Affiliation(s)
- Yanan Sun
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Kai Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Zhongliang Liu
- Tai'an Academy of Agricultural Sciences, Tai'an, 271000, China
| | - Yayu Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Xuerong Yang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Binghai Du
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Xiang Li
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Bo Zhou
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Bingyin Peng
- ARC Centre of Excellence in Synthetic Biology, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, China.
| |
Collapse
|
2
|
Li M, Li W, Wang C, Ji L, Han K, Gong J, Dong S, Wang H, Zhu X, Du B, Liu K, Jiang J, Wang C. Growth-promoting effects of self-selected microbial community on wheat seedlings in saline-alkali soil environments. Front Bioeng Biotechnol 2024; 12:1464195. [PMID: 39734744 PMCID: PMC11671506 DOI: 10.3389/fbioe.2024.1464195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Saline-alkali land is a type of soil environment that causes poor crop growth and low yields. Its management and utilization are, therefore of great significance for increasing arable land resources, ensuring food security, and enhancing agricultural production capacity. The application of plant growth-promoting rhizobacteria (PGPR) is an effective way to promote the establishment of symbiotic relationships between plants and the rhizosphere microenvironment, plant growth and development, and plant resistance to saline-alkali stress. In this study, multiple saline-alkali-resistant bacteria were screened from a saline-alkali land environment and some of them were found to have significantly promotive effects on the growth of wheat seedlings under saline-alkali stress. Using these PGPR, a compound microbial community was selectively obtained from the root-zone soil environment of wheat seedlings, and the metagenomic sequencing analysis of wheat root-zone soil microbiomes was performed. As a result, a compound microbial agent with a Kocuria dechangensis 5-33:Rossellomorea aquimaris S-3:Bacillus subtilis BJYX:Bacillus velezensis G51-1 ratio of 275:63:5:1 was obtained through the self-selection of wheat seedlings. The synthetic compound microbial agent significantly improved the growth of wheat seedlings in saline-alkali soil, as the physiological plant height, aboveground and underground fresh weights, and aboveground and underground dry weights of 21-day-old wheat seedlings were increased by 27.39% (p < 0.01), 147.33% (p < 0.01), 282.98% (p < 0.01), 194.86% (p < 0.01), and 218.60% (p < 0.01), respectively. The promoting effect of this compound microbial agent was also greater than that of each strain on the growth of wheat seedlings. This microbial agent could also regulate some enzyme activities of wheat seedlings and the saline-alkali soil, thereby, promoting the growth of these seedlings. In this study, we analyze an efficient microbial agent and the theoretical basis for promoting the growth of wheat seedlings under saline-alkali stress, thereby, suggesting an important solution for the management and utilization of saline-alkali land.
Collapse
Affiliation(s)
- Min Li
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Wenjie Li
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chunxue Wang
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kun Han
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Jiahui Gong
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Siyuan Dong
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Binghai Du
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Kai Liu
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Chengqiang Wang
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
3
|
Sommerfeld S, Dos Santos Tomais LF, Gomes LR, Silva MVC, Pedrosa IE, Vieira DS, Peluco AC, de Azevedo VAC, Fonseca BB. The Resistance of Bacillus Spores: Implications for the Strain-Specific Response to High-Performance Disinfectants. Curr Microbiol 2024; 81:339. [PMID: 39225833 DOI: 10.1007/s00284-024-03872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Bacterial spores in materials and equipment pose significant biosecurity risks, making effective disinfection crucial. This study evaluated Ortho-phthalaldehyde (OPA) and a quaternary ammonia-glutaraldehyde solution (AG) for inactivating spores of Bacillus thuringiensis (BT), B. cereus (BC), and two strains of B. velezensis (BV1 and BV2). Spores of BV1 and BT were treated with 22.5 mg/m3 OPA by dry fumigation or 1 mg/mL AG by spray for 20 min, according to the manufacturer's recommendation. As no sporicidal effect was observed, OPA was tested at 112.5 mg/m3 for 40 min, showing effectiveness for BT but not for BV1. Minimum bactericidal concentration (MBC) tests revealed higher MBC values for glutaraldehyde, prompting an overnight test with 112.5 mg/m3 OPA by dry fumigation and 50 mg/mL AG by spray, using formaldehyde as a control. AG reduced all Bacillus strains, but with limited sporicidal effect. OPA was sporicidal for BT and BV1 but not for BC and BV2, indicating a strain-dependent effect. Formaldehyde performed better overall but did not completely inactivate BV2 spores. Our findings suggest that OPA and AG have potential as formaldehyde replacements in wet disinfection procedures.
Collapse
Affiliation(s)
- Simone Sommerfeld
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil.
| | - Lidianne Fabricia Dos Santos Tomais
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Lara Reis Gomes
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Maysa Vitória Cunha Silva
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Isabelle Ezequiel Pedrosa
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Danielle Silva Vieira
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Arthur Campoi Peluco
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | | | - Belchiolina Beatriz Fonseca
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
4
|
Hirozawa MT, Ono MA, de Souza Suguiura IM, Bordini JG, Hirooka EY, Ono EYS. Antifungal effect and some properties of cell-free supernatants of two Bacillus subtilis isolates against Fusarium verticillioides. Braz J Microbiol 2024; 55:2527-2538. [PMID: 38862737 PMCID: PMC11405350 DOI: 10.1007/s42770-024-01414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Fusarium verticillioides causes significant decrease in corn yield and quality, and produces fumonisins, which represent a serious risk to human and animal health. Bacillus species can be an effective and environmentally friendly alternative for F. verticillioides biological control. In this study, some properties of cell-free supernatants (CFSs) of two Bacillus spp. identified as Bacillus subtilis (NT1, NT2) as well as the antifungal effect against F. verticillioides 97L were evaluated. B. subtilis NT1 and NT2 were isolated from commercially available fermented whole soybeans (Nattō). Antifungal activity was observed in both CFSs of B. subtilis isolates (50-59 mm) obtained by co-culture suggesting that antifungal compound production depends on interaction between bacteria and fungi. Cell-free supernatants from the two B. subtilis isolates inhibited mycelial growth (77%-94%) and conidial germination (22%-74%) of F. verticillioides 97L. In addition, CFSs caused significant morphological changes such as distorted and collapsed hyphae with wrinkled surfaces and the presence of a large amount of extracellular material compared to the control without CFSs. Both B. subtilis isolates (NT1 and NT2) produced extracellular proteases, biosurfactants and polar low molecular weight compounds that probably act synergistically and may contribute to the antifungal activity. Antifungal compounds showed heat and pH stability and resistance to proteolytic enzymes. Furthermore, antifungal compounds showed high polarity, high affinity to water and a molecular weight less than 10 kDa. These results indicated that the two B. subtilis (NT1 and NT2) have potential as biocontrol agents for F. verticillioides.
Collapse
Affiliation(s)
- Melissa Tiemi Hirozawa
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Mario Augusto Ono
- Department of Immunology, Parasitology and General Pathology, P.O. box 10.011, Londrina, Paraná, 86057-970, Brazil
| | | | - Jaqueline Gozzi Bordini
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Elisa Yoko Hirooka
- Department of Food Science and Technology, State University of Londrina, P.O. box 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Elisabete Yurie Sataque Ono
- Department of Biochemistry and Biotechnology, State University of Londrina, P.O. box 10.011, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
5
|
Tang T, Wang F, Huang H, Xie N, Guo J, Guo X, Duan Y, Wang X, Wang Q, You J. Antipathogenic Activities of Volatile Organic Compounds Produced by Bacillus velezensis LT1 against Sclerotium rolfsii LC1, the Pathogen of Southern Blight in Coptis chinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10282-10294. [PMID: 38657235 DOI: 10.1021/acs.jafc.4c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This study explores the antipathogenic properties of volatile organic compounds (VOCs) produced by Bacillus velezensis LT1, isolated from the rhizosphere soil of Coptis chinensis. The impact of these VOCs on the mycelial growth of Sclerotium rolfsii LC1, the causative agent of southern blight in C. chinensis, was evaluated using a double Petri-dish assay. The biocontrol efficacy of these VOCs was further assessed through leaf inoculation and pot experiments. Antifungal VOCs were collected using headspace solid-phase microextraction (SPME), and their components were identified via gas chromatography-mass spectrometry (GC-MS). The results revealed that the VOCs significantly inhibited the mycelial growth and sclerotia germination of S. rolfsii LC1 and disrupted the morphological integrity of fungal mycelia. Under the influence of these VOCs, genes associated with chitin synthesis were upregulated, while those related to cell wall degrading enzymes were downregulated. Notably, 2-dodecanone and 2-undecanone exhibited inhibition rates of 81.67% and 80.08%, respectively. This research provides a novel approach for the prevention and management of southern blight in C. chinensis, highlighting the potential of microbial VOCs in biocontrol strategies.
Collapse
Affiliation(s)
- Tao Tang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Fanfan Wang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Houyun Huang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Nengneng Xie
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Jie Guo
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Xiaoliang Guo
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Yuanyuan Duan
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Xiaoyue Wang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Qingfang Wang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Jingmao You
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| |
Collapse
|
6
|
Wang C, Pei J, Li H, Zhu X, Zhang Y, Wang Y, Li W, Wang Z, Liu K, Du B, Jiang J, Zhao D. Mechanisms on salt tolerant of Paenibacillus polymyxa SC2 and its growth-promoting effects on maize seedlings under saline conditions. Microbiol Res 2024; 282:127639. [PMID: 38354626 DOI: 10.1016/j.micres.2024.127639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Soil salinity negatively affects microbial communities, soil fertility, and agricultural productivity and has become a major agricultural problem worldwide. Plant growth-promoting rhizobacteria (PGPR) with salt tolerance can benefit plant growth under saline conditions and diminish the negative effects of salt stress on plants. In this study, we aimed to understand the salt-tolerance mechanism of Paenibacillus polymyxa at the genetic and metabolic levels and elucidate the mechanism of strain SC2 in promoting maize growth under saline conditions. Under salt stress, we found that strain SC2 promoted maize seedling growth, which was accompanied by a significant upregulation of genes encoding for the biosynthesis of peptidoglycan, polysaccharide, and fatty acid, the metabolism of purine and pyrimidine, and the transport of osmoprotectants such as trehalose, glycine betaine, and K+ in strain SC2. To further enhance the salt resistance of strain SC2, three mutants (SC2-11, SC2-13, and SC2-14) with higher capacities for salt resistance and exopolysaccharide synthesis were obtained via atmospheric and room-temperature plasma mutagenesis. In saline-alkaline soil, the mutants showed better promoting effect on maize seedlings than wild-type SC2. The fresh weight of maize seedlings was increased by 68.10% after treatment with SC2-11 compared with that of the control group. The transcriptome analysis of maize roots demonstrated that SC2 and SC2-11 could induce the upregulation of genes related to the plant hormone signal transduction, starch and sucrose metabolism, reactive oxygen species scavenging, and auxin and ethylene signaling under saline-alkaline stress. In addition, various transcription factors, such as zinc finger proteins, ethylene-responsive-element-binding protein, WRKY, myeloblastosis proteins, basic helix-loop-helix proteins, and NAC proteins, were up-regulated in response to abiotic stress. Moreover, the microbial community composition of maize rhizosphere soil after inoculating with strain SC2 was varied from the one after inoculating with mutant SC2-11. Our results provide new insights into the various genes involved in the salt resistance of strain SC2 and a theoretical basis for utilizing P. polymyxa in saline-alkaline environments.
Collapse
Affiliation(s)
- Chengqiang Wang
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China.
| | - Jian Pei
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Li
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Xiuling Zhu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanan Zhang
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanjun Wang
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjie Li
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Zhongyue Wang
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Kai Liu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Binghai Du
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Dongying Zhao
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
7
|
Tang T, Wang F, Huang H, Guo J, Guo X, Duan Y, Wang X, Wang Q, You J. Bacillus velezensis LT1: a potential biocontrol agent for southern blight on Coptis chinensis. Front Microbiol 2024; 15:1337655. [PMID: 38500587 PMCID: PMC10946422 DOI: 10.3389/fmicb.2024.1337655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Southern blight, caused by Sclerotium rolfsii, poses a serious threat to the cultivation of Coptis chinensis, a plant with significant medicinal value. The overreliance on fungicides for controlling this pathogen has led to environmental concerns and resistance issues. There is an urgent need for alternative, sustainable disease management strategies. Methods In this study, Bacillus velezensis LT1 was isolated from the rhizosphere soil of diseased C. chinensis plants. Its biocontrol efficacy against S. rolfsii LC1 was evaluated through a confrontation assay. The antimicrobial lipopeptides in the fermentation liquid of B. velezensis LT1 were identified using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS). The effects of B. velezensis LT1 on the mycelial morphology of S. rolfsii LC1 were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results The confrontation assay indicated that B. velezensis LT1 significantly inhibited the growth of S. rolfsii LC1, with an inhibition efficiency of 78.41%. MALDI-TOF-MS analysis detected the presence of bacillomycin, surfactin, iturin, and fengycin in the fermentation liquid, all known for their antifungal properties. SEM and TEM observations revealed that the mycelial and cellular structures of S. rolfsii LC1 were markedly distorted when exposed to B. velezensis LT1. Discussion The findings demonstrate that B. velezensis LT1 has considerable potential as a biocontrol agent against S. rolfsii LC1. The identified lipopeptides likely contribute to the antifungal activity, and the morphological damage to S. rolfsii LC1 suggests a mechanism of action. This study underscores the importance of exploring microbial biocontrol agents as a sustainable alternative to chemical fungicides in the management of plant diseases. Further research into the genetic and functional aspects of B. velezensis LT1 could provide deeper insights into its biocontrol mechanisms and facilitate its application in agriculture.
Collapse
Affiliation(s)
- Tao Tang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Fanfan Wang
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Houyun Huang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
| | - Jie Guo
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaoliang Guo
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Yuanyuan Duan
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaoyue Wang
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Qingfang Wang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Jingmao You
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| |
Collapse
|
8
|
Wockenfuss A, Chan K, Cooper JG, Chaya T, Mauriello MA, Yannarell SM, Maresca JA, Donofrio NM. A Bacillus velezensis strain shows antimicrobial activity against soilborne and foliar fungi and oomycetes. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1332755. [PMID: 38465255 PMCID: PMC10920214 DOI: 10.3389/ffunb.2024.1332755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
Biological control uses naturally occurring antagonists such as bacteria or fungi for environmentally friendly control of plant pathogens. Bacillus spp. have been used for biocontrol of numerous plant and insect pests and are well-known to synthesize a variety of bioactive secondary metabolites. We hypothesized that bacteria isolated from agricultural soil would be effective antagonists of soilborne fungal pathogens. Here, we show that the Delaware soil isolate Bacillus velezensis strain S4 has in vitro activity against soilborne and foliar plant pathogenic fungi, including two with a large host range, and one oomycete. Further, this strain shows putative protease and cellulase activity, consistent with our prior finding that the genome of this organism is highly enriched in antifungal and antimicrobial biosynthetic gene clusters. We demonstrate that this bacterium causes changes to the fungal and oomycete hyphae at the inhibition zone, with some of the hyphae forming bubble-like structures and irregular branching. We tested strain S4 against Magnaporthe oryzae spores, which typically form germ tubes and penetration structures called appressoria, on the surface of the leaf. Our results suggest that after 12 hours of incubation with the bacterium, fungal spores form germ tubes, but instead of producing appressoria, they appear to form rounded, bubble-like structures. Future work will investigate whether a single antifungal molecule induces all these effects, or if they are the result of a combination of bacterially produced antimicrobials.
Collapse
Affiliation(s)
- Anna Wockenfuss
- Microbiology Graduate Program, University of Delaware, Newark, DE, United States
| | - Kevin Chan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| | - Jessica G. Cooper
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| | - Timothy Chaya
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| | - Megan A. Mauriello
- Microbiology Graduate Program, University of Delaware, Newark, DE, United States
| | - Sarah M. Yannarell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Julia A. Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, United States
| | - Nicole M. Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
9
|
Zhang J, Zhao J, Fu Q, Liu H, Li M, Wang Z, Gu W, Zhu X, Lin R, Dai L, Liu K, Wang C. Metabolic engineering of Paenibacillus polymyxa for effective production of 2,3-butanediol from poplar hydrolysate. BIORESOURCE TECHNOLOGY 2024; 392:130002. [PMID: 37956945 DOI: 10.1016/j.biortech.2023.130002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
2,3-Butanediol is an essential renewable fuel. The synthesis of 2,3-butanediol using Paenibacillus polymyxa has attracted increasing attention. In this study, the glucose-derived 2,3-butanediol pathway and its related genes were identified in P. polymyxa using combined transcriptome and metabolome analyses. The functions of two distinct genes ldh1 and ldh3 encoding lactate dehydrogenase, the gene bdh encoding butanediol dehydrogenase, and the spore-forming genes spo0A and spoIIE were studied and directly knocked out or overexpressed in the genome sequence to improve the production of 2,3-butanediol. A raw hydrolysate of poplar wood containing 27 g/L glucose and 15 g/L xylose was used to produce 2,3-butanediol with a maximum yield of 0.465 g/g and 93 % of the maximum theoretical value, and the total production of 2,3-butanediol and ethanol reached 21.7 g/L. This study provides a new scheme for engineered P. polymyxa to produce renewable fuels using raw poplar wood hydrolysates.
Collapse
Affiliation(s)
- Jikun Zhang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China; Shandong Baolai-leelai Bioengineering Co., Ltd., Tai'an 271000, China.
| | - Jianzhi Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), and The State Key Laboratory of Microbial Technology, Jinan 250353, China.
| | - Quanbin Fu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China.
| | - Haiyang Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Min Li
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Zhongyue Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Wei Gu
- Shandong Baolai-leelai Bioengineering Co., Ltd., Tai'an 271000, China.
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Rongshan Lin
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Li Dai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China.
| | - Kai Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
10
|
Xu L, Meng Y, Liu R, Xiao Y, Wang Y, Huang L. Inhibitory effects of Bacillus vallismortis T27 against apple Valsa canker caused by Valsa mali. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105564. [PMID: 37666597 DOI: 10.1016/j.pestbp.2023.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Apple Valsa canker caused by the pathogenic fungus Valsa mali, are one of the most destructive diseases of woody plants worldwide. One rhizosphere microbe strain, designated as T27 and subsequently identified as Bacillus vallismortis based on morphological and phylogenetic analyses, was studied as a potential biocontrol agent. Inoculation assay showed the B. vallismortis T27 suppressed the mycelial growth of V. mali with 81.33% antifungal effect on dual culture plates and caused hyphal deformities, wrinkles. The T27 fermentation broth significantly suppress the fungi's ability to acidify the surrounding environment. The addition of T27 cell-free supernatant (CFS) caused the pH of the fungal culture medium to increase from 3.60 to 5.10. B. vallismortis T27 showed the presence of Surfactin, IturinA and Bacilysin antimicrobial biosynthetic genes by the PCR assay. In addition, the B. vallismortis T27 was able to promote plant growth by producing siderophores and solubilizing phosphorus. The application of 2% fermentation broth of T27 resulted in a significant increase of 55.99% in the height of tomato plants and a 33.03% increase in the fresh weight of tomatoes. Under laboratory and field conditions, the B. vallismortis T27 exhibited strong antifungal activities on detached twigs and intact plants. The treatment of T27 resulted in a 35.9% reduction in lesion area on detached twigs. Furthermore, when applied to intact plants, T27 demonstrated a scar healing rate of 85.7%, surpassing the 77.8% observed in the treatment with tebuconazole. Comparative transcriptome analysis showed down-regulation of the genes associated with the fungal cell wall and cell membrane's synthesis and composition during V. mali treated with the B. vallismortis T27. In addition, gene transcription level analysis under treatment with B. vallismortis T27 revealed a significant increase in the expression levels of genes associated with diterpene biosynthesis, alanine, aspartic acid and glutamate metabolism, and plant hormone signaling in the apple, consistent with qRT-PCR and RNA-seq results. In this study, B. vallismortis T27 isolated from rhizosphere soil and identified as a novel biological control agent against apple Valsa canker. It exhibited effectively control over Valsa canker through multiple mechanisms, including disrupting the fungal cell membrane structure, altering the fungal growth environment, activating the plant MAPK pathway, and inducing upregulation of plant terpene biosynthetic genes. These findings highlight the potential of B. vallismortis T27 as a promising and multifaceted approach for managing apple Valsa canker.
Collapse
Affiliation(s)
- Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ronghao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingzhu Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Ameer A, Ahmad F, Asghar N, Hameed M, Ahmad KS, Mehmood A, Nawaz F, Shehzad MA, Mumtaz S, Kaleem M, Iqbal U. Aridity-driven changes in structural and physiological characteristics of Buffel grass ( Cenchrus ciliaris L.) from different ecozones of Punjab Pakistan. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1205-1224. [PMID: 37829703 PMCID: PMC10564708 DOI: 10.1007/s12298-023-01351-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023]
Abstract
Cenchrus ciliaris L. is a perennial grass that can grow in a diverse range of habitats including challenging deserts. The purpose of the study was to investigate the impact of aridity on morpho-anatomical and physiological traits in C. ciliaris populations collected from arid and semi-arid areas of Punjab, Pakistan. The populations growing in extremely arid conditions displayed a range of structural and physiological adaptations. Under extremely dry conditions, root epidermal thickness (90.29 µm), cortical cell area (7677.78 µm2), and metaxylem cell area (11,884.79 µm2) increased while root pith cell area (2681.96 µm2) decreased in tolerant populations. The populations under extremely aridity maximized leaf lamina (184.21 µm) and midrib thickness (316.46 µm). Additionally, highly tolerant populations were characterized by the accumulation of organic osmolytes such as glycinebetaine (132.60 µmol g-1 FW) was increased in QN poulations, proline (118.01 µmol g-1 F.W) was maximum in DF populations, and total amino acids (69.90 mg g-1 FW) under extreme water deficit conditions. In arid conditions, abaxial stomatal density (2630.21 µm) and stomatal area (8 per mm2) were also reduced in DF populations to check water loss through transpiration. These findings suggest that various parameters are crucial for the survival of C. ciliaris in arid environments. The main strategies used by C. ciliaris was intensive sclerification, effective retention of ions, and osmotic adjustment through proline and glycinebetaine under arid conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01351-3.
Collapse
Affiliation(s)
- Amina Ameer
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Farooq Ahmad
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Naila Asghar
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Mansoor Hameed
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | | | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot, Rawalakot, 12350 AJK Pakistan
| | - Fahim Nawaz
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Muhammad Asif Shehzad
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 66000 Pakistan
| | - Sahar Mumtaz
- Division of Science and Technology, Department of Botany, University of Education, Lahore, 54770 Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000 Pakistan
| | - Ummar Iqbal
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Bahawalpur, 64200 Pakistan
| |
Collapse
|
12
|
Sati D, Pande V, Samant M. Plant-beneficial Bacillus, Pseudomonas, and Staphylococcus spp. from Kumaon Himalayas and their drought tolerance response. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1085223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) have been shown to augment plant responses against drought and other abiotic stresses. In the present study, we isolated 27 bacteria from the rhizosphere of various plants cultivated in the Kumaon Himalayas., and to measure their abiotic stress tolerance, these 27 isolates were subjected to variations in pH, temperature, and drought. All 27 isolates were also screened for various plant growth-promoting traits. Among these, the four isolates RR1, ASC1, AFS3, and NG4 demonstrated various plant growth promotion activities including the synthesis of indole-3-acetic acid (IAA), siderophores, ammonia, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production, and concomitantly high tolerance to abiotic stresses. Moreover, 16S rRNA sequencing of these four isolates validated their identities as Bacillus, Pseudomonas, and Staphylococcus sp. Finally, to assess the in-vivo drought tolerance potential of these four isolates, a pot-trial experiment was undertaken in wheat cultivar VL-892. The results demonstrated that inoculating wheat plants with these four PGPR isolates greatly improved plant growth under drought circumstances by increasing root and shoot length and both fresh and dry weight of root and shoot. This study endeavors to discover the biochemical and molecular diversity of cultivable PGPR in six remotely located districts of Uttarakhand. In conclusion, the drought-tolerant PGPR strains described in this study are plant-beneficial and can effectively mobilize nutrients under drought conditions. Consequently, they could be used as bioinoculants to alleviate drought stress in wheat plants, in a sustainable manner. To the best of our knowledge, this is the first report of exploring the diversity and characterization of PGPR from the Kumaon Himalayas and their drought evaluation.
Collapse
|
13
|
Bartal A, Huynh T, Kecskeméti A, Vörös M, Kedves O, Allaga H, Varga M, Kredics L, Vágvölgyi C, Szekeres A. Identifications of Surfactin-Type Biosurfactants Produced by Bacillus Species Isolated from Rhizosphere of Vegetables. Molecules 2023; 28:molecules28031172. [PMID: 36770839 PMCID: PMC9919572 DOI: 10.3390/molecules28031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Surfactins are cyclic lipopeptides consisting of a β-hydroxy fatty acid of variable chain length and a peptide ring of seven amino acids linked together by a lactone bridge, forming the cyclic structure of the peptide chain. These compounds are produced mainly by Bacillus species and are well regarded for their antibacterial, antifungal, and antiviral activities. For their surfactin production profiling, several Bacillus strains isolated from vegetable rhizospheres were identified by their fatty acid methyl ester profiles and were tested against phytopathogen bacteria and fungi. The isolates showed significant inhibition against of E. amylovora, X. campestris, B. cinerea, and F. culmorum and caused moderate effects on P. syringae, E. carotovora, A. tumefaciens, F. graminearum, F. solani, and C. gloeosporioides. Then, an HPLC-HESI-MS/MS method was applied to simultaneously carry out the quantitative and in-depth qualitative characterisations on the extracted ferment broths. More than half of the examined Bacillus strains produced surfactin, and the MS/MS spectra analyses of their sodiated precursor ions revealed a total of 29 surfactin variants and homologues, some of them with an extremely large number of peaks with different retention times, suggesting a large number of variations in the branching of their fatty acid chains.
Collapse
Affiliation(s)
- Attila Bartal
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Thu Huynh
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72607, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 71351, Vietnam
| | - Anita Kecskeméti
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72607, Vietnam
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Henrietta Allaga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Mónika Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-544516
| |
Collapse
|
14
|
Gupta RK, Fuke P, Khardenavis AA, Purohit HJ. In Silico Genomic Characterization of Bacillus velezensis Strain AAK_S6 for Secondary Metabolite and Biocontrol Potential. Curr Microbiol 2023; 80:81. [PMID: 36662309 DOI: 10.1007/s00284-022-03173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023]
Abstract
This study reports the draft genome sequence of Bacillus velezensis strain AAK_S6 as a valuable biocontrol agent with high genetic potential to harbor broad-spectrum secondary metabolite producing capacity. A genome data of 4,430,946 bp were generated with a GC content of 46.4% that comprised a total of 4861 genes including a total of 4757 coding sequences (CDS), 104 rRNAs, 85 tRNAs and 80 pseudo-genes. Based on the overall genome-based relatedness indices (OGRI), the strain AAK_S6 has been reassigned to its correct taxonomic position. The strain shared > 99% OrthoANI, > 98% ANIb, > 99% ANIm, > 0.9900 TETRA, > 93% dDDH and 0.08% GC content difference with model strains B. velezensis FZB42T and B. velezensis NRRL B-41580T thus delineating them as closely related species. The genome was mined for strain-specific secondary metabolites that revealed 20 gene clusters for the biosynthesis of several cyclic lipopeptides, saccharides, polyketides along with bacilysin. Thus, the comparative genome analysis of strain AAK_S6 with members of the genus Bacillus by phylogenomic approach revealed that the genomes were almost similar genetically and contained the core genome for B. velezensis. Genomic data strongly supported that the strain AAK_S6 represented an excellent potential candidate for the production of secondary metabolites that could serve as a basis for developing new biocontrol agents, plant growth promoters, and microbial fertilizers.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priya Fuke
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Hemant J Purohit
- Ex-Chief Scientist, Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| |
Collapse
|
15
|
New Bacillus subtilis Strains Isolated from Prosopis glandulosa Rhizosphere for Suppressing Fusarium Spp. and Enhancing Growth of Gossypium hirsutum L. BIOLOGY 2022; 12:biology12010073. [PMID: 36671765 PMCID: PMC9855134 DOI: 10.3390/biology12010073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Rhizobacteria from desert plants can alleviate biotic stress and suppress plant diseases, and consequently can enhance plant growth. Therefore, the current study was performed to isolate and identify Prosopis glandulosa-associating rhizobacteria based on their antagonistic activity against Fusarium species and plant growth-promoting properties. Three bacterial isolates were identified as Bacillus subtilis: LDA-1, LDA-2, and LDA-3. The molecular analysis suggests the biosynthesis of the bacteriocins subtilisin and subtilosin, as well as the lipopeptide iturin, by these strains. In addition, the antagonistic study by dual-culture assay showed a high efficacy of all B. subtilis strains against phytopathogenic fungi (Fusarium nygamai, F. equisseti, F. solani, F. solani ICADL1, and F. oxysporum ICADL2) with inhibition percentages ranging from 43.3 to 83.5% in comparison to the control. Moreover, atomic force microscopy (AFM) analysis showed significant differences in the cell wall topography of the F. solani ICADL1 among the treated mycelia and untreated control. As a result, these three B. subtilis strains were used as bioinoculants for cotton seedlings infected by F. solani ICADL1 in pot trials, and the results revealed that the bacterial inoculations as an individual or combined with F. solani ICADL1 significantly improved cotton root and stem length, lateral roots, indole acetic acid (IAA), and gibberellic acid (GA3) contents, as well as increased antioxidants, flavonoids, and phenols in comparison to those obtained from healthy and infected control plants. In conclusion, the three bacterial strains of B. subtilis (i.e., LDA-1, LDA-2, and LDA-3) are considered promising tools as biocontrol agents for F. solani and cotton growth promoters, and consequently can be used as bio-ertilizer in sustainable agriculture systems.
Collapse
|
16
|
Zhao D, Jiao J, Du B, Liu K, Wang C, Ding Y. Volatile organic compounds from Lysinibacillus macroides regulating the seedling growth of Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1997-2009. [PMID: 36573143 PMCID: PMC9789275 DOI: 10.1007/s12298-022-01268-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) have the characteristics of long distance propagation, low concentration, perception, and indirect contact between organisms. In this experiment, Lysinibacillus macroides Xi9 was isolated from cassava residue, and the VOCs produced by this strain were analyzed by the SPME-GC-MS method, mainly including alcohols, esters, and alkanes. By inoculation of L. macroides Xi9, VOCs can promote the growth and change the root-system architecture of Arabidopsis seedlings. The results showed that the number of lateral roots, root density, and fresh weight of Arabidopsis seedlings were significantly higher (p ≤ 0.01), and the number of roots hair was also increased after exposure to strain Xi9. Compared with the control group, the transcriptome analysis of Arabidopsis seedlings treated with strain Xi9 for 5 days revealed a total of 508 genes differentially expressed (p < 0.05). After Gene Ontology enrichment analysis, it was found that genes encoding nitrate transport and assimilation, and the lateral root-related gene ANR1 were up-regulated. The content of NO3 - and amino acid in Arabidopsis seedlings were significantly higher from control group (p ≤ 0.01). Plant cell wall-related EXPA family genes and pectin lyase gene were up-regulated, resulting cell elongation of leaf. SAUR41 and up-regulation of its subfamily members, as well as the down-regulation of auxin efflux carrier protein PILS5 and auxin response factor 20 (ARF20) led to the accumulation of auxin. These results indicated that VOCs of strain Xi9 promote Arabidopsis seedlings growth and development by promoting nitrogen uptake, regulating auxin synthesis, and improving cell wall modification. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01268-3.
Collapse
Affiliation(s)
- Dongying Zhao
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Junhui Jiao
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Binghai Du
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Tai’an, 271018 China
| | - Kai Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
| | - Yanqin Ding
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Tai’an, 271018 China
| |
Collapse
|
17
|
Castillo-Alfonso F, Quintana-Menéndez A, Vigueras-Ramírez G, Sales-Cruz AM, Rosales-Colunga LM, Olivares-Hernández R. Analysis of the Propionate Metabolism in Bacillus subtilis during 3-Indolacetic Production. Microorganisms 2022; 10:microorganisms10122352. [PMID: 36557605 PMCID: PMC9782769 DOI: 10.3390/microorganisms10122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
The genera Bacillus belongs to the group of microorganisms that are known as plant growth-promoting bacteria, their metabolism has evolved to produce molecules that benefit the growth of the plant, and the production of 3-indole acetic acid (IAA) is part of its secondary metabolism. In this work, Bacillus subtilis was cultivated in a bioreactor to produce IAA using propionate and glucose as carbon sources in an M9-modified media; in both cases, tryptophan was added as a co-substrate. The yield of IAA using propionate is 17% higher compared to glucose. After 48 h of cultivation, the final concentration was 310 mg IAA/L using propionate and 230 mg IAA/L using glucose, with a concentration of 500 mg Trp/L. To gain more insight into propionate metabolism and its advantages, the genome-scale metabolic model of B. subtilis (iBSU 1147) and computational analysis were used to calculate flux distribution and evaluate the metabolic capabilities to produce IAA using propionate. The metabolic fluxes demonstrate that propionate uptake favors the production of precursors needed for the synthesis of the hormone, and the sensitivity analysis shows that the control of a specific growth rate has a positive impact on the production of IAA.
Collapse
Affiliation(s)
- Freddy Castillo-Alfonso
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Ciudad de México 05370, Mexico
| | - Alejandro Quintana-Menéndez
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Ciudad de México 05370, Mexico
| | - Gabriel Vigueras-Ramírez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, Ciudad de México 05348, Mexico
| | - Alfonso Mauricio Sales-Cruz
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, Ciudad de México 05348, Mexico
| | - Luis Manuel Rosales-Colunga
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr Manuel Nava 8, Zona Universitaria, San Luis Potosí 78290, Mexico
| | - Roberto Olivares-Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, Ciudad de México 05348, Mexico
- Correspondence:
| |
Collapse
|
18
|
Zhao D, Li H, Cui Y, Tang S, Wang C, Du B, Ding Y. MsmR1, a global transcription factor, regulates polymyxin synthesis and carbohydrate metabolism in Paenibacillus polymyxa SC2. Front Microbiol 2022; 13:1039806. [PMID: 36483206 PMCID: PMC9722767 DOI: 10.3389/fmicb.2022.1039806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 10/19/2023] Open
Abstract
The multiple-sugar metabolism regulator (MsmR), a transcription factor belonging to the AraC/XylS family, participates in polysaccharide metabolism and virulence. However, the transcriptional regulatory mechanisms of MsmR1 in Paenibacillus polymyxa remain unclear. In this study, knocking out msmR1 was found to reduce polymyxin synthesis by the SC2-M1 strain. Chromatin immunoprecipitation assay with sequencing (ChIP-seq) revealed that most enriched pathway was that of carbohydrate metabolism. Additionally, electromobility shift assays (EMSA) confirmed the direct interaction between MsmR1 and the promoter regions of oppC3, sucA, sdr3, pepF, yycN, PPSC2_23180, pppL, and ydfp. MsmR1 stimulates polymyxin biosynthesis by directly binding to the promoter regions of oppC3 and sdr3, while also directly regulating sucA and influencing the citrate cycle (TCA cycle). In addition, MsmR1 directly activates pepF and was beneficial for spore and biofilm formation. These results indicated that MsmR1 could regulate carbohydrate and amino acid metabolism, and indirectly affect biological processes such as polymyxin synthesis, biofilm formation, and motility. Moreover, MsmR1 could be autoregulated. Hence, this study expand the current knowledge of MsmR1 and will be beneficial for the application of P. polymyxa SC2 in the biological control against the certain pathogens in pepper.
Collapse
Affiliation(s)
| | | | | | | | | | - Binghai Du
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
19
|
Xia B, Zou H, Li L, Zhang B, Xiang Y, Zou Y, Shen Z, Xue S, Han Y. Screening and fermentation medium optimization of a strain favorable to Rice-fish Coculture. Front Microbiol 2022; 13:1054797. [PMID: 36590418 PMCID: PMC9802155 DOI: 10.3389/fmicb.2022.1054797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Rice-fish coculture (RF) is a small ecosystem in which microorganisms are widely distributed in the fish, water environment, soil, and plants. In order to study the positive effects of microorganisms on common carp and rice in the RF ecosystem, a total of 18 strains with growth-promoting ability were screened from common carp (Cyprinus carpio) gut contents, among which three strains had the ability to produce both DDP-IV inhibitors and IAA. The strain with the strongest combined ability, FYN-22, was identified physiologically, biochemically, and by 16S rRNA, and it was initially identified as Bacillus licheniformis. As the number of metabolites secreted by the strain under natural conditions is not sufficient for production, the FYN-22 fermentation medium formulation was optimized by means of one-factor-at-a-time (OFAT) experiments and response surface methodology (RSM). The results showed that, under the conditions of a soluble starch concentration of 10.961 g/l, yeast concentration of 2.366 g/l, NH4Cl concentration of 1.881 g/l, and FeCl3 concentration of 0.850 g/l, the actual measured number of FYN-22 spores in the fermentation broth was 1.913 × 109 CFU/ml, which was 2.575-fold improvement over the pre-optimization value. The optimized fermentation solution was used for the immersion operation of rice seeds, and, after 14 days of incubation in hydroponic boxes, the FYN-22 strain was found to have a highly significant enhancement of 48.31% (p < 0.01) on the above-ground part of rice, and different degrees of effect on root length, fresh weight, and dry weight (16.73, 17.80, and 21.97%, respectively; p < 0.05). This study may provide new insights into the fermentation process of Bacillus licheniformis FYN-22 and its further utilization in RF systems.
Collapse
Affiliation(s)
- Banghua Xia
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Haobo Zou
- China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Linyuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Bitao Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yifang Xiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuning Zou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhentao Shen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shuqun Xue
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Shuqun Xue,
| | - Ying Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Shuqun Xue,
| |
Collapse
|
20
|
Soliman SA, Khaleil MM, Metwally RA. Evaluation of the Antifungal Activity of Bacillusamyloliquefaciens and B. velezensis and Characterization of the Bioactive Secondary Metabolites Produced against Plant Pathogenic Fungi. BIOLOGY 2022; 11:biology11101390. [PMID: 36290294 PMCID: PMC9599029 DOI: 10.3390/biology11101390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 04/21/2023]
Abstract
Endophytic bacteria are plant-beneficial bacteria with a broad host range. They provide numerous benefits to their hosts, helping them tolerate several biotic and abiotic stresses. An interest has recently been developed in endophytic bacteria which are producing bioactive compounds that contribute to the biological control of various phytopathogens. This research paper aimed to investigate the potentiality of new local strains of endophytic bacteria such as Bacillus amyloliquefaciens and B. velezensis and the production of several antimicrobial metabolites associated with the biocontrol of Alternaria sp., which cause serious diseases and affect important vegetable crops in Egypt. Twenty-five endophytic bacteria isolates were obtained from different plants cultivated in El-Sharkia Governorate, Egypt. Dual culture technique was used to evaluate the bacterial isolates' antagonistic potentiality against Alternaria sp. and Helminthosporium sp. The most active bacterial isolates obtained were selected for further screening. The antifungal activity of the most active endophytic bacterial isolate was assessed in vivo on pepper seedlings as a biocontrol agent against Alternaria sp. A significant antifungal activity was recorded with isolates C1 and T5 against Alternaria sp. and Helminthosporium sp. The bacterial endophyte discs of C1 and T5 showed the highest inhibitory effect against Alternaria sp. at 4.7 and 3.1 cm, respectively, and Helminthosporium sp. at 3.9 and 4.0 cm, respectively. The most active endophytic isolates C1 and T5 were identified and the 16S rRNA sequence was submitted to the NCBI GenBank database with accession numbers: MZ945930 and MZ945929 for Bacillus amyloliquefaciens and Bacillus velezensis, respectively. The deformity of pathogenic fungal mycelia of Alternaria sp. and Helminthosporium sp. was studied under the biotic stress of bacteria. The culture filtrates of B. amyloliquefaciens and B. velezensis were extracted with different solvents, and the results indicated that hexane was the most efficient. Gas Chromatography-Mass Spectrometry revealed that Bis (2-ethylhexyl) phthalate, Bis (2-ethylhexyl) ester, and N,N-Dimethyldodecylamine were major constituents of the endophytic crude extracts obtained from B. amyloliquefaciens and B. velezensis. The in vivo results showed that Alternaria sp. infection caused the highest disease incidence, leading to a high reduction in plant height and in the fresh and dry weights of pepper plants. With B. amyloliquefaciens application, DI significantly diminished compared to Alternaria sp. infected pepper plants, resulting in an increase in their morphological parameters. Our findings allow for a reduction of chemical pesticide use and the control of some important plant diseases.
Collapse
Affiliation(s)
- Shereen A. Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mona M. Khaleil
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46429, Saudi Arabia
| | - Rabab A. Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: ; Tel.: +20-101-625-9372; Fax: +20-055-320-8213
| |
Collapse
|
21
|
Xiong J, Peng S, Liu Y, Yin H, Zhou L, Zhou Z, Tan G, Gu Y, Zhang H, Huang J, Meng D. Soil properties, rhizosphere bacterial community, and plant performance respond differently to fumigation and bioagent treatment in continuous cropping fields. Front Microbiol 2022; 13:923405. [PMID: 35935223 PMCID: PMC9354655 DOI: 10.3389/fmicb.2022.923405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Continuous cropping barriers lead to huge agriculture production losses, and fumigation and biological agents are developed to alleviate the barriers. However, there is a lack of literature on the differences between strong chemical fumigant treatment and moderate biological agent treatment. In this study, we investigated those differences and attempted to establish the links between soil properties, rhizosphere microbial community, and plant performance in both fumigation- and bioagent-treated fields. The results showed that the fumigation had a stronger effect on both soil functional microbes, i.e., ammonia oxidizers and soil-borne bacterial pathogens, and therefore, led to a significant change in soil properties, higher fertilizer efficiency, lower disease infections, and improved plant growth, compared with untreated control fields. Biological treatment caused less changes to soil properties, rhizosphere bacterial community, and plant physiology. Correlation and modeling analyses revealed that the bioagent effect was mainly direct, whereas fumigation resulted in indirect effects on alleviating cropping barriers. A possible explanation would be the reconstruction of the soil microbial community by the fumigation process, which would subsequently lead to changes in soil characteristics and plant performance, resulting in the effective alleviation of continuous cropping barriers.
Collapse
Affiliation(s)
- Jing Xiong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Shuguang Peng
- Tobacco Research Institute of Hunan Province, Changsha, China
| | - Yongjun Liu
- Tobacco Research Institute of Hunan Province, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing, China
| | - Zhicheng Zhou
- Tobacco Research Institute of Hunan Province, Changsha, China
| | - Ge Tan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Hetian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jingyi Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- *Correspondence: Delong Meng,
| |
Collapse
|
22
|
Zhao D, Ding Y, Cui Y, Zhang Y, Liu K, Yao L, Han X, Peng Y, Gou J, Du B, Wang C. Isolation and Genome Sequence of a Novel Phosphate-Solubilizing Rhizobacterium Bacillus altitudinis GQYP101 and Its Effects on Rhizosphere Microbial Community Structure and Functional Traits of Corn Seedling. Curr Microbiol 2022; 79:249. [PMID: 35834051 DOI: 10.1007/s00284-022-02944-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Bacillus altitudinis is a widely distributed soil bacterium that has various functional activities, including remediation of contaminated soil, degradation of herbicides, and enhancement of plant growth. B. altitudinis GQYP101 was isolated from the rhizosphere soil of Lycium barbarum L. and demonstrated potential as a plant growth-promoting bacterium. In this work, strain GQYP101 could solubilize phosphorus, and increased the stem diameter, maximum leaf area, and fresh weight of corn in a pot experiment. Nitrogen and phosphorus contents of corn seedlings (aerial part) increased by 100% and 47.9%, respectively, after application of strain GQYP101. Concurrently, nitrogen and phosphorus contents of corn root also increased, by 55.40% and 20.3%, respectively. Furthermore, rhizosphere soil nutrients were altered and the content of available phosphorus increased by 73.2% after application of strain GQYP101. The mechanism by which strain GQYP101 improved plant growth was further investigated by whole genome sequence analysis. Strain GQYP101 comprises a circular chromosome and a linear plasmid. Some key genes of strain GQYP101 were identified that were related to phosphate solubilization, alkaline phosphatase, chemotaxis, and motility. The findings of this study may provide a theoretical basis for strain GQYP101 to enhance crop yield as microbial fertilizer.
Collapse
Affiliation(s)
- Dongying Zhao
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Yanru Cui
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Yanan Zhang
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Kai Liu
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Liangtong Yao
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Xiaobin Han
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Yulong Peng
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Jianyu Gou
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Binghai Du
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China
| | - Chengqiang Wang
- College of Life Sciences and Shandong Engineering Research Center of Plant, Microbia Restoration for Saline-Alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian, China.
| |
Collapse
|
23
|
Wang X, Cao B, Zou J, Chen W. Composition and environmental interpretation of the weed communities in the main planting base of jujube ( Ziziphus jujuba Mill. cv. 'LingwuChangzao'), Ningxia province of China. PeerJ 2022; 10:e13583. [PMID: 35734638 PMCID: PMC9208373 DOI: 10.7717/peerj.13583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Background Ziziphus jujuba Mill. cv. 'LingwuChangzao' is a traditional jujube cultivar in northwest China. It is of great significance to explore the weed community composition and environmental characterization for the ecological control and comprehensive management of weeds in jujube orchards. In this article, a total of 37 species were recorded in 40 sample plots (1 m × 1 m). Moreover, fourteen environmental indicators to characterize the spatial locations, climate and soil nutrient characteristics of the plant communities were adopted. Methodology Through the two-way indicator species analysis (TWINSPAN) quantity classification and canonical correspondence analysis (CCA) ranking methods, the types of weed communities in the main planting base of jujube 'LingwuChangzao' and the main environmental factors affecting the change and distribution of weed types were analyzed. Results The weed communities within the study area were divided into 15 types by the TWINSPAN classification. There were significant differences in soil factors to the species diversity indices of the weed communities, the diversity of weed communities was negatively correlated with available potassium, whereas positively correlated with soil water content. The CCA results showed that community structure and spatial distribution of weed communities were affected by soil water content, total potassium, soil organic carbon, total phosphorus, total nitrogen. Our results can be used as a reference for orchard weed management and provide a theoretical basis for weed invasion control and creating a higher biodiversity in arable land under the background of environmental change.
Collapse
Affiliation(s)
- Xiaojia Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China,School of Agriculture, NingXia Polytechnic, Yinchuan, Ningxia, China
| | - Bing Cao
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Jin Zou
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Weijun Chen
- Lingwu Natural Resources Bureau, Linwu, Ningxia, China
| |
Collapse
|
24
|
Development of a Real-Time Quantitative PCR Assay for the Specific Detection of Bacillus velezensis and Its Application in the Study of Colonization Ability. Microorganisms 2022; 10:microorganisms10061216. [PMID: 35744733 PMCID: PMC9230654 DOI: 10.3390/microorganisms10061216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Bacillus velezensis is a widely used biocontrol agent closely related to B. amyloliquefaciens, and the two species cannot be distinguished by universal primers that are currently available. The study aimed to establish a rapid, specific detection approach for B. velezensis. Many unique gene sequences of B. velezensis were selected through whole genome sequence alignment of B. velezensis strains and were used to design a series of forward and reverse primers, which were then screened by PCR and qPCR using different Bacillus samples as templates. The colonization ability of B. velezensis ZF2 in different soils and different soil environmental conditions was measured by qPCR and a 10-fold dilution plating assay. A specific primer pair targeting the sequence of the D3N19_RS13500 gene of B. velezensis ZF2 was screened and could successfully distinguish B. velezensis from B. amyloliquefaciens. A rapid specific real-time qPCR detection system for B. velezensis was established. B. velezensis ZF2 had a very strong colonization ability in desert soil, and the optimal soil pH was 7-8. Moreover, the colonization ability of strain ZF2 was significantly enhanced when organic matter from different nitrogen sources was added to the substrate. This study will provide assistance for rapid specificity detection and biocontrol application of B. velezensis strains.
Collapse
|
25
|
Hasan N, Khan IU, Farzand A, Heng Z, Moosa A, Saleem M, Canming T. Bacillus altitudinis HNH7 and Bacillus velezensis HNH9 promote plant growth through upregulation of growth-promoting genes in upland cotton. J Appl Microbiol 2022; 132:3812-3824. [PMID: 35244318 DOI: 10.1111/jam.15511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022]
Abstract
AIMS The potential of endophytic Bacillus strains to improve plant growth and yield was evaluated. METHODS AND RESULTS Endophytic Bacillus altitudinis HNH7 and Bacillus velezensis HNH9 were evaluated for their growth-promoting traits. In an in vitro plate assay, HNH7 and HNH9 exhibited proteolytic, amylolytic, lipolytic, and cellulolytic activity. HNH7 and HNH9 were able to solubilize iron by producing siderophores but were unable to solubilize insoluble phosphate. PCR confirmed the presence of four growth-promoting genes viz. pvd, budA, asbA, and satA in the genome of HNH7, while HNH9 also possessed the same genes except for budA. In a greenhouse experiment, HNH7 and HNH9 promoted the growth of upland cotton plants by upregulating the expression of growth-linked genes, EXP6, ARF1, ARF18, IAA9, CKX6, and GID1b. However, the expression of genes involved in ethylene biosynthesis i.e., ERF and ERF17 was downregulated after treating the plants with HNH7 and HNH9 compared to the control. Furthermore, cotton plants treated with HNH7 and HNH9 exhibited a significantly higher rate of photosynthesis and stomatal conductance. CONCLUSION HNH7 and HNH9 showed a promising potential to promote the growth of cotton plants. SIGNIFICANCE AND IMPACT OF STUDY Research on plant growth-promoting Bacillus strains can lead to the formation of biofertilizers.
Collapse
Affiliation(s)
- Nadeem Hasan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Irfan Ullah Khan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ayaz Farzand
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zhou Heng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Anam Moosa
- Department of Plant Pathology, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Saleem
- College of Electrical and Mechanical Engineering, NUST, Rawalpindi, Islamabad, Pakistan
| | - Tang Canming
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects. Microbiol Spectr 2022; 10:e0216921. [PMID: 35107331 PMCID: PMC8809340 DOI: 10.1128/spectrum.02169-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
Collapse
|
27
|
Abdel-Hamid MS, Fouda A, El-Ela HKA, El-Ghamry AA, Hassan SED. Plant growth-promoting properties of bacterial endophytes isolated from roots of Thymus vulgaris L. and investigate their role as biofertilizers to enhance the essential oil contents. Biomol Concepts 2021; 12:175-196. [PMID: 35041305 DOI: 10.1515/bmc-2021-0019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022] Open
Abstract
The main objective of the current study was to improve the essential oil contents of Thymus vulgaris L. using bio-inoculation with bacterial endophytes. Therefore, out of fourteen endophytic bacterial isolates obtained from roots of T. vulgaris, five isolates were selected based on the highest nitrogen-fixation and phosphate solubilization activity and identified as: Bacillus haynesii T9r, Citrobacter farmeri T10r, Bacillus licheniformis T11r, Bacillus velezensis T12r, and Bacillus velezensis T13r. These five strains have been recorded as ammonia, hydrogen cyanide (HCN), siderophores, and indole-3-acetic acid (IAA) producers. These strains have the efficacy to fix-nitrogen by reduction of acetylene with values of 82.133±1.4-346.6±1.4 n-mole-C2H4/ml/24 h. The IAA, gibberellic acid, abscisic acid, benzyl, kinten, and ziaten production were confirmed using HPLC. Two strains of T11r and T13r showed the highest plant growth-promoting properties and were selected for bio-inoculation of T. vulgaris individually or in a consortium with different mineral fertilization doses (0, 50, 75, and 100%) under field conditions. The highest growth performance was attained with the endophytic consortium (T11r+T13r) in the presence of 100% mineral fertilization. The GC-MS analysis of thyme oil contents showed the presence of 23 various compounds with varying percentages and the thymol fraction represented the highest percentages (39.1%) in the presence of the bacterial consortium.
Collapse
Affiliation(s)
| | - Amr Fouda
- Soil Fertility and Microbiology Department, Desert Research Center, El-Mataria, Cairo, Egypt
| | - Hesham Kamal Abo El-Ela
- Soil Fertility and Microbiology Department, Desert Research Center, El-Mataria, Cairo, Egypt
| | - Abbas A El-Ghamry
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Saad El-Din Hassan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
28
|
Vignesh M, Shankar SRM, MubarakAli D, Hari BNV. A Novel Rhizospheric Bacterium: Bacillus velezensis NKMV-3 as a Biocontrol Agent Against Alternaria Leaf Blight in Tomato. Appl Biochem Biotechnol 2021; 194:1-17. [PMID: 34586599 DOI: 10.1007/s12010-021-03684-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
A novel strain of Bacillus isolated from rhizosphere has shown to be an excellent biocontrol agent against various plant pathogens. In this study, a first report of a Bacillus strain NKMV-3 which effectively controls Alternaria solani, which cause the early blight disease in tomato. Based on the cultural and molecular sequencing of 16S rRNA gene sequence, the identity of the strain was confirmed as Bacillus velezensis NKMV-3. The presence of the lipopeptide which are antibiotic synthesis genes, namely iturin C, surfactin A and fengycin B and D, was confirmed through gene amplification. In addition, lipopeptides were also confirmed through liquid chromatography. The extract showed inhibitory effect against A. solani in vitro and detached tomato leaf assays. Bacillus velezensis strain NKMV-3-based formulations may provide an effective solution in controlling early blight disease in tomato and other crops.
Collapse
Affiliation(s)
- Murthy Vignesh
- Research and Development Centre, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | | | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, Tamil Nadu, India
| | | |
Collapse
|
29
|
From Strain Characterization to Field Authorization: Highlights on Bacillus velezensis Strain B25 Beneficial Properties for Plants and Its Activities on Phytopathogenic Fungi. Microorganisms 2021; 9:microorganisms9091924. [PMID: 34576819 PMCID: PMC8472612 DOI: 10.3390/microorganisms9091924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Agriculture is in need of alternative products to conventional phytopharmaceutical treatments from chemical industry. One solution is the use of natural microorganisms with beneficial properties to ensure crop yields and plant health. In the present study, we focused our analyses on a bacterium referred as strain B25 and belonging to the species Bacillus velezensis (synonym B. amyloliquefaciens subsp. plantarum or B. methylotrophicus), a promising plant growth promoting rhizobacterium (PGPR) and an inhibitor of pathogenic fungi inducing crops diseases. B25 strain activities were investigated. Its genes are well preserved, with their majority being common with other Bacillus spp. strains and responsible for the biosynthesis of secondary metabolites known to be involved in biocontrol and plant growth-promoting activities. No antibiotic resistance genes were found in the B25 strain plasmid. In vitro and in planta tests were conducted to confirm these PGPR and biocontrol properties, showing its efficiency against 13 different pathogenic fungi through antibiosis mechanism. B25 strain also showed good capacities to quickly colonize its environment, to solubilize phosphorus and to produce siderophores and little amounts of auxin-type phytohormones (around 13,051 µg/mL after 32 h). All these findings combined to the fact that B25 demonstrated good properties for industrialization of the production and an environmental-friendly profile, led to its commercialization under market authorization since 2018 in several biostimulant preparations and opened its potential use as a biocontrol agent.
Collapse
|
30
|
Soil Bacteria as Potential Biological Control Agents of Fusarium Species Associated with Asparagus Decline Syndrome. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To avoid the use of agrochemicals in agriculture, alternative methods are emerging to control plant pathogens. Some plant growth-promoting rhizobacteria (PGPR) can be used as biocontrol agents since they can induce protection against pathogens. The aim of this study was to evaluate the protective effect of several PGPR strains against the main Fusarium species involved in asparagus decline syndrome (ADS): F. proliferatum, F. oxysporum f. sp. asparagi and F. redolens. In vitro antagonism assays showed that all the bacteria inhibited the mycelium growth of the three Fusarium species. The most effective strains (Streptomyces fradiae Hvs6, Bacillus paralicheniformis Hvs2 and Bacillus velezensis FC37) were tested to evaluate their protective effect on asparagus plants inoculated with pathogenic Fusarium isolates. Strains FC37 and Hvs2 were the most effective in controlling pathogenic F. proliferatum and F. oxysporum f. sp. asparagi, but neither could protect against F. redolens isolates. The production of hydrolytic enzymes such as β-glucosidase, amylase and protease by these bacterial strains could be involved in the structural degradation of the fungal cell wall. In addition, the production of toxic volatile compounds, such as hydrogen cyanide, may inhibit the fungal growth, and the production of phosphate solubilizers could be related to the plant growth promotion. These results suggest that strains FC37 and Hvs2 could be used as potential biocontrol agents as a sustainable and environmentally friendly control strategy for ADS-affected fields.
Collapse
|
31
|
Migunova VD, Tomashevich NS, Konrat AN, Lychagina SV, Dubyaga VM, D’Addabbo T, Sasanelli N, Asaturova AM. Selection of Bacterial Strains for Control of Root-Knot Disease Caused by Meloidogyne incognita. Microorganisms 2021; 9:microorganisms9081698. [PMID: 34442777 PMCID: PMC8402187 DOI: 10.3390/microorganisms9081698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Root-knot disease caused by Meloidogyne incognita leads to significant crop yield losses that may be aggravated by the association with pathogenic fungi and bacteria. Biological agents can be effectively used against the complex disease of root-knot nematode and pathogenic fungi. In this study, 35 bacterial strains were analyzed for their in vitro nematicidal, antagonistic and growth stimulation activities. Based on results from the in vitro assays, grow-box experiments on tomato and cucumber were carried out with the strain BZR 86 of Bacillus velezensis applied at different concentrations. Effects of B. velezensis BZR 86 on the development of root-knot disease were evaluated by recording root gall index, number of galls and number of eggs in egg masses. Application of B. velezensis BZR 86 noticeably decreased the development of root-knot disease on tomato and cucumber plants, as well as significantly increased growth and biomass of cucumber plants in accordance with bacterial concentration. This study seems to demonstrate that strain B. velezensis BZR 86 could be an additional tool for an environmentally safe control of root-knot disease on horticultural crops.
Collapse
Affiliation(s)
- Varvara D. Migunova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
- Correspondence:
| | - Natalia S. Tomashevich
- Federal State Budgetary Scientific Institution, Federal Scientific Center of Biological Plant Protection (FSBSI FSCBPP), 350039 Krasnodar, Russia; (N.S.T.); (V.M.D.); (A.M.A.)
| | - Alena N. Konrat
- Federal State Budget Scientific Institution, Federal Scientific Centre VIEV (FSC VIEV) of RAS, Bolshaya Cheryomushkinskaya 28, 117218 Moscow, Russia; (A.N.K.); (S.V.L.)
| | - Svetlana V. Lychagina
- Federal State Budget Scientific Institution, Federal Scientific Centre VIEV (FSC VIEV) of RAS, Bolshaya Cheryomushkinskaya 28, 117218 Moscow, Russia; (A.N.K.); (S.V.L.)
| | - Valentina M. Dubyaga
- Federal State Budgetary Scientific Institution, Federal Scientific Center of Biological Plant Protection (FSBSI FSCBPP), 350039 Krasnodar, Russia; (N.S.T.); (V.M.D.); (A.M.A.)
| | - Trifone D’Addabbo
- Institute for Sustainable Plant Protection, CNR, Via G. Amendola 122/D, 70126 Bari, Italy; (T.D.); (N.S.)
| | - Nicola Sasanelli
- Institute for Sustainable Plant Protection, CNR, Via G. Amendola 122/D, 70126 Bari, Italy; (T.D.); (N.S.)
| | - Anzhela M. Asaturova
- Federal State Budgetary Scientific Institution, Federal Scientific Center of Biological Plant Protection (FSBSI FSCBPP), 350039 Krasnodar, Russia; (N.S.T.); (V.M.D.); (A.M.A.)
| |
Collapse
|
32
|
Amarouchi Z, Esmaeel Q, Sanchez L, Jacquard C, Hafidi M, Vaillant-Gaveau N, Ait Barka E. Beneficial Microorganisms to Control the Gray Mold of Grapevine: From Screening to Mechanisms. Microorganisms 2021; 9:microorganisms9071386. [PMID: 34202293 PMCID: PMC8304954 DOI: 10.3390/microorganisms9071386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
In many vineyards around the world, Botrytis cinerea (B. cinerea) causes one of the most serious diseases of aerial grapevine (Vitis vinifera L.) organs. The control of the disease relies mainly on the use of chemical products whose use is increasingly challenged. To develop new sustainable methods to better resist B. cinerea, beneficial bacteria were isolated from vineyard soil. Once screened based on their antimicrobial effect through an in vivo test, two bacterial strains, S3 and S6, were able to restrict the development of the pathogen and significantly reduced the Botrytis-related necrosis. The photosynthesis analysis showed that the antagonistic strains also prevent grapevines from considerable irreversible PSII photo-inhibition four days after infection with B. cinerea. The 16S rRNA gene sequences of S3 exhibited 100% similarity to Bacillus velezensis, whereas S6 had 98.5% similarity to Enterobacter cloacae. On the other hand, the in silico analysis of the whole genome of isolated strains has revealed the presence of “biocontrol-related” genes supporting their plant growth and biocontrol activities. The study concludes that those bacteria could be potentially useful as a suitable biocontrol agent in harvested grapevine.
Collapse
Affiliation(s)
- Zakaria Amarouchi
- Université de Reims Champagne-Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Z.A.); (Q.E.); (L.S.); (C.J.); (N.V.-G.)
- Laboratoire de Biotechnologie Végétale et Valorisation des Bio-Ressources, Faculté des Sciences, Université Moulay Ismail, Meknès B.P. 11201, Morocco;
| | - Qassim Esmaeel
- Université de Reims Champagne-Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Z.A.); (Q.E.); (L.S.); (C.J.); (N.V.-G.)
| | - Lisa Sanchez
- Université de Reims Champagne-Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Z.A.); (Q.E.); (L.S.); (C.J.); (N.V.-G.)
| | - Cédric Jacquard
- Université de Reims Champagne-Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Z.A.); (Q.E.); (L.S.); (C.J.); (N.V.-G.)
| | - Majida Hafidi
- Laboratoire de Biotechnologie Végétale et Valorisation des Bio-Ressources, Faculté des Sciences, Université Moulay Ismail, Meknès B.P. 11201, Morocco;
| | - Nathalie Vaillant-Gaveau
- Université de Reims Champagne-Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Z.A.); (Q.E.); (L.S.); (C.J.); (N.V.-G.)
| | - Essaid Ait Barka
- Université de Reims Champagne-Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France; (Z.A.); (Q.E.); (L.S.); (C.J.); (N.V.-G.)
- Correspondence: ; Tel.: +33-326913221
| |
Collapse
|
33
|
Nadeem SM, Ahmad M, Tufail MA, Asghar HN, Nazli F, Zahir ZA. Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. PHYSIOLOGIA PLANTARUM 2021; 172:463-476. [PMID: 32949405 DOI: 10.1111/ppl.13212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/15/2020] [Indexed: 05/25/2023]
Abstract
Rhizobacteria containing 1-aminocyclopropane-1-carboxylic acid-deaminase (ACC-deaminase) and exopolysaccharides (EPS) activity are important to induce stress tolerance in plants. The present study was conducted to screen and characterize plant growth-promoting rhizobacteria (PGPR) with ACC-deaminase and EPS-producing activity for improving maize growth under drought stress. Eighty-five rhizobacterial strains were isolated from the rain-fed areas, among those 69 isolates were able to utilize ACC and 31 strains were found positive for EPS production. These strains containing ACC-deaminase and/or EPS-producing activity were subjected to drought tolerance assay by inducing water stress in media using polyethylene glycol 6000. Based on results of the drought tolerance bioassay, 12 most prominent strains were selected to evaluate their growth-promoting abilities in maize under water-stressed conditions by conducting jar trial. The impact of strains on maize growth parameters was variable. Strains with co-existence of ACC-deaminase and EPS-producing activity showed comparatively better results than those with either ACC-deaminase or EPS-producing activity only. These strains were also significantly better in improving the plant physiological parameters including photosynthesis rate, stomatal conductance, vapor pressure, water-use efficiency and transpiration rate. The strain D3 with co-existence of ACC-deaminase and EPS-producing activity was significantly better in colonizing maize roots, improving plant growth and physiological parameters. The strain was named as Bacillus velezensis strain D3 (accession number MT367633) as confirmed through results of 16S rRNA partial gene sequencing. It is concluded that the strains with co-existence of ACC-deaminase and EPS-producing activity could be better suited for improving crop growth and physiology under drought stress.
Collapse
Affiliation(s)
- Sajid M Nadeem
- Sub-campus Burewala, University of Agriculture Faisalabad, Vehari, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad A Tufail
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz N Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Farheen Nazli
- Pesticide Quality Control Laboratory, Punjab Agriculture Department, Bahawalpur, Government of Punjab, Pakistan
| | - Zahir A Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
34
|
Shin JH, Park BS, Kim HY, Lee KH, Kim KS. Antagonistic and Plant Growth-Promoting Effects of Bacillus velezensis BS1 Isolated from Rhizosphere Soil in a Pepper Field. THE PLANT PATHOLOGY JOURNAL 2021; 37:307-314. [PMID: 34111920 PMCID: PMC8200578 DOI: 10.5423/ppj.nt.03.2021.0053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 05/17/2023]
Abstract
Pepper (Capsicum annuum L.) is an important agricultural crop worldwide. Recently, Colletotrichum scovillei, a member of the C. acutatum species complex, was reported to be the dominant pathogen causing pepper anthracnose disease in South Korea. In the present study, we isolated bacterial strains from rhizosphere soil in a pepper field in Gangwon Province, Korea, and assessed their antifungal ability against C. scovillei strain KC05. Among these strains, a strain named BS1 significantly inhibited mycelial growth, appressorium formation, and disease development of C. scovillei. By combined sequence analysis using 16S rRNA and partial gyrA sequences, strain BS1 was identified as Bacillus velezensis, a member of the B. subtilis species complex. BS1 produced hydrolytic enzymes (cellulase and protease) and iron-chelating siderophores. It also promoted chili pepper (cv. Nockwang) seedling growth compared with untreated plants. The study concluded that B. velezensis BS1 has good potential as a biocontrol agent of anthracnose disease in chili pepper caused by C. scovillei.
Collapse
Affiliation(s)
- Jong-Hwan Shin
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Byung-Seoung Park
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Yeong Kim
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Kwang-Ho Lee
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Kyoung Su Kim
- Division of Bio-Resource Sciences, BioHerb Research Institute, and Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
- Corresponding author. Phone) +82-33-250-6435, FAX) +82-33-259-5558 E-mail)
| |
Collapse
|
35
|
Ngalimat MS, Yahaya RSR, Baharudin MMAA, Yaminudin SM, Karim M, Ahmad SA, Sabri S. A Review on the Biotechnological Applications of the Operational Group Bacillus amyloliquefaciens. Microorganisms 2021; 9:microorganisms9030614. [PMID: 33802666 PMCID: PMC8002464 DOI: 10.3390/microorganisms9030614] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
Bacteria under the operational group Bacillus amyloliquefaciens (OGBa) are all Gram-positive, endospore-forming, and rod-shaped. Taxonomically, the OGBa belongs to the Bacillus subtilis species complex, family Bacillaceae, class Bacilli, and phylum Firmicutes. To date, the OGBa comprises four bacterial species: Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus velezensis and Bacillus nakamurai. They are widely distributed in various niches including soil, plants, food, and water. A resurgence in genome mining has caused an increased focus on the biotechnological applications of bacterial species belonging to the OGBa. The members of OGBa are known as plant growth-promoting bacteria (PGPB) due to their abilities to fix nitrogen, solubilize phosphate, and produce siderophore and phytohormones, as well as antimicrobial compounds. Moreover, they are also reported to produce various enzymes including α-amylase, protease, lipase, cellulase, xylanase, pectinase, aminotransferase, barnase, peroxidase, and laccase. Antimicrobial compounds that able to inhibit the growth of pathogens including non-ribosomal peptides and polyketides are also produced by these bacteria. Within the OGBa, various B. velezensis strains are promising for use as probiotics for animals and fishes. Genome mining has revealed the potential applications of members of OGBa for removing organophosphorus (OPs) pesticides. Thus, this review focused on the applicability of members of OGBa as plant growth promoters, biocontrol agents, probiotics, bioremediation agents, as well as producers of commercial enzymes and antibiotics. Here, the bioformulations and commercial products available based on these bacteria are also highlighted. This review will better facilitate understandings of members of OGBa and their biotechnological applications.
Collapse
Affiliation(s)
- Mohamad Syazwan Ngalimat
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Radin Shafierul Radin Yahaya
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Mohamad Malik Al-adil Baharudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Syafiqah Mohd. Yaminudin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.M.Y.); (M.K.)
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.M.Y.); (M.K.)
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-97698298
| |
Collapse
|
36
|
Marine macroalga-associated heterotroph Bacillus velezensis as prospective therapeutic agent. Arch Microbiol 2021; 203:1671-1682. [PMID: 33439297 DOI: 10.1007/s00203-020-02169-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
Marine macroalgae and their accompanying microbial flora were proved to be the reservoir of potential bioactive compounds with promising pharmacological applications. Heterotrophic bacteria concomitant with the marine algae were isolated and screened for their antibacterial potential against clinically recognized pathogens. The bacterial isolate with greater bioactive properties was identified as Bacillus velezensis MBTDLP1 (phylum Firmicutes), which was isolated from the marine macroalga Laurencia papillosa, by integrated morphological, biochemical and molecular characterization. B. velezensis showed promising antibacterial property against methicillin-resistant Staphylococcus aureus and Vibrio parahemolyticus with inhibition zone of 32-36 mm. Organic ethyl acetate extract of the isolate also displayed prospective antibacterial activity against the test pathogens (minimum inhibitory concentration 7.5-15 µg/mL), coupled with promising antioxidant (IC50 0.1-0.9 mg/mL against oxidants), anti-inflammatory (IC50 0.01 mg/mL against 5-lipoxygenase), and carbolytic enzyme attenuation properties (IC50 0.1-0.4 mg/mL in response to α-amylase and α-glucosidase). Significant anticancer potential against breast carcinoma (MCF-7) cells (IC50 0.03 mg/mL) coupled with lesser cytotoxicity to the normal fibroblast (3T3L) cells (IC50 0.14 mg/mL) were also recognized. The apoptosis assay could give reasonable outcome as the organic extract of B. velezensis induced apoptosis to 81% of the cancer cells while maintaining almost 60% viability in normal cells. The results put forward that B. velezensis MBTDLP1 could be used to isolate bioactive compounds with therapeutic potential and biomedical applications.
Collapse
|
37
|
Jokić A, Pajčin I, Grahovac J, Lukić N, Ikonić B, Nikolić N, Vlajkov V. Dynamic Modeling Using Artificial Neural Network of Bacillus Velezensis Broth Cross-Flow Microfiltration Enhanced by Air-Sparging and Turbulence Promoter. MEMBRANES 2020; 10:membranes10120372. [PMID: 33260842 PMCID: PMC7761049 DOI: 10.3390/membranes10120372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Cross-flow microfiltration is a broadly accepted technique for separation of microbial biomass after the cultivation process. However, membrane fouling emerges as the main problem affecting permeate flux decline and separation process efficiency. Hydrodynamic methods, such as turbulence promoters and air sparging, were tested to improve permeate flux during microfiltration. In this study, a non-recurrent feed-forward artificial neural network (ANN) with one hidden layer was examined as a tool for microfiltration modeling using Bacillus velezensis cultivation broth as the feed mixture, while the Kenics static mixer and two-phase flow, as well as their combination, were used to improve permeate flux in microfiltration experiments. The results of this study have confirmed successful application of the ANN model for prediction of permeate flux during microfiltration of Bacillus velezensis cultivation broth with a coefficient of determination of 99.23% and absolute relative error less than 20% for over 95% of the predicted data. The optimal ANN topology was 5-13-1, trained by the Levenberg-Marquardt training algorithm and with hyperbolic sigmoid transfer function between the input and the hidden layer.
Collapse
|