1
|
Vural C, Ettadili H. Biodegradation of phthalic acid and terephthalic acid by Comamonas testosteroni strains. Folia Microbiol (Praha) 2024; 69:1343-1353. [PMID: 38809402 DOI: 10.1007/s12223-024-01176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Phthalic acid isomers are the monomers of phthalate molecules, also known as phthalic acid esters, widely employed in the plastics industry. This study aims to investigate the biodegradation of phthalic acid (PA) and terephthalic acid (TPA) by five industry-borne Comamonas testosteroni strains: 3APTOL, 3ABBK, 2B, 3A1, and C8. To assess the ability of C. testosteroni strains to biodegrade phthalic acid isomers in fermentation media, an analytical method was employed, consisting of high-performance liquid chromatography (HPLC) analyses. Subsequently, molecular screening of the genomic and plasmid DNA was conducted to identify the degradative genes responsible for the breakdown of these chemicals. The genes of interest, including ophA2, tphA2, tphA3, pmdA, and pmdB, were screened by real-time PCR. The five C. testosteroni strains effectively degraded 100% of 100 mg/L PA (p = 0.033) and TPA (p = 0.0114). Molecular analyses indicated that all C. testosteroni strains contained the pertinent genes at different levels within their genomes and plasmids, as reflected in the threshold cycle (Ct) values. Additionally, DNA temperature of melting (Tm) analyses uncovered minor differences between groups of genes in genomic and plasmid DNA. C. testosteroni strains could be excellent candidates for the removal of phthalic acid isomers from environmental systems.
Collapse
Affiliation(s)
- Caner Vural
- Department of Biology, Molecular Biology Section, Pamukkale University, 20160, Denizli, Turkey.
| | - Hamza Ettadili
- Department of Biology, Molecular Biology Section, Pamukkale University, 20160, Denizli, Turkey
| |
Collapse
|
2
|
Tang KHD, Li R. The effects of plastisphere on the physicochemical properties of microplastics. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03059-4. [PMID: 38960926 DOI: 10.1007/s00449-024-03059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
The plastisphere is the microbial communities that grow on the surface of plastic debris, often used interchangeably with plastic biofilm or biofouled plastics. It can affect the properties of the plastic debris in multiple ways. This review aims to present the effects of the plastisphere on the physicochemical properties of microplastics systematically. It highlights that the plastisphere modifies the buoyancy and movement of microplastics by increasing their density, causing them to sink and settle out. Smaller and film microplastics are likely to settle sooner because of larger surface areas and higher rates of biofouling. Biofouled microplastics may show an oscillating movement in waterbodies when settling due to diurnal and seasonal changes in the growth of the plastisphere until they come close to the bottom of the waterbodies and are entrapped by sediments. The plastisphere enhances the adsorption of microplastics for metals and organic pollutants and shifts the adsorption mechanism from intraparticle diffusion to film diffusion. The plastisphere also increases surface roughness, reduces the pore size, and alters the overall charge of microplastics. Charge alteration is primarily attributed to changes in the functional groups on microplastic surfaces. The plastisphere introduces carbonyl, amine, amide, hydroxyl, and phosphoryl groups to microplastics, causing an increase in their surface hydrophilicity, which could alter their adsorption behaviors for heavy metals. The plastisphere may act as a reactive barrier that enhances the leaching of polar additives. It may anchor bacteria that can break down plastic additives, resulting in decreased crystallinity of microplastics. This review contributes to a better understanding of how the plastisphere alters the fate, transport, and environmental impacts of microplastics. It points to the possibility of engineering the plastisphere to improve microplastic biodegradation.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, USA.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
4
|
Bankole PO, Omoni VT, Tennison-Omovoh CA, Adebajo SO, Mulla SI. Enhanced removal of dibutyl phthalate in a laccase-mediator system: Optimized process parameters, kinetics, and environmental impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119227. [PMID: 37820431 DOI: 10.1016/j.jenvman.2023.119227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The persistence and recalcitrance of endocrine-disrupting chemicals (EDCs) in the environment have raised momentous concerns due to their carcinogenic, teratogenic, genotoxic, and cytotoxic effects on humans, animals, and plants. Unarguably, dibutyl phthalate (DBP) is one of the most ubiquitous EDCs because of its bioavailability in water, soil, and atmosphere. This study aims to investigate the efficiency of Agaricus bisporus laccase in the degradation of dibutyl phthalate (DBP) in laccase-mediator system. Here, enhanced removal efficiency was recorded during DBP degradation in laccase-mediator systems than in reaction medium containing laccase only. About 98.85% of 30 mg L-1 DBP was efficiently removed in a medium containing 1.3 U mL-1, 0.045 mM Syringaldehyde (SYR) at incubation temperature 30 aC and pH 5 within 24 h. This finding was further corroborated by the synergistic interplay of the optimal parameters in the laccase-SYR system done using response surface methodology (Box-Behnken Design). Furthermore, the addition of 1.5 mM of metal ions in the laccase-SYR system further promoted the enhanced removal of DBP in the following order: Cr3+> Pb2+> Ca2+> Al3+>Zn2+ > Cu2+. A significant decrease in DBP degradation was observed at higher concentrations of metal ions above 1.5 mM due to the inhibition of laccase active sites. The coefficient of correlation (R2 = 0.9885) recorded in the Lineweaver bulk plot affirmed that the removal efficiencies are highly dependent on DBP concentration in the laccase-SYR system. The Gas-Chromatography Mass Spectrometry (GC-MS) analyses affirmed that the ortho-cleavage due to hydrolysis of DBP in the reaction system led to the formation of two metabolic degradation products (MBP and PA). The phytotoxicity assessment affirmed the detoxified status of DBP after treatment with significant improvement (90 and 91%) in the growth of Lens culinaris and Sorghum bicolor. This is the first report on DBP degradation in the laccase-SYR reaction system, underscoring the unique, eco-friendly, economical, and promising alternative to known conventional methods.
Collapse
Affiliation(s)
- Paul Olusegun Bankole
- Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture P.M.B. 2240 Abeokuta, Ogun State, Nigeria; Environmental Microbiology Group, Institute of Water Research, University of Granada, Calle Ramón y Cajal 4, E-18071 Granada, Spain.
| | | | | | - Seun Owolabi Adebajo
- Department of Microbiology, College of Biosciences, Federal University of Agriculture P.M.B. 2240 Abeokuta, Ogun State, Nigeria
| | - Sikandar Imamsab Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560064, India; Division of Biotechnology, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
5
|
Okal EJ, Heng G, Magige EA, Khan S, Wu S, Ge Z, Zhang T, Mortimer PE, Xu J. Insights into the mechanisms involved in the fungal degradation of plastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115202. [PMID: 37390726 DOI: 10.1016/j.ecoenv.2023.115202] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Fungi are considered among the most efficient microbial degraders of plastics, as they produce salient enzymes and can survive on recalcitrant compounds with limited nutrients. In recent years, studies have reported numerous species of fungi that can degrade different types of plastics, yet there remain many gaps in our understanding of the processes involved in biodegradation. In addition, many unknowns need to be resolved regarding the fungal enzymes responsible for plastic fragmentation and the regulatory mechanisms which fungi use to hydrolyse, assimilate and mineralize synthetic plastics. This review aims to detail the main methods used in plastic hydrolysis by fungi, key enzymatic and molecular mechanisms, chemical agents that enhance the enzymatic breakdown of plastics, and viable industrial applications. Considering that polymers such as lignin, bioplastics, phenolics, and other petroleum-based compounds exhibit closely related characteristics in terms of hydrophobicity and structure, and are degraded by similar fungal enzymes as plastics, we have reasoned that genes that have been reported to regulate the biodegradation of these compounds or their homologs could equally be involved in the regulation of plastic degrading enzymes in fungi. Thus, this review highlights and provides insight into some of the most likely regulatory mechanisms by which fungi degrade plastics, target enzymes, genes, and transcription factors involved in the process, as well as key limitations to industrial upscaling of plastic biodegradation and biological approaches that can be employed to overcome these challenges.
Collapse
Affiliation(s)
- Eyalira Jacob Okal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Gui Heng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Ephie A Magige
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Sehroon Khan
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, 28100 Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Shixi Wu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Zhiqiang Ge
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Tianfu Zhang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Peter E Mortimer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
6
|
Moreno-Perlin T, Valdés-Muñoz G, Jiménez-Gómez I, Gunde-Cimerman N, Yarzábal Rodríguez LA, Sánchez-Carbente MDR, Vargas-Fernández A, Gutiérrez-Cepeda A, Batista-García RA. Extremely chaotolerant and kosmotolerant Aspergillus atacamensis - a metabolically versatile fungus suitable for recalcitrant biosolid treatment. Front Microbiol 2023; 14:1191312. [PMID: 37455742 PMCID: PMC10338856 DOI: 10.3389/fmicb.2023.1191312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 07/18/2023] Open
Abstract
Obligate halophily is extremely rare in fungi. Nevertheless, Aspergillus atacamensis (strain EXF-6660), isolated from a salt water-exposed cave in the Coastal Range hills of the hyperarid Atacama Desert in Chile, is an obligate halophile, with a broad optimum range from 1.5 to 3.4 M of NaCl. When we tested its ability to grow at varied concentrations of both kosmotropic (NaCl, KCl, and sorbitol) and chaotropic (MgCl2, LiCl, CaCl2, and glycerol) solutes, stereoscopy and laser scanning microscopy revealed the formation of phialides and conidia. A. atacamensis EXF-6660 grew up to saturating levels of NaCl and at 2.0 M concentration of the chaotropic salt MgCl2. Our findings confirmed that A. atacamensis is an obligate halophile that can grow at substantially higher MgCl2 concentrations than 1.26 M, previously considered as the maximum limit supporting prokaryotic life. To assess the fungus' metabolic versatility, we used the phenotype microarray technology Biolog FF MicroPlates. In the presence of 2.0 M NaCl concentration, strain EXF-6660 metabolism was highly versatile. A vast repertoire of organic molecules (~95% of the substrates present in Biolog FF MicroPlates) was metabolized when supplied as sole carbon sources, including numerous polycyclic aromatic hydrocarbons, benzene derivatives, dyes, and several carbohydrates. Finally, the biotechnological potential of A. atacamensis for xenobiotic degradation and biosolid treatment was investigated. Interestingly, it could remove biphenyls, diphenyl ethers, different pharmaceuticals, phenols, and polyaromatic hydrocarbons. Our combined findings show that A. atacamensis EXF-6660 is a highly chaotolerant, kosmotolerant, and xerotolerant fungus, potentially useful for xenobiotic and biosolid treatments.
Collapse
Affiliation(s)
- Tonatiuh Moreno-Perlin
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Gisell Valdés-Muñoz
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Irina Jiménez-Gómez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Alfaniris Vargas-Fernández
- Instituto de Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
- Instituto de Química, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Adrián Gutiérrez-Cepeda
- Instituto de Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
- Instituto de Química, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
7
|
Liu J, Sun K, Zhu R, Wang X, Waigi MG, Li S. Biotransformation of bisphenol A in vivo and in vitro by laccase-producing Trametes hirsuta La-7: Kinetics, products, and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121155. [PMID: 36709035 DOI: 10.1016/j.envpol.2023.121155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous endocrine disruptor that poses adverse human health risks. Herein, biotransformation kinetics, products, and mechanisms of BPA undergoing a laccase-producing Trametes hirsuta La-7 metabolism were for the first time reported. Strain La-7 could completely biotransform ≤0.5 mmol·L-1 BPA within 6 d in vivo. Notably, its extracellular crude laccase solution (ECLS) and intracellular homogenized mycelium (HM) only required 6 h to convert 85.71% and 84.24% of 0.5 mmol·L-1 BPA in vitro, respectively. The removal of BPA was noticeably hampered by adding a cytochrome P-450 inhibitor (piperonyl butoxide) in HM, disclosing that cytochrome P-450 monooxygenase participated in BPA oxidation and metabolism. BPA intermediates were elaborately identified by high-resolution mass spectrometry (HRMS) combined with 13C stable isotope ratios (BPA: 13C12-BPA = 0.25: 0.25, molar concentration). Based on the accurate molecular mass, isotope labeling difference, and relative intensity ratio of product peaks, 6 versatile metabolic mechanisms of BPA, including polymerization, hydroxylation, dehydration, bond cleavage, dehydrogenation, and carboxylation in vivo and in vitro, were confirmed. Germination index values revealed that inoculating strain La-7 in a BPA-contaminated medium presented no phytotoxicity to the germinated radish (Raphanus sativus L.) seeds. In vivo, Mg2+, Fe2+, Fe3+, and Mn2+ were conducive to BPA removal, but Cd2+ and Hg2+ significantly obstructed BPA elimination. Additionally, strain La-7 also exhibited high-efficiency metabolic ability toward estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2), with more than 96.13%, 96.65%, and 100% of E1, E2, and EE2 having been converted, respectively. Our findings provide an environmentally powerful laccase-producing fungus to decontaminate endocrine disruptor-contaminated water matrices by radical polymerization and oxidative decomposition.
Collapse
Affiliation(s)
- Jie Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Rui Zhu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xun Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Michael Gatheru Waigi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|
8
|
Ghosh S, Rusyn I, Dmytruk OV, Dmytruk KV, Onyeaka H, Gryzenhout M, Gafforov Y. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Front Bioeng Biotechnol 2023; 11:1106973. [PMID: 36865030 PMCID: PMC9971017 DOI: 10.3389/fbioe.2023.1106973] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
This review presents a comprehensive summary of the latest research in the field of bioremediation with filamentous fungi. The main focus is on the issue of recent progress in remediation of pharmaceutical compounds, heavy metal treatment and oil hydrocarbons mycoremediation that are usually insufficiently represented in other reviews. It encompasses a variety of cellular mechanisms involved in bioremediation used by filamentous fungi, including bio-adsorption, bio-surfactant production, bio-mineralization, bio-precipitation, as well as extracellular and intracellular enzymatic processes. Processes for wastewater treatment accomplished through physical, biological, and chemical processes are briefly described. The species diversity of filamentous fungi used in pollutant removal, including widely studied species of Aspergillus, Penicillium, Fusarium, Verticillium, Phanerochaete and other species of Basidiomycota and Zygomycota are summarized. The removal efficiency of filamentous fungi and time of elimination of a wide variety of pollutant compounds and their easy handling make them excellent tools for the bioremediation of emerging contaminants. Various types of beneficial byproducts made by filamentous fungi, such as raw material for feed and food production, chitosan, ethanol, lignocellulolytic enzymes, organic acids, as well as nanoparticles, are discussed. Finally, challenges faced, future prospects, and how innovative technologies can be used to further exploit and enhance the abilities of fungi in wastewater remediation, are mentioned.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa,*Correspondence: Soumya Ghosh, ,
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Lviv, Ukraine
| | - Olena V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Kostyantyn V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Yusufjon Gafforov
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan,AKFA University, Tashkent, Uzbekistan
| |
Collapse
|
9
|
Puranik S, Shukla L, Kundu A, Kamil D, Paul S, Venkadasamy G, Salim R, Singh SK, Kumar D, Kumar A. Exploring Potent Fungal Isolates from Sanitary Landfill Soil for In Vitro Degradation of Dibutyl Phthalate. J Fungi (Basel) 2023; 9:jof9010125. [PMID: 36675946 PMCID: PMC9860837 DOI: 10.3390/jof9010125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Di-n-butyl phthalate (DBP) is one of the most extensively used plasticizers for providing elasticity to plastics. Being potentially harmful to humans, investigating eco-benign options for its rapid degradation is imperative. Microbe-mediated DBP mineralization is well-recorded, but studies on the pollutant's fungal catabolism remain scarce. Thus, the present investigation was undertaken to exploit the fungal strains from toxic sanitary landfill soil for the degradation of DBP. The most efficient isolate, SDBP4, identified on a molecular basis as Aspergillus flavus, was able to mineralize 99.34% dibutyl phthalate (100 mg L-1) within 15 days of incubation. It was found that the high production of esterases by the fungal strain was responsible for the degradation. The strain also exhibited the highest biomass (1615.33 mg L-1) and total soluble protein (261.73 µg mL-1) production amongst other isolates. The DBP degradation pathway scheme was elucidated with the help of GC-MS-based characterizations that revealed the formation of intermediate metabolites such as benzyl-butyl phthalate (BBP), dimethyl-phthalate (DMP), di-iso-butyl-phthalate (DIBP) and phthalic acid (PA). This is the first report of DBP mineralization assisted with A. flavus, using it as a sole carbon source. SDBP4 will be further formulated to develop an eco-benign product for the bioremediation of DBP-contaminated toxic sanitary landfill soils.
Collapse
Affiliation(s)
- Shriniketan Puranik
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Livleen Shukla
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence: (L.S.); (A.K.); Tel.: +91-880-093-3066 (L.S.); +91-896-063-9724 (A.K.)
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sangeeta Paul
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Govindasamy Venkadasamy
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rajna Salim
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sandeep Kumar Singh
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
- Correspondence: (L.S.); (A.K.); Tel.: +91-880-093-3066 (L.S.); +91-896-063-9724 (A.K.)
| |
Collapse
|
10
|
Biodegradation of diethyl phthalate and phthalic acid by a new indigenous Pseudomonas putida. Folia Microbiol (Praha) 2023; 68:477-488. [PMID: 36635520 DOI: 10.1007/s12223-022-01022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/30/2022] [Indexed: 01/14/2023]
Abstract
Diethyl phthalate (DEP) is one of the extensively used plasticizers which has been considered a priority hazardous pollutant due to its carcinogenic, endocrine disrupter, and multi-toxic effects on humans. The identification of DEP in different parts of the ecosphere has increased the global community's attention to the elimination of this pollutant in a bio-eco-friendly way. In this research, a novel aerobic bacterial strain nominates as ShA (GenBank accession number: MN298858) capable of consuming DEP as carbon and energy sources, was isolated from the upper phase (0-10 cm) of Anzali international wetland sediments by enrichment culture method. Morphological characteristics and 16S rRNA gene sequence analysis demonstrated that strain ShA belonged to Pseudomonas putida. The substrate utilization test demonstrated that strain ShA was able to grow in mineral salt medium containing dimethyl phthalate (DMP) and phthalic acid (PA) isomers including terephthalic and isophthalic acid. Degradation assay showed strain ShA completely degraded 200 mg/L DEP within 22 h (pH 7.0, 30 °C). Surprisingly, PA as the main intermediate of DEP biodegradation was identified by GC-FID. Moreover, the rapid degradation of 2000 mg/L PA to CO2 and H2O was viewed in 22 h by strain ShA. The possible route of DEP degradation was DEP directly to PA and then PA consumption for growth. This study obtained results that provide a great contribution to applying strain ShA in the biodegradation of low molecular weight of PAEs and PA isomers in natural ecosystems. This is the first report of a P. putida strain able to degrade DEP and PA.
Collapse
|
11
|
Puri M, Gandhi K, Kumar MS. The occurrence, fate, toxicity, and biodegradation of phthalate esters: An overview. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10832. [PMID: 36632702 DOI: 10.1002/wer.10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Phthalate esters (PAEs) are a class of emerging xenobiotic compounds that are extensively used as plasticizers. In recent times, there has been an increasing concern over the risk of this pervasive pollution exposure causing endocrine disruption and carcinogenicity in humans and animals. The widespread use of PAEs in home and industrial applications has resulted in their discharge in aquatic bodies via leaching, volatilization, and precipitation. In this overview, the current state of PAE pollution, its potential origins, its fate, as well as its effects on the aquatic environment are discussed. A state-of-the-art review of several studies in the literature that focus on the biological degradation of PAEs is included in this study. The paper aims to provide a comprehensive view of current research on PAEs in the environment, highlighting its fate and alleviated risks on the aquatic biotas, their challenges, future prospects, and the need for good management and policies for its remediation. PRACTITIONER POINTS: Occurrence of phthalate esters was summarized in various environmental matrices along with its serious ecotoxicological implications on biota. Wastewater is the prime source of PAEs contamination. Lack of species-specific effects on biota due to dose, exposure route, and susceptibility. The predominant route to mineralization in PAEs is biodegradation. A critical analysis of worldwide PAE production and consumption identifies the necessity for global PAE production, consumption, and release policies.
Collapse
Affiliation(s)
- Mehak Puri
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar (AcSIR), Ghaziabad, India
| | - Kavita Gandhi
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar (AcSIR), Ghaziabad, India
- Sophisticated Environmental Analytical Facility, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Virués-Segovia JR, Muñoz-Mira S, Durán-Patrón R, Aleu J. Marine-derived fungi as biocatalysts. Front Microbiol 2023; 14:1125639. [PMID: 36922968 PMCID: PMC10008910 DOI: 10.3389/fmicb.2023.1125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Marine microorganisms account for over 90% of ocean biomass and their diversity is believed to be the result of their ability to adapt to extreme conditions of the marine environment. Biotransformations are used to produce a wide range of high-added value materials, and marine-derived fungi have proven to be a source of new enzymes, even for activities not previously discovered. This review focuses on biotransformations by fungi from marine environments, including bioremediation, from the standpoint of the chemical structure of the substrate, and covers up to September 2022.
Collapse
Affiliation(s)
- Jorge R Virués-Segovia
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Salvador Muñoz-Mira
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
13
|
Fan X, Gu C, Jin Z, Cai J, Bian Y, Wang F, Chen H, Jiang X. Major biotransformation of phthalic acid esters in Eisenia fetida: Mechanistic insights and association with catalytic enzymes and intestinal symbionts. ENVIRONMENT INTERNATIONAL 2023; 171:107712. [PMID: 36577298 DOI: 10.1016/j.envint.2022.107712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Phthalic acid esters (PAEs) are an important group of organic pollutants that are widely used as plasticizers in the environment. The PAEs in soil organisms are likely to be biotransformed into a variety of metabolites, and the combined toxicity of PAEs and their metabolites might be more serious than PAEs alone. However, there are only a few studies on PAE biotransformation by terrestrial animals, e.g. earthworms. Herein, the key biotransformation pathways of PAEs and their association with catalytic enzymes and intestinal symbionts in earthworms were studied using in vivo and in vitro incubation approaches. The widely distributed PAE in soil, dibutyl phthalate (DBP), was proven to be biotransformed rapidly together with apparent bioaccumulation in earthworms. The biotransformation of PAE congeners with medium or long side chains appeared to be faster compared with those with short side chains. DBP was biotransformed into butyl methyl phthalate (BMP), monobutyl phthalate (MBP), and phthalic acid (PA) through esterolysis and transesterification. Besides, the generation of small quantities of low-molecular weight metabolites via β-oxidation, decarboxylation or ring-cleavage, was also observed, especially when the appropriate proportion of NADPH coenzyme was applied to transfer electrons for oxidases. Interestingly, the esterolysis of PAEs was mainly regulated by the cytoplasmic carboxylesterase (CarE) in earthworms, with a Michaelis constant (Km) of 0.416 mM in the catalysis of DBP. The stronger esterolysis in non-intestinal tissues indicated that the CarE was primarily secreted by non-intestinal tissues of earthworms. Additionally, the intestinal symbiotic bacteria of earthworms could respond to PAE stress, leading to the changes in their diversity and composition. The enrichment of some genera e.g. Bacillus and Paracoccus, and the enhancement of metabolism function, e.g. amino acids, energy, lipids biosynthesis and oxidase secretion, indicated their important role in the degradation of PAEs.
Collapse
Affiliation(s)
- Xiuli Fan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Zhihua Jin
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Cai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
14
|
Bhanot V, Panwar J. Unveiling the potential of Lichtheimia ramosa AJP11 for myco-transformation of polystyrene sulfonate and its driving molecular mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116579. [PMID: 36302301 DOI: 10.1016/j.jenvman.2022.116579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution is a major environmental concern due to its deleterious effects on various ecosystems. The limitations and shortcomings of waste management strategies has led to the over-accumulation of plastic waste, mainly comprised of single-use plastics, such as polystyrene (PS). Considering the advantages of biotransformation over the other plastic disposal methods, it has become a major focus of the modern research. Biotransformation of plastics involves its microbial hydrolysis into short chain oligomers and monomers that are eventually assimilated as carbon source by the microbes leading to the release of CO2. As fungi are known to possess multifarious and highly regulated enzyme system capable of utilizing diverse nutrient sources, the present study explored the potential of Lichtheimia ramosa AJP11 towards myco-transformation of polystyrene sulfonate (PSS), a structural analogue of polystyrene (PS). During the 30-day incubation period of L. ramosa AJP11 in minimal salt medium (MSM)+1% PSS, the fungus showed 41.6% increment in its fresh weight biomass, indicating the utilization of PSS as sole carbon source. Further analysis revealed the generation of various reaction intermediates such as alkanes and fatty acids, crucial for the continuum of fungal metabolic pathways. Moreover, detection of PS oligomers such as cyclohexane and 2,4-DTBP confirmed the myco-transformation of PSS. The extracellular fungal protein profile showed considerable overexpression of a 14.4 kDa protein, characterized to be a hydrophobic surface binding (Hsb) protein, which is hypothesized to adsorb onto the PSS to facilitate its transformation. Further, in silico analysis of Hsb protein indicated it to be an amphiphilic α-helical protein with ability to bind styrene sulfonate unit via both hydrogen and hydrophobic interactions, with a binding energy of -5.02 kcal mol-1. These findings open new avenues for over expression of Hsb under controlled reactor conditions to accelerate the PS waste disposal.
Collapse
Affiliation(s)
- Vishalakshi Bhanot
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
15
|
Khan MF, Murphy CD. Cytochrome P450 5208A3 is a promiscuous xenobiotic biotransforming enzyme in Cunninghamella elegans. Enzyme Microb Technol 2022; 161:110102. [DOI: 10.1016/j.enzmictec.2022.110102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
|
16
|
Naveen KV, Saravanakumar K, Zhang X, Sathiyaseelan A, Wang MH. Impact of environmental phthalate on human health and their bioremediation strategies using fungal cell factory- A review. ENVIRONMENTAL RESEARCH 2022; 214:113781. [PMID: 35780847 DOI: 10.1016/j.envres.2022.113781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are utilized as plasticizers in plastic products to enhance their durability, transparency, and elasticity. However, phthalates are not covalently bonded to the polymer matrix of the phthalate-containing products and can be gradually released into the environment through biogeochemical processes. Hence, phthalates are now pervasive in our environment, including our food. Reports suggested that phthalates exposure to the mammalian systems is linked to various health consequences. It has become vital to develop highly efficient strategies to reduce phthalates from the environment. In this context, the utilization of fungi for phthalate bioremediation (mycoremediation) is advantageous due to their highly effective enzyme secretory system. Extracellular and intracellular enzymes of fungi are believed to break down the phthalates by ester hydrolysis to produce phthalic acid and alcohol, and subsequent digestion of the benzene rings of phthalic acid and their metabolites. The present review scrutinizes and highlights the knowledge gap in phthalate prevalence, exposure to mammals, and associated human health challenges. Furthermore, discusses the role of fungi and their secretory enzymes in the biodegradation of phthalates and gives a perspective to better describe and tackle this continuous threat.
Collapse
Affiliation(s)
- Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
17
|
Torres-García JL, Ahuactzin-Pérez M, Fernández FJ, Cortés-Espinosa DV. Bisphenol A in the environment and recent advances in biodegradation by fungi. CHEMOSPHERE 2022; 303:134940. [PMID: 35588877 DOI: 10.1016/j.chemosphere.2022.134940] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a compound used in the manufacture of a wide variety of everyday materials that, when released into the environment, causes multiple detrimental effects on humans and other organisms. The reason for this review is to provide an overview of the presence, distribution, and concentration of BPA in water, soil, sediment, and air, as well as the process of release and migration, biomagnification, and exposure mechanisms that cause various toxic effects in humans. Therefore, it is important to seek efficient and economic strategies that allow its removal from the environment and prevent it from reaching humans through food chains. Likewise, the main removal techniques are analyzed, focusing on biological treatments, particularly the most recent advances in the degradation of BPA in different environmental matrices through the use of ligninolytic fungi, non-ligninolytic fungi and yeasts, as well as the possible routes of metabolic processes that allow their biotransformation or biodegradation due to their efficient extracellular enzyme systems. This review supports the importance of the application of new biotechnological tools for the degradation of BPA.
Collapse
Affiliation(s)
- J L Torres-García
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - M Ahuactzin-Pérez
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Autopista Tlaxcala-San Martín Km 10.5, 90120, San Felipe Ixtacuixtla, Tlaxcala, Mexico
| | - F J Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - Diana V Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada. Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, 90700, Tepetitla de Lardizabal, Tlaxcala, Mexico.
| |
Collapse
|
18
|
Lin S, Wei J, Yang B, Zhang M, Zhuo R. Bioremediation of organic pollutants by white rot fungal cytochrome P450: The role and mechanism of CYP450 in biodegradation. CHEMOSPHERE 2022; 301:134776. [PMID: 35500631 DOI: 10.1016/j.chemosphere.2022.134776] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 (CYP450) is a well-known protein family that is widely distributed in many organisms. Members of this family have been implicated in a broad range of reactions involved in the metabolism of various organic compounds. Recently, an increasing number of studies have shown that the CYP450 enzyme also participates in the elimination and degradation of organic pollutants, by white rot fungi (WRF), a famous group of natural degraders. This paper reviews previous investigations of white rot fungal CYP450 involved in the biodegradation of organic pollutants, with a special focus on inhibitory experiments, and the direct and indirect evidence of the role of white rot fungal CYP450 in bioremediation. The catalytic mechanisms of white rot fungal CYP450, its application potential, and future prospect for its use in bioremediation are then discussed.
Collapse
Affiliation(s)
- Shuqi Lin
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China
| | - Jinchao Wei
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, PR China
| | - Bentao Yang
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, PR China
| | - Meng Zhang
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China
| | - Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
19
|
Ahmad HA, Ahmad S, Cui Q, Wang Z, Wei H, Chen X, Ni SQ, Ismail S, Awad HM, Tawfik A. The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151926. [PMID: 34838908 DOI: 10.1016/j.scitotenv.2021.151926] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Emerging pollutants (EPs) create a worldwide concern owing to their low concentration and severe toxicity to the receptors. The prominent emerging pollutants categories as pharmaceutical and personal care product, plasticizer, surfactants, and persistent organic pollutants. Typically, EPs are widely disseminated in the aquatic ecosystem and capable of perturbing the physiology of water bodies as well as humans. The primary sources of EPs in the environment include anthropogenic release, atmospheric deposition, untreated or substandard treated wastewater, and extreme weather events. Intensive research has been done covering the environmental distribution, ecological disturbance, fate, and removal of EPs in the past decades. However, a systematic review on the distribution of EPs in the engineered and natural aquatic environment and the degradation of different EPs by using anaerobic sludge, aerobic bacteria, and isolated strains are limited. This review article aims to highlight the importance, application, and future perceptions of using different microbes to degrade EPs. Overall, this review article illustrates the superiority of using non-cultivable and cultivable microbes to degrade the EPs as an eco-friendly approach. Practically, the outcomes of this review paper will build up the knowledge base solutions to remove EPs from the wastewater.
Collapse
Affiliation(s)
- Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China; Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518052, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Qingjie Cui
- Department of Mechanical and Environmental Protection, Shandong Electric Power Engineering Consulting Institute Ltd. (SDEPCI), Jinan, Shandong 250013, China
| | - Zhibin Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Haiwei Wei
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xue Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China; Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518052, China.
| | - Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Environmental Engineering Department, Zagazig University, Zagazig 44519, Egypt
| | - Hanem M Awad
- National Research Centre, Tanning Materials & Proteins Department, Dokki, Giza 12622, Egypt
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Giza 12622, Egypt
| |
Collapse
|
20
|
Sheik S, Sheik S. Fungal Mediated Effective Exploitation of Uncongenial Wastes from Environment. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Duong HL, Paufler S, Harms H, Maskow T, Schlosser D. Applicability and information value of biocalorimetry for the monitoring of fungal solid-state fermentation of lignocellulosic agricultural by-products. N Biotechnol 2021; 66:97-106. [PMID: 34767975 DOI: 10.1016/j.nbt.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
The applicability of biocalorimetry for monitoring fungal conversion of lignocellulosic agricultural by-products during solid-state fermentation (SSF) was substantiated through linking the non-invasive measurement of metabolic heat fluxes to conventional invasive determination of fungal activity (growth, substrate degradation, enzyme activity) parameters. For this, the fast-growing, cellulose-utilising ascomycete Stachybotrys chlorohalonata and the comparatively slow-growing litter-decay basidiomycete Stropharia rugosoannulata were investigated as model organisms during growth on solid wheat straw. Both biocalorimetric and non-calorimetric data may suggest R (ruderal)- and C (combative)-selected life history strategies in S. chlorohalonata and S. rugosoannulata, respectively. For both species, a strong linear correlation of the released metabolic heat with the corresponding fungal biomass was observed. Species-specific YQ/X values (metabolic heat released per fungal biomass unit) were obtained, which potentially enable use of biocalorimetric signals for the quantification of fungal biomass during single-species SSF processes. Moreover, YQ/X values may also indicate different fungal life history strategies and therefore be considered as useful parameters aiding fungal ecology research.
Collapse
Affiliation(s)
- Hieu Linh Duong
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany; Vietnamese-German University (VGU), Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province, Viet Nam.
| | - Sven Paufler
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Thomas Maskow
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| |
Collapse
|
22
|
Burgos-Aceves MA, Abo-Al-Ela HG, Faggio C. Impact of phthalates and bisphenols plasticizers on haemocyte immune function of aquatic invertebrates: A review on physiological, biochemical, and genomic aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126426. [PMID: 34166954 DOI: 10.1016/j.jhazmat.2021.126426] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The invertebrate innate immunity is a crucial characteristic that represents a valuable basis for studying common biological responses to environmental pollutants. Cell defence mechanisms are key players in protecting the organism from infections and foreign materials. Many haemocyte-associated immunological parameters have been reported to be immunologically sensitive to aquatic toxins (natural or artificial). Environmental plastic pollution poses a global threat to ecosystems and human health due to plastic vast and extensive use as additives in various consumer products. In recent years, studies have been done to evaluate the effects of plasticizers on humans and the environment, and their transmission and presence in water, air, and indoor dust, and so forth. Hence, the development of biomarkers that evaluate biological responses to different pollutants are essential to obtain important information on plasticizers' sublethal effects. This review analyses the current advances in the adverse effects of plasticizers (as emerging contaminants), such as immunological response disruption. The review also shows a critical analysis of the effects of the most widely used plasticizers on haemocytes. The advantages of an integrative approach that uses chemical, genetic, and immunomarker assays to monitor toxicity are highlighted. All these factors are imperative to ponder when designing toxicity studies to recognize the potential effects of plasticizers like bisphenol A and phthalates.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
23
|
González-Márquez A, Volke-Sepulveda T, Díaz R, Sánchez C. Enhanced esterase activity during the degradation of dibutyl phthalate by Fusarium species in liquid fermentation. J Ind Microbiol Biotechnol 2021; 48:6371103. [PMID: 34529076 PMCID: PMC8788865 DOI: 10.1093/jimb/kuab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 12/03/2022]
Abstract
Dibutyl phthalate (DBP) is one of the most abundantly produced and used plasticizers and is incorporated into plastic to make it more flexible and malleable. DBP has been found to be an environmental contaminant and reported as an endocrine disruptor. Therefore, it is crucial to develop ecofriendly alternatives to eliminate phthalate pollution. In the present research, the growth of F. culmorum and F. oxysporum in the presence of DBP was studied in liquid fermentation. The esterase activity, specific growth rate, and growth and enzymatic yield parameters were determined in DBP-supplemented media (1,500 or 2,000 mg/L) and in control medium (lacking DBP). These results show that in general, for both Fusarium species, the highest esterase activities, specific growth rates, and yield parameters were observed in media supplemented with DBP. It was observed that 1,500 and 2,000 mg of DBP/L did not inhibit F. culmorum or F. oxysporum growth and that DBP induced esterase production in both fungi. These organisms have much to offer in the mitigation of environmental pollution caused by the endocrine disruptor DBP. This study reports, for the first time, esterase production during the degradation of high concentrations (i.e., 1,500 and 2,000 mg/L) of DBP by F. culmorum F. oxysporum.
Collapse
Affiliation(s)
- Angel González-Márquez
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, CP 90000, Mexico
| | - Tania Volke-Sepulveda
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco N° 186, Col. Vicentina C.P. 09340, Iztapalapa, CDMX, Mexico
| | - Rubén Díaz
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, CP. 90062, Tlaxcala, Mexico
| | - Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, CP. 90062, Tlaxcala, Mexico
| |
Collapse
|
24
|
Fawcett LP, Fringer VS, Sieber JR, Maurer-Jones MA. The effect of plastic additives on Shewanella oneidensis growth and function. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:956-966. [PMID: 34085083 DOI: 10.1039/d1em00108f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plastic waste has the potential for significant consequences on various ecosystems; yet, there are gaps in our understanding of the interaction of bacteria with polymer additives. We studied the impact of representative additive molecules to the viability and cell function of Shewanella oneidensis MR-1. Specifically, we explored the toxicity of three bisphenols (bisphenol A (BPA), bisphenol S (BPS), and tetrabromo bisphenol A (TBBPA)) and two diesters (dibutyl sebacate (DBS) and diisobutyl phthalate (DIBP)) in order to evaluate the generalizability of toxicity based on similar molecular structures. TBBPA caused significant, dose-dependent decreases in viability for acute (4 h) exposures in aerobic and anaerobic conditions. While the other 4 additives showed no significant toxicity upon 4 h exposures, chronic (2 day) anaerobic exposures revealed a significant impact to growth. BPA and BPS cause a significant decrease in growth rates for all exposure doses (8-131 μM) while DBS and DIBP had decreases in growth for the lowest exposure concentrations, though recovered to growth rates similar to the control at the highest concentrations. This highlights that S. oneidensis may have the ability to use the diesters as a carbon source if present in high enough concentrations. Riboflavin secretion was monitored as a marker of cellular health. Most additives stimulated riboflavin secretion as a survival response. Yet, there was no generalizable trend observed for these molecules, indicating the importance of considering the nuances of molecular structure to toxicity responses and the need for further work to understand the consequences of plastic waste in our environment.
Collapse
Affiliation(s)
- Liam P Fawcett
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, USA55812.
| | - Victoria S Fringer
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, USA55812.
| | - Jessica R Sieber
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA55812
| | - Melissa A Maurer-Jones
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, USA55812.
| |
Collapse
|
25
|
Carmen S. Microbial capability for the degradation of chemical additives present in petroleum-based plastic products: A review on current status and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123534. [PMID: 33254737 DOI: 10.1016/j.jhazmat.2020.123534] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 06/12/2023]
Abstract
Plastic additives are present as pollutants in the environment because they are released from plastics and have been reported to be toxic to mammals. Due to this toxicity, it is crucial to develop ecofriendly tools to decontaminate the environment. Microorganisms are a promising alternative for efficient and effective plastic additive removal. This review describes the current knowledge and significant advances in the microbial degradation of plastic additives (i.e. plasticizers, flame retardants, stabilizers and antioxidants) and biotechnological research strategies that are being used to accelerate the biodegradation process of these additives. It is expected that further research supported by advances in genomics, proteomics, gene expression, enzyme immobilization, protein design, and nanotechnology can substantially increase our knowledge to enhance the enzymatic degradation efficiency, which will accelerate plastic additive degradation and establish successful and cost-effective bioremediation processes. Investigations should also address the identification of the enzymes involved in the degradation process and their catalytic mechanisms to achieve full metabolization of organopollutants (i.e. plastic additives) while avoiding harmful plastic additive biodegradation products. Microorganisms and their enzymes undoubtedly represent a potential resource for developing promising environmental biotechnologies, as they have the best systems for pollutant degradation, and their actions are essential for decontaminating the environment.
Collapse
Affiliation(s)
- Sánchez Carmen
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, C.P.90120, Tlaxcala, Mexico.
| |
Collapse
|
26
|
Bandow N, Aitken MD, Geburtig A, Kalbe U, Piechotta C, Schoknecht U, Simon FG, Stephan I. Using Environmental Simulations to Test the Release of Hazardous Substances from Polymer-Based Products: Are Realism and Pragmatism Mutually Exclusive Objectives? MATERIALS 2020; 13:ma13122709. [PMID: 32549187 PMCID: PMC7345583 DOI: 10.3390/ma13122709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/11/2023]
Abstract
The potential release of hazardous substances from polymer-based products is currently in the focus of environmental policy. Environmental simulations are applied to expose such products to selected aging conditions and to investigate release processes. Commonly applied aging exposure types such as solar and UV radiation in combination with water contact, corrosive gases, and soil contact as well as expected general effects on polymers and additional ingredients of polymer-based products are described. The release of substances is based on mass-transfer processes to the material surfaces. Experimental approaches to investigate transport processes that are caused by water contact are presented. For tailoring the tests, relevant aging exposure types and release quantification methods must be combined appropriately. Several studies on the release of hazardous substances such as metals, polyaromatic hydrocarbons, flame retardants, antioxidants, and carbon nanotubes from polymers are summarized exemplarily. Differences between natural and artificial exposure tests are discussed and demonstrated for the release of flame retardants from several polymers and for biocides from paints. Requirements and limitations to apply results from short-term artificial environmental exposure tests to predict long-term environmental behavior of polymers are presented.
Collapse
Affiliation(s)
- Nicole Bandow
- German Environment Agency, Corrensplatz 1, 14195 Berlin, Germany;
| | - Michael D. Aitken
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599-7431, USA;
| | - Anja Geburtig
- Bundesanstalt für Materialforschung und-prüfung (BAM), 12200 Berlin, Germany; (A.G.); (C.P.); (U.S.); (F.-G.S.); (I.S.)
| | - Ute Kalbe
- Bundesanstalt für Materialforschung und-prüfung (BAM), 12200 Berlin, Germany; (A.G.); (C.P.); (U.S.); (F.-G.S.); (I.S.)
- Correspondence:
| | - Christian Piechotta
- Bundesanstalt für Materialforschung und-prüfung (BAM), 12200 Berlin, Germany; (A.G.); (C.P.); (U.S.); (F.-G.S.); (I.S.)
| | - Ute Schoknecht
- Bundesanstalt für Materialforschung und-prüfung (BAM), 12200 Berlin, Germany; (A.G.); (C.P.); (U.S.); (F.-G.S.); (I.S.)
| | - Franz-Georg Simon
- Bundesanstalt für Materialforschung und-prüfung (BAM), 12200 Berlin, Germany; (A.G.); (C.P.); (U.S.); (F.-G.S.); (I.S.)
| | - Ina Stephan
- Bundesanstalt für Materialforschung und-prüfung (BAM), 12200 Berlin, Germany; (A.G.); (C.P.); (U.S.); (F.-G.S.); (I.S.)
| |
Collapse
|