1
|
Li N, Li Q, Ge F, Cui X. Immobilization of β-glucosidase and β-xylosidase on inorganic nanoparticles for glycosylated substances conversion. Int J Biol Macromol 2024; 292:139173. [PMID: 39732227 DOI: 10.1016/j.ijbiomac.2024.139173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
There are abundant glycosylated substances such as cellulose, hemicellulose, and phytochemical glycosides in plants, which could be converted into functional chemicals such as monosaccharides, oligosaccharides, and bioactive aglycones by cleavage of glycosidic bonds using glycoside hydrolases (GHs). Among those GHs, β-glucosidase and β-xylosidase are the rate-limiting enzymes for degrading cellulose and hemicellulose, respectively, and can convert a variety of glycosylated substances. These two enzymes play important roles in the high value use of plant resources and have great potential applications. However, the fragility of enzymes suggests there is an urgent need to improve the activity, stability and reusability of GHs under industrial conditions. Enzyme immobilization is an efficient approach to meet the need. Inorganic materials are preferred carriers for enzyme immobilization, since they possess high surface area, pore size, stability and long service life. Recently, many reports have showed that GHs immobilized on inorganic materials exhibit potential applications on industry and will benefit the process economy. The present review provides an overview of these reports from the perspectives of materials, strategies, activities, stability and reusability, as well as an insight into the related mechanisms, with a view to providing a reference for the GHs immobilization and their applications.
Collapse
Affiliation(s)
- Na Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Qiwen Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
2
|
Erkanli ME, El-Halabi K, Kim JR. Exploring the diversity of β-glucosidase: Classification, catalytic mechanism, molecular characteristics, kinetic models, and applications. Enzyme Microb Technol 2024; 173:110363. [PMID: 38041879 DOI: 10.1016/j.enzmictec.2023.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
High-value chemicals and energy-related products can be produced from biomass. Biorefinery technology offers a sustainable and cost-effective method for this high-value conversion. β-glucosidase is one of the key enzymes in biorefinery processes, catalyzing the production of glucose from aryl-glycosides and cello-oligosaccharides via the hydrolysis of β-glycosidic bonds. Although β-glucosidase plays a critical catalytic role in the utilization of cellulosic biomass, its efficacy is often limited by substrate or product inhibitions, low thermostability, and/or insufficient catalytic activity. To provide a detailed overview of β-glucosidases and their benefits in certain desired applications, we collected and summarized extensive information from literature and public databases, covering β-glucosidases in different glycosidase hydrolase families and biological kingdoms. These β-glucosidases show differences in amino acid sequence, which are translated into varying degrees of the molecular properties critical in enzymatic applications. This review describes studies on the diversity of β-glucosidases related to the classification, catalytic mechanisms, key molecular characteristics, kinetics models, and applications, and highlights several β-glucosidases displaying high stability, activity, and resistance to glucose inhibition suitable for desired biotechnological applications.
Collapse
Affiliation(s)
- Mehmet Emre Erkanli
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Khalid El-Halabi
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States.
| |
Collapse
|
3
|
Yang W, Su Y, Wang R, Zhang H, Jing H, Meng J, Zhang G, Huang L, Guo L, Wang J, Gao W. Microbial production and applications of β-glucosidase-A review. Int J Biol Macromol 2024; 256:127915. [PMID: 37939774 DOI: 10.1016/j.ijbiomac.2023.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
β-Glucosidase exists in all areas of living organisms, and microbial β-glucosidase has become the main source of its production because of its unique physicochemical properties and the advantages of high-yield production by fermentation. With the rise of the green circular economy, the production of enzymes through the fermentation of waste as the substrate has become a popular trend. Lignocellulosic biomass is an easily accessible and sustainable feedstock that exists in nature, and the production of biofuels from lignocellulosic biomass requires the involvement of β-glucosidase. This review proposes ways to improve β-glucosidase yield and catalytic efficiency. Optimization of growth conditions and purification strategies of enzymes can increase enzyme yield, and enzyme immobilization, genetic engineering, protein engineering, and whole-cell catalysis provide solutions to enhance the catalytic efficiency and activity of β-glucosidase. Besides, the diversified industrial applications, challenges and prospects of β-glucosidase are also described.
Collapse
Affiliation(s)
- Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Hongyan Jing
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guoqi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs.
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Nakayasu M, Takamatsu K, Kanai K, Masuda S, Yamazaki S, Aoki Y, Shibata A, Suda W, Shirasu K, Yazaki K, Sugiyama A. Tomato root-associated Sphingobium harbors genes for catabolizing toxic steroidal glycoalkaloids. mBio 2023; 14:e0059923. [PMID: 37772873 PMCID: PMC10653915 DOI: 10.1128/mbio.00599-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Saponins are a group of plant specialized metabolites with various bioactive properties, both for human health and soil microorganisms. Our previous works demonstrated that Sphingobium is enriched in both soils treated with a steroid-type saponin, such as tomatine, and in the tomato rhizosphere. Despite the importance of saponins in plant-microbe interactions in the rhizosphere, the genes involved in the catabolism of saponins and their aglycones (sapogenins) remain largely unknown. Here we identified several enzymes that catalyzed the degradation of steroid-type saponins in a Sphingobium isolate from tomato roots, RC1. A comparative genomic analysis of Sphingobium revealed the limited distribution of genes for saponin degradation in our saponin-degrading isolates and several other isolates, suggesting the possible involvement of the saponin degradation pathway in the root colonization of Sphingobium spp. The genes that participate in the catabolism of sapogenins could be applied to the development of new industrially valuable sapogenin molecules.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Kyoko Takamatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Keiko Kanai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Shinichi Yamazaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
5
|
Wu K, Zhai X, Chen H, Zheng J, Yu Z, Xu X, Huang J. The effect of barium and strontium on activity of glucoamylase QsGH97a from Qipengyuania seohaensis SW-135. Sci Rep 2023; 13:5840. [PMID: 37037863 PMCID: PMC10086023 DOI: 10.1038/s41598-023-32161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
Glycoside hydrolases (GHs), the enzymes that break glycosidic bonds, are ubiquitous in the ecosystem, where they perform a range of biological functions. As an interesting glycosidase family, Glycoside hydrolase family 97 (GH97) contains α-glucosidase, α-galactosidase, and glucoamylase. Only ten members of GH97 have been characterized so far. It is critical to explore novel members to elucidate the catalytic mechanism and application potential of GH97 family. In this study, a novel glucoamylase QsGH97a from Qipengyuania seohaensis SW-135 was cloned and expressed in E. coli. Sequence analysis and NMR results show that QsGH97a is classified into GH97a, and adopts inverting mechanism. The biochemical characterization indicates that QsGH97a shows the optimal activity at 50 °C and pH 8.0. Ca2+ has little effect on the catalytic activity; however, the activity can be substantially increased by 8-13 folds in the presence of Ba2+ or Sr2+. Additionally, the metal content of QsGH97a assay showed a high proportion of Sr2+. The specific metal activity was initially revealed in glucoamylases, which is not found in other members. These results imply that QsGH97a not only is a new member of GH97, but also has potential for industrial applications. Our study reveals that Ba2+ or Sr2+ may be involved in the catalytic mechanism of glucoamylase, laying the groundwork for a more complete knowledge of GH97 and its possible industrial application.
Collapse
Affiliation(s)
- Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Xingyu Zhai
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Jinfeng Zheng
- Hunan Institute for Drug Control, Changsha, 410013, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Chen B, Ye Y, Lin D, Zhang M, Sun J, Tang K. Croceicoccus hydrothermalis sp. nov., isolated from shallow-sea hydrothermal system off Kueishantao Island. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly aerobic, non-motile, ovoid or short-rod shaped, orange-pigmented bacterial strain, designated as strain JLT1T, was isolated from seawater of the shallow-sea hydrothermal system, near Kueishantao Islet. Growth was observed at 5–45°C (optimum, 30 °C) and pH 5.0–11.0 (optimum, pH 7.0). The salinity range for growth was 0–12 % (optimum, 2–4 %) (w/v) NaCl. JLT1T contained ubiquinone-10 as the main respiratory quinone. Iso-C12 : 0, summed feature 3 (C16 : 1ω7c/ω6c) and summed feature 8 (C18 : 1ω6c/ω7c) were identified as the major cellular fatty acids. Polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids, eight unidentified glycolipids and an unidentified lipid. The 16S rRNA gene of JLT1T shared the greatest similarity (96.31 %) with those of
Croceicoccus pelagius
Ery9T and
Croceicoccus ponticola
GM-16T. The draft genome size of JLT1T is 3.56 Mb, with 3578 potential genes and a genomic DNA G+C content of 63.24 mol %. Average nucleotide identity and digital DNA–DNA hybridization values of JLT1T compared with
C. pelagius
Ery9T,
C. ponticola
GM-16T,
Croceicoccus sediminis
S2-4-2T,
Croceicoccus mobilis
Ery22T and
Croceicoccus marinus
E4A9T were 74.5, 73.9, 74.4, 74.3 and 74.8 % and 20.6, 19.2, 20.0, 20.5 and 19.8%, respectively. On the basis of these phylogenetic, chemotaxonomic and phenotypic features, JLT1T is concluded to represent a novel species of the genus
Croceicoccus
, for which the name Croceicoccus hydrothermalis sp. nov. is proposed. The type strain is JLT1T (=CGMCC 1.15786T =JCM 31508T).
Collapse
Affiliation(s)
- Beihan Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Youting Ye
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Mu Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Jia Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| |
Collapse
|
7
|
Zhai X, Wu K, Ji R, Zhao Y, Lu J, Yu Z, Xu X, Huang J. Structure and Function Insight of the α-Glucosidase QsGH13 From Qipengyuania seohaensis sp. SW-135. Front Microbiol 2022; 13:849585. [PMID: 35308395 PMCID: PMC8928221 DOI: 10.3389/fmicb.2022.849585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The α-glucosidases play indispensable roles in the metabolic mechanism of organism, prevention, and treatment of the disease, and sugar hydrolysis, and are widely used in chemical synthesis, clinical diagnosis, and other fields. However, improving their catalytic efficiency and production to meet commercial demand remains a huge challenge. Here we detected a novel GH13 family α-glucosidase, QsGH13, from the deep-sea bacterium Qipengyuania seohaensis sp. SW-135. QsGH13 is highly substrate specific and only hydrolyzes sugars containing alpha-1,4 glucoside bonds. For example, its enzymatic activity for p-nitrophenyl-α-D-glucopyranoside was 25.41 U/mg, and the Km value was 0.2952 ± 0.0322 mM. The biochemical results showed that the optimum temperature of QsGH13 is 45°C, the optimum pH is 10.0, and it has excellent biological characteristics such as alkali resistance and salt resistance. The crystal structure of QsGH13 was resolved with a resolution of 2.2 Å, where QsGH13 is composed of a typical TIM barrel catalytic domain A, a loop-rich domain B, and a conserved domain C. QsGH13 crystal belonged to the monoclinic space group P212121, with unit-cell parameters a = 58.816 Å, b = 129.920 Å, c = 161.307 Å, α = γ = β = 90°, which contains two monomers per asymmetric unit. The β → α loop 4 of QsGH13 was located above catalytic pocket. Typical catalytic triad residues Glu202, Asp266, and Glu329 were found in QsGH13. The biochemical properties and structural analysis of QsGH13 have greatly improved our understanding of the catalytic mechanism of GH13 family. This study provides new ideas to broaden the application of α-glucosidase in alcohol fermentation, glycolysis, and other industries.
Collapse
Affiliation(s)
- Xingyu Zhai
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Rui Ji
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiming Zhao
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zheng Yu
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
8
|
Fukuda N, Hatakeyama M, Kitaoka T. Enzymatic Preparation and Characterization of Spherical Microparticles Composed of Artificial Lignin and TEMPO-Oxidized Cellulose Nanofiber. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:917. [PMID: 33916825 PMCID: PMC8065862 DOI: 10.3390/nano11040917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/24/2022]
Abstract
A one-pot and one-step enzymatic synthesis of submicron-order spherical microparticles composed of dehydrogenative polymers (DHPs) of coniferyl alcohol as a typical lignin precursor and TEMPO-oxidized cellulose nanofibers (TOCNFs) was investigated. Horseradish peroxidase enzymatically catalyzed the radical coupling of coniferyl alcohol in an aqueous suspension of TOCNFs, resulting in the formation of spherical microparticles with a diameter and sphericity index of approximately 0.8 μm and 0.95, respectively. The ζ-potential of TOCNF-functionalized DHP microspheres was about -40 mV, indicating that the colloidal systems had good stability. Nanofibrous components were clearly observed on the microparticle surface by scanning electron microscopy, while some TOCNFs were confirmed to be inside the microparticles by confocal laser scanning microscopy with Calcofluor white staining. As both cellulose and lignin are natural polymers known to biodegrade, even in the sea, these woody TOCNF-DHP microparticle nanocomposites were expected to be promising alternatives to fossil resource-derived microbeads in cosmetic applications.
Collapse
Affiliation(s)
| | | | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; (N.F.); (M.H.)
| |
Collapse
|
9
|
Cho EJ, Nguyen QA, Lee YG, Song Y, Park BJ, Bae HJ. Enhanced Biomass Yield of and Saccharification in Transgenic Tobacco Over-Expressing β-Glucosidase. Biomolecules 2020; 10:E806. [PMID: 32456184 PMCID: PMC7278181 DOI: 10.3390/biom10050806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
Here, we report an increase in biomass yield and saccharification in transgenic tobacco plants (Nicotiana tabacumL.) overexpressing thermostable β-glucosidase from Thermotoga maritima, BglB, targeted to the chloroplasts and vacuoles. The transgenic tobacco plants showed phenotypic characteristics that were significantly different from those of the wild-type plants. The biomass yield and life cycle (from germination to flowering and harvest) of the transgenic tobacco plants overexpressing BglB were 52% higher and 36% shorter than those of the wild-type tobacco plants, respectively, indicating a change in the genome transcription levels in the transgenic tobacco plants. Saccharification in biomass samples from the transgenic tobacco plants was 92% higher than that in biomass samples from the wild-type tobacco plants. The transgenic tobacco plants required a total investment (US$/year) corresponding to 52.9% of that required for the wild-type tobacco plants, but the total biomass yield (kg/year) of the transgenic tobacco plants was 43% higher than that of the wild-type tobacco plants. This approach could be applied to other plants to increase biomass yields and overproduce β-glucosidase for lignocellulose conversion.
Collapse
Affiliation(s)
- Eun Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
| | - Quynh Anh Nguyen
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
| | - Yoon Gyo Lee
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Younho Song
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
| | - Bok Jae Park
- Division of Business and Commerce, Chonnam National University, Yeosu 500-749, Korea;
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea;
| |
Collapse
|