1
|
Mussagy CU, Caicedo-Paz AV, Farias FO, de Souza Mesquita LM, Giuffrida D, Dufossé L. Microbial bacterioruberin: The new C50 carotenoid player in food industries. Food Microbiol 2024; 124:104623. [PMID: 39244374 DOI: 10.1016/j.fm.2024.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
The demand for natural products has significantly increased, driving interest in carotenoids as bioactive compounds for both human and animal consumption. Carotenoids, natural pigments with several biological properties, like antioxidant and antimicrobial, are increasingly preferred over synthetic colorants by the consumers (chemophobia). The global carotenoid market is projected to reach US$ 2.45 billion by 2034, driven by consumer preferences for natural ingredients and regulatory restrictions on synthetic products. Among carotenoids, bacterioruberin (BR), a C50 carotenoid naturally found in microbial hyperhalophilic archaea and in moderate halophilic archaea, stands out for its exceptional antioxidant capabilities, surpassing even well-known carotenoids like astaxanthin. BR's and its derivatives unique structure, with 13 conjugated double bonds and four -OH groups, contributes to its potent antioxidant activity and potential applications in food, feed, supplements, pharmaceuticals, and cosmeceuticals. This review explores BR's chemical and biological properties, upstream and downstream technologies, analytical techniques, market applications, and prospects in the colorants industry. While BR is not intended to replace existing carotenoids, its inclusion enriches the range of natural products available to meet the rising demand for natural alternatives. Furthermore, BR's promising antioxidant capacity positions it as a key player in the future carotenoid market, offering diverse industries a natural and potent alternative for several applications.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, 2260000, Chile.
| | - Angie V Caicedo-Paz
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, 2260000, Chile
| | - Fabiane O Farias
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba/PR, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350, Limeira, SP, Brazil
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS, 92003, CEDEX 9, F-97744, Saint-Denis, France
| |
Collapse
|
2
|
Ben Hamad Bouhamed S, Chaari M, Baati H, Zouari S, Ammar E. Extreme halophilic Archaea: Halobacterium salinarum carotenoids characterization and antioxidant properties. Heliyon 2024; 10:e36832. [PMID: 39281633 PMCID: PMC11401186 DOI: 10.1016/j.heliyon.2024.e36832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Important marine microorganisms are resources of renewable energy that may face global population growth and needs. The application of biomass metabolites, such as carotenoids and their derivatives, may solve some agro-food health problems. Herein, a new halophilic Archaea Halobacterium salinarum producing carotenoid was screened from a Tunisian solar Saltworks (Sfax). The identification of the carotenoid pigments was carried out using HPLC-MS/MS. The predominant pigments produced by this Halobacterium were bacterioruberin and its derivatives and the carotenoids production was found to be of 21.51 mg/mL. Moreover, the data revealed that the carotenoids extract exhibited a high antioxidant activity across four oxidizing assays. The present results suggested that carotenoids extracted from halophilic Archaea are interesting sources of natural antioxidants for future innovative applications in agro-food, cosmetic and health fields.
Collapse
Affiliation(s)
- Sana Ben Hamad Bouhamed
- Research Group of Agri-Food Processing Engineering, Laboratory of Applied Fluids Mechanics, Process Engineering and Environment, National Engineering School of Sfax, University of Sfax, Tunisia
| | - Marwa Chaari
- Research Group of Agri-Food Processing Engineering, Laboratory of Applied Fluids Mechanics, Process Engineering and Environment, National Engineering School of Sfax, University of Sfax, Tunisia
- National Engineering School of Sfax, University of Sfax, Laboratory of Environment Sciences and Sustainable Development, B.P. 1173 - 3038, Sfax, Tunisia
| | - Houda Baati
- National Engineering School of Sfax, University of Sfax, Laboratory of Environment Sciences and Sustainable Development, B.P. 1173 - 3038, Sfax, Tunisia
| | - Sami Zouari
- High Institute of Biotechnology of Sfax, University of Sfax, Laboratory of Medicinal and Environmental Chemistry, Sfax, Tunisia
- National Engineering School of Sfax, University of Sfax, Tunisia
| | - Emna Ammar
- National Engineering School of Sfax, University of Sfax, Laboratory of Environment Sciences and Sustainable Development, B.P. 1173 - 3038, Sfax, Tunisia
- National Engineering School of Sfax, University of Sfax, Tunisia
| |
Collapse
|
3
|
Lee H, Cho E, Hwang CY, Cao L, Kim M, Lee SG, Seo M. Bacterioruberin extract from Haloarchaea Haloferax marinum: Component identification, antioxidant activity and anti-atrophy effect in LPS-treated C2C12 myotubes. Microb Biotechnol 2024; 17:e70009. [PMID: 39264362 PMCID: PMC11391814 DOI: 10.1111/1751-7915.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Carotenoids are natural pigments utilized as colourants and antioxidants across food, pharmaceutical and cosmetic industries. They exist in carbon chain lengths of C30, C40, C45 and C50, with C40 variants being the most common. Bacterioruberin (BR) and its derivatives are part of the less common C50 carotenoid group, synthesized primarily by halophilic archaea. This study analysed the compositional characteristics of BR extract (BRE) isolated from 'Haloferax marinum' MBLA0078, a halophilic archaeon isolated from seawater near Yeoungheungdo Island in the Republic of Korea, and investigated its antioxidant activity and protective effect on lipopolysaccharide (LPS)-induced C2C12 myotube atrophy. The main components of BRE included all-trans-BR, monoanhydrobacterioruberin, 2-isopentenyl-3,4-dehydrorhodopin and all-trans-bisanhydrobacterioruberin. BRE exhibited higher antioxidant activity and DNA nicking protection activity than other well-known C40 carotenoids, such as β-carotene, lycopene and astaxanthin. In C2C12 myotubes, LPS treatment led to a reduction in myotube diameter and number, as well as the hypertranscription of the muscle-specific ubiquitin ligase MAFbx and MuRF1. BRE mitigated these changes by activating the Akt/mTOR pathway. Furthermore, BRE abolished the elevated cellular reactive oxygen species levels and the inflammation response induced by LPS. This study demonstrated that 'Hfx. marinum' is an excellent source of natural microbial C50 carotenoids with strong antioxidant capacity and may offer potential protective effects against muscle atrophy.
Collapse
Affiliation(s)
- Hyeju Lee
- Department of Smart Green Technology EngineeringPukyong National UniversityBusanRepublic of Korea
| | - Eui‐Sang Cho
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Biotechnology Institute, University of MinnesotaSt. PaulMinnesotaUSA
| | - Chi Young Hwang
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
| | - Lei Cao
- Department of Food Science and BiotechnologyGachon UniversitySeongnamRepublic of Korea
| | - Mi‐Bo Kim
- Department of Food Science and NutritionPukyong National UniversityBusanRepublic of Korea
| | - Sang Gil Lee
- Department of Smart Green Technology EngineeringPukyong National UniversityBusanRepublic of Korea
- Department of Food Science and NutritionPukyong National UniversityBusanRepublic of Korea
| | - Myung‐Ji Seo
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Division of BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Research Center for bio Materials & Process DevelopmentIncheon National UniversityIncheonRepublic of Korea
| |
Collapse
|
4
|
Wang L, Ma J, Wu Q, Hu Y, Feng J. Plants Restoration Drives the Gobi Soil Microbial Diversity for Improving Soil Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:2159. [PMID: 39124277 PMCID: PMC11313803 DOI: 10.3390/plants13152159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Desertification and salt stress are major causes of terrestrial ecosystem loss worldwide, and the Gobi, representing a salt-stressed area in inland China, has a major impact on the ecosystems and biodiversity of its surrounding environment. The restoration of the Gobi Desert is an important way to control its expansion, but there are few studies on the evaluation of restoration. In this study, soils under different restoration scenarios, namely, soils in restored areas (R1, R2), semi-restored areas (SR1, SR2), and unrestored control areas (C1, C2), were used to investigate differences in microbial diversity and physicochemical properties. The results showed that the soil was mainly dominated by particles of 4-63 μm (26.45-37.94%) and >63 μm (57.95-72.87%). Across the different restoration levels, the soil pH (7.96-8.43) remained basically unchanged, salinity decreased from 9.23-2.26 to 0.24-0.25, and water content remained constant (10.98-12.27%) except for one restored sample in which it was higher (22.32%). The effective Al, Cu, and Zn in the soil increased, but only slightly. Total organic matter (TOM) decreased from 3.86-5.20% to 1.31-1.47%, and total organic nitrogen (TON) decreased from 0.03-0.06% to 0.01-0.02%, but the difference in total organic carbon (TOC) was not significant. High-throughput testing revealed that the bacterial population of the restored area was dominated by A4b (6.33-9.18%), MND1 (4.94-7.39%), and Vicinamibacteraceae (7.04-7.39%). Regarding archaea, samples from the restored areas were dominated by Marine Group II (76.17-81.49%) and Candidatus Nitrososphaera (6.07-9.75%). PCoA showed that the different restoration levels were the main cause of the differences between the samples. Additionally, salinity was the dominant factor that induced this difference, but it was inhibited by the restoration and targeted enrichment of some of these functional genera. Desert restoration should therefore focus on conserving water rather than adding nutrients. Planting salt- and drought-tolerant vegetation will contribute to the initial restoration of the desert and the restoration of the microbiological content of the soil as it migrates over time, creating a cycle of elements. Restoration stimulates and enhances the microbial diversity of the soil via beneficial microorganisms.
Collapse
Affiliation(s)
- Lizhi Wang
- Faculty of Hydraulic Engineering, Environment and Oceanography, Ludong University, Yantai 264025, China;
- Institute of Field Water Conservancy, Soil and Fertilizer Research, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Junyong Ma
- Institute of Field Water Conservancy, Soil and Fertilizer Research, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Qifeng Wu
- Institute of Field Water Conservancy, Soil and Fertilizer Research, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Yongchao Hu
- Dongying Research Institute for Oceanography Development, Dongying 257091, China;
| | - Jinxiao Feng
- Qingdao Institute of Technology, Qingdao 266300, China;
| |
Collapse
|
5
|
Acevedo-Barrios R, Tirado-Ballestas I, Bertel-Sevilla A, Cervantes-Ceballos L, Gallego JL, Leal MA, Tovar D, Olivero-Verbel J. Bioprospecting of extremophilic perchlorate-reducing bacteria: report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia. Biodegradation 2024; 35:601-620. [PMID: 38625437 PMCID: PMC11246272 DOI: 10.1007/s10532-024-10079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Three extremophile bacterial strains (BBCOL-009, BBCOL-014 and BBCOL-015), capable of degrading high concentrations of perchlorate at a range of pH (6.5 to 10.0), were isolated from Colombian Caribbean Coast sediments. Morphological features included Gram negative strain bacilli with sizes averaged of 1.75 × 0.95, 2.32 × 0.65 and 3.08 × 0.70 μm, respectively. The reported strains tolerate a wide range of pH (6.5 to 10.0); concentrations of NaCl (3.5 to 7.5% w/v) and KClO4- (250 to 10000 mg/L), reduction of KClO4- from 10 to 25%. LB broth with NaCl (3.5-30% w/v) and KClO4- (250-10000 mg/L) were used in independent trials to evaluate susceptibility to salinity and perchlorate, respectively. Isolates increased their biomass at 7.5 % (w/v) NaCl with optimal development at 3.5 % NaCl. Subsequently, ClO4- reduction was assessed using LB medium with 3.5% NaCl and 10000 mg/L ClO4-. BBCOL-009, BBCOL-014 and BBCOL-015 achieved 10%, 17%, and 25% reduction of ClO4-, respectively. The 16 S rRNA gene sequence grouped them as Bacillus flexus T6186-2, Bacillus marisflavi TF-11 (T), and Bacillus vietnamensis 15 - 1 (T) respectively, with < 97.5% homology. In addition, antimicrobial resistance to ertapenem, vancomycine, amoxicillin clavulanate, penicillin, and erythromycin was present in all the isolates, indicating their high adaptability to stressful environments. The isolated strains from marine sediments in Cartagena Bay, Colombia are suitable candidates to reduce perchlorate contamination in different environments. Although the primary focus of the study of perchlorate-reducing and resistant bacteria is in the ecological and agricultural realms, from an astrobiological perspective, perchlorate-resistant bacteria serve as models for astrobiological investigations.
Collapse
Affiliation(s)
- Rosa Acevedo-Barrios
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia.
- Grupo de Estudios Químicos y Biológicos, Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, POB 130001, Cartagena de Indias D. T. y C, Colombia.
| | - Irina Tirado-Ballestas
- GENOMA Group, Health Sciences Department, Universidad del Sinú, Santillana Campus, Cartagena, 130015, Colombia
- Group of Functional Toxicology, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia
| | - Angela Bertel-Sevilla
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia
| | - Leonor Cervantes-Ceballos
- Group of Functional Toxicology, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia
| | - Jorge L Gallego
- Department of Engineering, University of Medellin, Medellín, 050026, Colombia
| | - María Angélica Leal
- Planetary Sciences and Astrobiology Research Group (GCPA), Universidad Nacional de Colombia and Corporación Científica Laguna, Bogotá, 111321, Colombia
- Biosphere and Cosmos Research Group (BIOC). Corporación Científica Laguna, Bogotá, 111163, Colombia
| | - David Tovar
- Planetary Sciences and Astrobiology Research Group (GCPA), Universidad Nacional de Colombia and Corporación Científica Laguna, Bogotá, 111321, Colombia
- Biosphere and Cosmos Research Group (BIOC). Corporación Científica Laguna, Bogotá, 111163, Colombia
| | - Jesús Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, 130015, Colombia
| |
Collapse
|
6
|
Ma Y, Sun Z, Yang H, Xie W, Song M, Zhang B, Sui L. The biosynthesis mechanism of bacterioruberin in halophilic archaea revealed by genome and transcriptome analysis. Appl Environ Microbiol 2024; 90:e0054024. [PMID: 38829054 PMCID: PMC11267897 DOI: 10.1128/aem.00540-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Halophilic archaea are promising microbial cell factories for bacterioruberin (BR) production. BR is a natural product with multi-bioactivities, allowing potential application in many fields. In the previous work, a haloarchaeon Halorubrum sp. HRM-150 with a high proportion of BR (about 85%) was isolated, but the low yield impeded its large-scale production. This work figured out BR synthesis characteristics and mechanisms, and proposed strategies for yield improvement. First, glucose (10 g/L) and tryptone (15 g/L) were tested to be better sources for BR production. Besides, the combination of glucose and starch achieved the diauxic growth, and the biomass and BR productivity increased by 85% and 54% than using glucose. Additionally, this work first proposed the BR synthesis pattern, which differs from that of other carotenoids. As a structural component of cell membranes, the BR synthesis is highly coupled with growth, which was most active in the logarithm phase. Meanwhile, the osmotic down shock at the logarithm phase could increase the BR productivity without sacrificing the biomass. Moreover, the de-novo pathway for BR synthesis with a key gene of lyeJ, and its competitive pathways (notably tetraether lipids and retinal) were revealed through genome, transcriptome, and osmotic down shock. Therefore, the BR yield is expected to be improved through mutant construction, such as the overexpression of key gene lyeJ and the knockout of competitive genes, which need to be further explored. The findings will contribute to a better understanding of the metabolism mechanism in haloarchaea and the development of haloarchaea as microbial cell factories. IMPORTANCE Recent studies have revealed that halophilic microorganism is a promising microbial factory for the next-generation industrialization. Among them, halophilic archaea are advantageous as microbial factories due to their low contamination risk and low freshwater consumption. The halophilic archaea usually accumulate long chain C50 carotenoids, which are barely found in other organisms. Bacterioruberin (BR), the major C50 carotenoid, has multi-bioactivities, allowing potential application in food, cosmetic, and biomedical industries. However, the low yield impedes its large-scale application. This work figured out the BR synthesis characteristics and mechanism, and proposed several strategies for BR yield improvement, encouraging halophilic archaea to function as microbial factories for BR production. Meanwhile, the archaea have special evolutionary status and unique characteristics in taxonomy, the revelation of BR biosynthesis mechanism is beneficial for a better understanding of archaea.
Collapse
Affiliation(s)
- Yingchao Ma
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Early Durability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhongshi Sun
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Huan Yang
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Wei Xie
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Mengyu Song
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Bo Zhang
- Tianjin Key Laboratory of Early Durability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liying Sui
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
7
|
Cadena S, Cerqueda-García D, Uribe-Flores MM, Ramírez SI. Metagenomic profiling of halites from the Atacama Desert: an extreme environment with natural perchlorate does not promote high diversity of perchlorate reducing microorganisms. Extremophiles 2024; 28:25. [PMID: 38664270 DOI: 10.1007/s00792-024-01342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/12/2024] [Indexed: 07/17/2024]
Abstract
We surveyed the presence of perchlorate-reducing microorganisms in available metagenomic data of halite environments from the Atacama Desert, an extreme environment characterized by high perchlorate concentrations, intense ultraviolet radiation, saline and oxidizing soils, and severe desiccation. While the presence of perchlorate might suggest a broad community of perchlorate reducers or a high abundance of a dominant taxa, our search reveals a scarce presence. In fact, we identified only one halophilic species, Salinibacter sp003022435, carrying the pcrA and pcrC genes, represented in low abundance. Moreover, we also discovered some napA genes and organisms carrying the nitrate reductase nasB gene, which hints at the possibility of cryptic perchlorate reduction occurring in these ecosystems. Our findings contribute with the knowledge of perchlorate reduction metabolism potentially occurring in halites from Atacama Desert and point towards promising future research into the perchlorate-reducing mechanism in Salinibacter, a common halophilic bacterium found in hypersaline ecosystems, whose metabolic potential remains largely unknown.
Collapse
Affiliation(s)
- Santiago Cadena
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001 Col. Chamilpa, C. P. 62209, Cuernavaca, Morelos, Mexico
| | - Daniel Cerqueda-García
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico Biomimic®, Instituto de Ecología, A.C., Carretera Antigua a Coatepec #351, Col. El Haya, C. P. 91073, Xalapa, Veracruz, Mexico
| | - María Magdalena Uribe-Flores
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001 Col. Chamilpa, C. P. 62209, Cuernavaca, Morelos, Mexico
| | - Sandra I Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001 Col. Chamilpa, C. P. 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
8
|
Flieger J, Raszewska-Famielec M, Radzikowska-Büchner E, Flieger W. Skin Protection by Carotenoid Pigments. Int J Mol Sci 2024; 25:1431. [PMID: 38338710 PMCID: PMC10855854 DOI: 10.3390/ijms25031431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Sunlight, despite its benefits, can pose a threat to the skin, which is a natural protective barrier. Phototoxicity caused by overexposure, especially to ultraviolet radiation (UVR), results in burns, accelerates photoaging, and causes skin cancer formation. Natural substances of plant origin, i.e., polyphenols, flavonoids, and photosynthetic pigments, can protect the skin against the effects of radiation, acting not only as photoprotectors like natural filters but as antioxidant and anti-inflammatory remedies, alleviating the effects of photodamage to the skin. Plant-based formulations are gaining popularity as an attractive alternative to synthetic filters. Over the past 20 years, a large number of studies have been published to assess the photoprotective effects of natural plant products, primarily through their antioxidant, antimutagenic, and anti-immunosuppressive activities. This review selects the most important data on skin photodamage and photoprotective efficacy of selected plant carotenoid representatives from in vivo studies on animal models and humans, as well as in vitro experiments performed on fibroblast and keratinocyte cell lines. Recent research on carotenoids associated with lipid nanoparticles, nanoemulsions, liposomes, and micelles is reviewed. The focus was on collecting those nanomaterials that serve to improve the bioavailability and stability of carotenoids as natural antioxidants with photoprotective activity.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Magdalena Raszewska-Famielec
- Faculty of Physical Education and Health, University of Physicl Education, Akademicka 2, 21-500 Biała Podlaska, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
9
|
Hwang CY, Cho ES, Kim S, Kim K, Seo MJ. Optimization of bacterioruberin production from Halorubrum ruber and assessment of its antioxidant potential. Microb Cell Fact 2024; 23:2. [PMID: 38172950 PMCID: PMC10762969 DOI: 10.1186/s12934-023-02274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Haloarchaea produce bacterioruberin, a major C50 carotenoid with antioxidant properties that allow for its potential application in the food, cosmetic, and pharmaceutical industries. This study aimed to optimize culture conditions for total carotenoid, predominantly comprising bacterioruberin, production using Halorubrum ruber MBLA0099. A one-factor-at-a-time and statistically-based experimental design were applied to optimize the culture conditions. Culture in the optimized medium caused an increase in total carotenoid production from 0.496 to 1.966 mg L- 1 Maximal carotenoid productivity was achieved in a 7-L laboratory-scale fermentation and represented a 6.05-fold increase (0.492 mg L-1 d-1). The carotenoid extracts from strain MBLA0099 exhibited a 1.8-10.3-fold higher antioxidant activity in vitro, and allowed for a higher survival rate of Caenorhabditis elegans under oxidative stress conditions. These results demonstrated that Hrr. ruber MBLA0099 has significant potential as a haloarchaon for the commercial production of bacterioruberin.
Collapse
Affiliation(s)
- Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea.
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Research Center for Bio Materials & Process Development, Incheon, 22012, Republic of Korea.
- MJ BIOLAB, Inc, Incheon, 21999, Republic of Korea.
| |
Collapse
|
10
|
Fayez D, Youssif A, Sabry S, Ghozlan H, El-Sayed F. Some novel bioactivities of Virgibacillus halodenitrificans carotenoids, isolated from Wadi El-Natrun lakes. Saudi J Biol Sci 2023; 30:103825. [PMID: 37869364 PMCID: PMC10587757 DOI: 10.1016/j.sjbs.2023.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Carotenoids come in second among the most frequent natural pigments and are utilized in medications, nutraceuticals, cosmetics, food pigments, and feed supplements. Based on recent complementary work, Virgibacillus was announced for the first time as a member of Wadi El-Natrun salt and soda lakes microbiota, identified as Virgibacillus halodenitrificans, and named V. halodenitrificans DASH; hence, this work aimed to investigate several in vitro medicinal bioactivities of V. halodenitrificans DASH carotenoids. The carotenoid methanolic extract showed antioxidant activity based on diphenylpicrylhydrazyl (DPPH) scavenging capacity with a half-maximal concentration (IC50) of 1.6 mg/mL as well as nitric oxide (NO) scavenging action expressed by an IC50 of 46.4 µg/mL. The extract showed considerable inhibitory activity for alpha-amylase (α-amylase) and alpha-glucosidase (α-glucosidase) enzymes (IC50 of 100 and 173.4 μg/mL, respectively). Moreover, the extract displayed selective anticancer activity against Caco-2 (IC50 = 138.96 µg/mL) and HepG-2 cell lines (IC50 = 31.25 µg/mL), representing colorectal adenocarcinoma and hepatoblastoma. Likewise, the extract showed 98.9 % clearance for human hepatitis C virus (HCV) using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), HCV-NS5B polymerase activity inhibition (IC50 = 27.4 µg/mL), and selective inhibitory activity against human coronavirus (HCoV 229E) using the plaque reduction assay (IC50 = 53.5 µg/mL). As far as we can tell, the anticancer, antiviral, and antidiabetic attributes of Virgibacillus carotenoids are, de novo, reported in this work which accordingly invokes further exploration of the other medicinal, biotechnological, and industrial applications of Virgibacillus and haloalkaliphilic bacteria carotenoids.
Collapse
Affiliation(s)
- Doaa Fayez
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Asmaa Youssif
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Soraya Sabry
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Hanan Ghozlan
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Fatma El-Sayed
- Cell Culture Unit, Medical Technology Center, Medical Research Institute, University of Alexandria, Egypt
| |
Collapse
|
11
|
Morilla MJ, Ghosal K, Romero EL. More Than Pigments: The Potential of Astaxanthin and Bacterioruberin-Based Nanomedicines. Pharmaceutics 2023; 15:1828. [PMID: 37514016 PMCID: PMC10385456 DOI: 10.3390/pharmaceutics15071828] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Carotenoids are natural products regulated by the food sector, currently used as feed dyes and as antioxidants in dietary supplements and composing functional foods for human consumption. Of the nearly one thousand carotenoids described to date, only retinoids, derived from beta carotene, have the status of a drug and are regulated by the pharmaceutical sector. In this review, we address a novel field: the transformation of xanthophylls, particularly the highly marketed astaxanthin and the practically unknown bacterioruberin, in therapeutic agents by altering their pharmacokinetics, biodistribution, and pharmacodynamics through their formulation as nanomedicines. The antioxidant activity of xanthophylls is mediated by routes different from those of the classical oral anti-inflammatory drugs such as corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs): remarkably, xanthophylls lack therapeutic activity but also lack toxicity. Formulated as nanomedicines, xanthophylls gain therapeutic activity by mechanisms other than increased bioavailability. Loaded into ad hoc tailored nanoparticles to protect their structure throughout storage and during gastrointestinal transit or skin penetration, xanthophylls can be targeted and delivered to selected inflamed cell groups, achieving a massive intracellular concentration after endocytosis of small doses of formulation. Most first reports showing the activities of oral and topical anti-inflammatory xanthophyll-based nanomedicines against chronic diseases such as inflammatory bowel disease, psoriasis, atopic dermatitis, and dry eye disease emerged between 2020 and 2023. Here we discuss in detail their preclinical performance, mostly targeted vesicular and polymeric nanoparticles, on cellular models and in vivo. The results, although preliminary, are auspicious enough to speculate upon their potential use for oral or topical administration in the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| |
Collapse
|
12
|
Ma YC, Gao MR, Yang H, Jiang JY, Xie W, Su WP, Zhang B, Yeong YS, Guo WY, Sui LY. Optimization of C 50 Carotenoids Production by Open Fermentation of Halorubrum sp. HRM-150. Appl Biochem Biotechnol 2023; 195:3628-3640. [PMID: 36648604 DOI: 10.1007/s12010-023-04319-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
C50 carotenoids, as unique bioactive molecules, have many biological properties, including antioxidant, anticancer, and antibacterial activity, and have a wide range of potential uses in the food, cosmetic, and biomedical industries. The majority of C50 carotenoids are produced by the sterile fermentation of halophilic archaea. This study aims to look at more cost-effective and manageable ways of producing C50 carotenoids. The basic medium, carbon source supplementation, and optimal culture conditions for Halorubrum sp. HRM-150 C50 carotenoids production by open fermentation were examined in this work. The results indicated that Halorubrum sp. HRM-150 grown in natural brine medium grew faster than artificial brine medium. The addition of glucose, sucrose, and lactose (10 g/L) enhanced both biomass and carotenoids productivity, with the highest level reaching 4.53 ± 0.32 μg/mL when glucose was added. According to the findings of orthogonal studies based on the OD600 and carotenoids productivity, the best conditions for open fermentation were salinity 20-25%, rotation speed 150-200 rpm, and pH 7.0-8.2. The up-scaled open fermentation was carried out in a 7 L medium under optimum culture conditions. At 96 h, the OD600 and carotenoids productivity were 9.86 ± 0.51 (dry weight 10.40 ± 1.27 g/L) and 7.31 ± 0.65 μg/mL (701.40 ± 21.51 μg/g dry weight, respectively). When amplified with both universal bacterial primer and archaeal primer in the open fermentation, Halorubrum remained the dominating species, indicating that contamination was kept within an acceptable level. To summarize, open fermentation of Halorubrum is a promising method for producing C50 carotenoids.
Collapse
Affiliation(s)
- Ying-Chao Ma
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, China.,Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Mei-Rong Gao
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, China.,Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huan Yang
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jun-Yao Jiang
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wei Xie
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wan-Ping Su
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Bo Zhang
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Yik-Sung Yeong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Wu-Yan Guo
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Li-Ying Sui
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, China. .,Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
13
|
Kim M, Jung DH, Hwang CY, Siziya IN, Park YS, Seo MJ. 4,4'-Diaponeurosporene Production as C 30 Carotenoid with Antioxidant Activity in Recombinant Escherichia coli. Appl Biochem Biotechnol 2023; 195:135-151. [PMID: 36066805 DOI: 10.1007/s12010-022-04147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Carotenoids, a group of isoprenoid pigments, are naturally synthesized by various microorganisms and plants, and are industrially used as ingredients in food, cosmetic, and pharmaceutical product formulations. Although several types of carotenoids and diverse microbial carotenoid producers have been reported, studies on lactic acid bacteria (LAB)-derived carotenoids are relatively insufficient. There is a notable lack of research focusing on C30 carotenoids, the functional characterizations of their biosynthetic genes and their mass production by genetically engineered microorganisms. In this study, the biosynthesis of 4,4'-diaponeurosporene in Escherichia coli harboring the core biosynthetic genes, dehydrosqualene synthase (crtM) and dehydrosqualene desaturase (crtN), from Lactiplantibacillus plantarum subsp. plantarum KCCP11226 was constructed to evaluate and enhance 4,4'-diaponeurosporene production and antioxidant activity. The production of 4,4'-diapophytoene, a substrate of 4,4'-diaponeurosporene, was confirmed in E. coli expressing only the crtM gene. In addition, recombinant E. coli carrying both C30 carotenoid biosynthesis genes (crtM and crtN) was confirmed to biosynthesize 4,4'-diaponeurosporene and exhibited a 6.1-fold increase in carotenoid production compared to the wild type and had a significantly higher antioxidant activity compared to synthetic antioxidant, butylated hydroxytoluene. This study presents the discovery of an important novel E. coli platform in consideration of the industrial applicability of carotenoids.
Collapse
Affiliation(s)
- Mibang Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, Korea.,Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.,Research Center for Bio Material & Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea. .,Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea. .,Research Center for Bio Material & Process Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
14
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
15
|
Giani M, Gervasi L, Loizzo MR, Martínez-Espinosa RM. Carbon Source Influences Antioxidant, Antiglycemic, and Antilipidemic Activities of Haloferax mediterranei Carotenoid Extracts. Mar Drugs 2022; 20:659. [PMID: 36354982 PMCID: PMC9697119 DOI: 10.3390/md20110659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Haloarchaeal carotenoids have attracted attention lately due to their potential antioxidant activity. This work studies the effect of different concentrations of carbon sources on cell growth and carotenoid production. Carotenoid extract composition was characterized by HPLC-MS. Antioxidant activity of carotenoid extracts obtained from cell cultures grown under different nutritional conditions was determined by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH), Ferric Reducing Ability Power (FRAP) and β-carotene bleaching assays. The ability of these carotenoid extracts to inhibit α-glucosidase, α-amylase, and lipase enzymes was also assessed to determine if they could be used to reduce blood glucose and lipid absorption. The maximum production of carotenoids (92.2 µg/mL) was observed combining 12.5% inorganic salts and 2.5% of glucose/starch. Antioxidant, hypoglycemic, and antilipidemic studies showed that higher carbon availability in the culture media leads to changes in the extract composition, resulting in more active haloarchaeal carotenoid extracts. Carotenoid extracts obtained from high-carbon-availability cell cultures presented higher proportions of all-trans-bacterioruberin, 5-cis-bacterioruberin, and a double isomeric bacterioruberin, whereas the presence 9-cis-bacterioruberin and 13-cis-bacterioruberin decreased. The production of haloarchaeal carotenoids can be successfully optimized by changing nutritional conditions. Furthermore, carotenoid composition can be altered by modifying carbon source concentration. These natural compounds are very promising in food and nutraceutical industries.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Luigia Gervasi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, I-87036 Arcavacata Rende, Italy
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, I-87036 Arcavacata Rende, Italy
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
16
|
Wu JH, McGenity TJ, Rettberg P, Simões MF, Li WJ, Antunes A. The archaeal class Halobacteria and astrobiology: Knowledge gaps and research opportunities. Front Microbiol 2022; 13:1023625. [PMID: 36312929 PMCID: PMC9608585 DOI: 10.3389/fmicb.2022.1023625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 09/19/2023] Open
Abstract
Water bodies on Mars and the icy moons of the outer solar system are now recognized as likely being associated with high levels of salt. Therefore, the study of high salinity environments and their inhabitants has become increasingly relevant for Astrobiology. Members of the archaeal class Halobacteria are the most successful microbial group living in hypersaline conditions and are recognized as key model organisms for exposure experiments. Despite this, data for the class is uneven across taxa and widely dispersed across the literature, which has made it difficult to properly assess the potential for species of Halobacteria to survive under the polyextreme conditions found beyond Earth. Here we provide an overview of published data on astrobiology-linked exposure experiments performed with members of the Halobacteria, identifying clear knowledge gaps and research opportunities.
Collapse
Affiliation(s)
- Jia-Hui Wu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| | - Terry J. McGenity
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Marta F. Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| |
Collapse
|
17
|
Hwang CY, Cho ES, Rhee WJ, Kim E, Seo MJ. Genomic and physiological analysis of C50 carotenoid-producing novel Halorubrum ruber sp. nov. J Microbiol 2022; 60:1007-1020. [DOI: 10.1007/s12275-022-2173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
|
18
|
Gómez-Silva B, Batista-García RA. The Atacama Desert: A Biodiversity Hotspot and Not Just a Mineral-Rich Region. Front Microbiol 2022; 13:812842. [PMID: 35222336 PMCID: PMC8865075 DOI: 10.3389/fmicb.2022.812842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Benito Gómez-Silva
- Laboratory of Biochemistry, Biomedical Department, Health Sciences Faculty and Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
19
|
Sahli K, Gomri MA, Esclapez J, Gómez-Villegas P, Bonete MJ, León R, Kharroub K. Characterization and biological activities of carotenoids produced by three haloarchaeal strains isolated from Algerian salt lakes. Arch Microbiol 2021; 204:6. [PMID: 34870747 DOI: 10.1007/s00203-021-02611-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Halophilic archaea represent a promising natural source of carotenoids. However, little information is available about these archaeal metabolites and their biological effects. In the present work, carotenoids of strains Haloferax sp. ME16, Halogeometricum sp. ME3 and Haloarcula sp. BT9, isolated from Algerian salt lakes, were produced, extracted and identified by high-performance liquid chromatography-diode array detector and liquid chromatography-mass spectrometry. Analytical results revealed a variation in the composition depending on the strain with a predominance of bacterioruberin. The evaluation of antioxidant capacity using ABTS [(2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] and DPPH (2,2-diphenyl-1-picrylhydrazyl) assays showed that these extracts have a strong antioxidant potential, in particular those of Haloferax sp. ME16 which displayed antioxidant power significantly higher than that of ascorbic acid used as standard. Antibacterial activity of carotenoid extracts against four human-pathogenic strains and four fish-pathogenic strains was evaluated by agar disk diffusion method. The results showed a good antibacterial activity. These findings suggest that the C50 carotenoids from the studied strains offer promising prospects for biotechnological applications.
Collapse
Affiliation(s)
- Kaouther Sahli
- Équipe Métabolites Des Extremophiles (METEX), Laboratoire de Recherche Biotechnologie Et Qualité Des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et Des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine, 1 (UFMC1), Route de Ain el Bey, 25000, Constantine, Algeria.
| | - Mohamed Amine Gomri
- Équipe Métabolites Des Extremophiles (METEX), Laboratoire de Recherche Biotechnologie Et Qualité Des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et Des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine, 1 (UFMC1), Route de Ain el Bey, 25000, Constantine, Algeria
| | - Julia Esclapez
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110, Huelva, Spain
| | - María-José Bonete
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, 2110, Huelva, Spain
| | - Karima Kharroub
- Équipe Métabolites Des Extremophiles (METEX), Laboratoire de Recherche Biotechnologie Et Qualité Des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et Des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine, 1 (UFMC1), Route de Ain el Bey, 25000, Constantine, Algeria
| |
Collapse
|
20
|
de la Haba RR, Minegishi H, Kamekura M, Shimane Y, Ventosa A. Phylogenomics of Haloarchaea: The Controversy of the Genera Natrinema-Haloterrigena. Front Microbiol 2021; 12:740909. [PMID: 34690986 PMCID: PMC8530250 DOI: 10.3389/fmicb.2021.740909] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023] Open
Abstract
The haloarchaeal genera Natrinema and Haloterrigena were described almost simultaneously by two different research groups and some strains studied separately were described as different species of these genera. Furthermore, the description of additional species were assigned to either Natrinema or Haloterrigena, mainly on the basis of the phylogenetic comparative analysis of single genes (16S rRNA gene and more recently rpoB’ gene), but these species were not adequately separated or assigned to the corresponding genus. Some studies suggested that the species of these two genera should be unified into a single genus, while other studies indicated that the genera should remain but some of the species should be reassigned. In this study, we have sequenced or collected the genomes of the type strains of species of Natrinema and Haloterrigena and we have carried out a comparative genomic analysis in order to clarify the controversy related to these two genera. The phylogenomic analysis based on the comparison of 525 translated single-copy orthologous genes and the Overall Genome Relatedness Indexes (i.e., AAI, POCP, ANI, and dDDH) clearly indicate that the species Haloterrigena hispanica, Haloterrigena limicola, Haloterrigena longa, Haloterrigena mahii, Haloterrigena saccharevitans, Haloterrigena thermotolerans, and Halopiger salifodinae should be transferred to the genus Natrinema, as Natrinema hispanicum, Natrinema limicola, Natrinema longum, Natrinema mahii, Natrinema saccharevitans, Natrinema thermotolerans, and Natrinema salifodinae, respectively. On the contrary, the species Haloterrigena turkmenica, Haloterrigena salifodinae, and Haloterrigena salina will remain as the only representative species of the genus Haloterrigena. Besides, the species Haloterrigena daqingensis should be reclassified as a member of the genus Natronorubrum, as Natronorubrum daqingense. At the species level, Haloterrigena jeotgali and Natrinema ejinorense should be considered as a later heterotypic synonyms of the species Haloterrigena (Natrinema) thermotolerans and Haloterrigena (Natrinema) longa, respectively. Synteny analysis and phenotypic features also supported those proposals.
Collapse
Affiliation(s)
- Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Hiroaki Minegishi
- Department of Applied Chemistry, Faculty of Science and Engineering, Toyo University, Kawagoe, Japan
| | | | - Yasuhiro Shimane
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
21
|
C 50 carotenoids extracted from Haloterrigena thermotolerans strain K15: antioxidant potential and identification. Folia Microbiol (Praha) 2021; 67:71-79. [PMID: 34510323 DOI: 10.1007/s12223-021-00905-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Halophilic archaea are one of the microorganism groups that have adapted to living in high saline environments and are important in terms of their potential use in biotechnology industry. One of the most important compounds they have, carotenoid, is used in food, cosmetics, and medical industries. The selected strain was identified as an extremely halophilic and thermophilic archaeon, Haloterrigena thermotolerans K15, based on morphological, biochemical, and physiological evidence as well as 16S rRNA analysis and screened by a scanning electron microscope and an atomic force microscope for the first time. The carotenoid contents of H. thermotolerans K15 isolated from Salt Lake (Tuz Gölü, Turkey) were determined by RP-HPLC-DAD and their isomers were characterized according to UV-Vis spectra by cis peak intensity and spectral fine structure. In addition to all-trans bacterioruberin as a major carotenoid, many isomers of the bacterioruberin such as monoanhydrobacterioruberin and bisanhydrobacterioruberin were also found. The antioxidant activity of carotenoid extract from H. thermotolerans was analyzed by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging method. The carotenoid extract showed antioxidant activity statistically significantly higher than ascorbic acid and butylated hydroxytoluene as reference compounds (p < 0.05). This is the first study about carotenoid characterization and antioxidant activity of H. thermotolerans K15. The obtained results suggest the potential use of H. thermotolerans K15 products as a substitute for synthesized chemical carotenoids and antioxidants.
Collapse
|
22
|
Analysis of Carotenoids in Haloarchaea Species from Atacama Saline Lakes by High Resolution UHPLC-Q-Orbitrap-Mass Spectrometry: Antioxidant Potential and Biological Effect on Cell Viability. Antioxidants (Basel) 2021; 10:antiox10081230. [PMID: 34439478 PMCID: PMC8389013 DOI: 10.3390/antiox10081230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Haloarchaea are extreme halophilic microorganisms belonging to the domain Archaea, phylum Euryarchaeota, and are producers of interesting antioxidant carotenoid compounds. In this study, four new strains of Haloarcula sp., isolated from saline lakes of the Atacama Desert, are reported and studied by high-resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) for the first time. In addition, determination of the carotenoid pigment profile from the new strains of Haloarcula sp., plus two strains of Halorubrum tebenquichense, and their antioxidant activity by means of several methods is reported. The effect of biomass on cellular viability in skin cell lines was also evaluated by MTT assay. The cholinesterase inhibition capacity of six haloarchaea (Haloarcula sp. ALT-23; Haloarcula sp. TeSe-41; Haloarcula sp. TeSe-51; Haloarcula sp. Te Se-89 and Halorubrum tebenquichense strains TeSe-85 and Te Se-86) is also reported for the first time. AChE inhibition IC50 was 2.96 ± 0.08 μg/mL and BuChE inhibition IC50 was 2.39 ± 0.09 μg/mL for the most active strain, Halorubrum tebenquichense Te Se-85, respectively, which is more active in BuCHe than that of the standard galantamine. Docking calculation showed that carotenoids can exert their inhibitory activity fitting into the enzyme pocket by their halves, in the presence of cholinesterase dimers.
Collapse
|
23
|
Effect of Carbon Sources in Carotenoid Production from Haloarcula sp. M1, Halolamina sp. M3 and Halorubrum sp. M5, Halophilic Archaea Isolated from Sonora Saltern, Mexico. Microorganisms 2021; 9:microorganisms9051096. [PMID: 34065163 PMCID: PMC8160830 DOI: 10.3390/microorganisms9051096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
The isolation and molecular and chemo-taxonomic identification of seventeen halophilic archaea from the Santa Bárbara saltern, Sonora, México, were performed. Eight strains were selected based on pigmentation. Molecular identification revealed that the strains belonged to the Haloarcula, Halolamina and Halorubrum genera. Neutral lipids (quinones) were identified in all strains. Glycolipid S-DGD was found only in Halolamina sp. strain M3; polar phospholipids 2,3-O-phytanyl-sn-glycerol-1-phosphoryl-3-sn-glycerol (PG), 2,3-di-O-phytanyl-sn-glycero-1-phospho-3′-sn-glycerol-1′-methyl phosphate (PGP-Me) and sodium salt 1-(3-sn-phosphatidyl)-rac-glycerol were found in all the strains; and one unidentified glyco-phospholipid in strains M1, M3 and M4. Strains M1, M3 and M5 were selected for further studies based on carotenoid production. The effect of glucose and succinic and glutamic acid on carotenoid production was assessed. In particular, carotenoid production and growth significantly improved in the presence of glucose in strains Haloarcula sp. M1 and Halorubrum sp. M5 but not in Halolamina sp. M3. Glutamic and succinic acid had no effect on carotenoid production, and even was negative for Halorubrum sp. M5. Growth was increased by glutamic and succinic acid on Haloarcula sp. M1 but not in the other strains. This work describes for first time the presence of halophilic archaea in the Santa Bárbara saltern and highlights the differences in the effect of carbon sources on the growth and carotenoid production of haloarchaea.
Collapse
|
24
|
Hwang CY, Cho ES, Yoon DJ, Seo MJ. Halobellus ruber sp. nov., a deep red-pigmented extremely halophilic archaeon isolated from a Korean solar saltern. Antonie van Leeuwenhoek 2021; 114:997-1011. [PMID: 33864546 DOI: 10.1007/s10482-021-01571-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022]
Abstract
A novel halophilic archaeon, strain MBLA0160T, was isolated from a solar saltern in Sorae, Republic of Korea. The cells are deep-red pigmented, Gram-negative, rod shaped, motile, and lysed in distilled water. The strain MBLA0160T grew at 25-45 °C (optimum 37 °C), in 15-30% (w/v) NaCl (optimum 20%) and 0.1-1.0 M MgCl2 (optimum 0.3-0.5 M) at pH 5.0-9.0 (optimum 7.0). Phylogenetic analysis based on the 16S rRNA sequence showed that this strain was related to two species within the genus Halobellus (Hbs.), with 98.4% and 95.8% similarity to Hbs. salinus CSW2.24.4 T and Hbs. clavatus TNN18T, respectively. The major polar lipids of the strain MBLA160T were phosphatidylglycerol, phosphatidylglycerol sulfate, and phosphatidylglycerol phosphate methyl ester. The genome size, G + C content, and N50 value of MBLA0160T were 3.49 Mb, 66.5 mol%, and 620,127 bp, respectively. According to predicted functional proteins of strain MBLA0160T, the highest category was amino acid transport and metabolism. Genome rapid annotation showed that amino acid and derivatives was the most subsystem feature counts. Pan-genomic analysis showed that strain MBLA0160T had 97 annotated unique KEGG, which were mainly included metabolism and environmental information processing. Ortholog average nucleotide identities (OrthoANI) and in silico DNA-DNA hybridization (isDDH) values between the strain MBLA0160T and other strains of the genus Halobellus were under 84,4% and 28.1%, respectively. The genome of strain MBLA0160T also contain the biosynthetic gene cluster for C50 carotenoid as secondary metabolite. Based on the phylogenetic, phenotypic, chemotaxonomic properties, and comparative genomic analyses, strain MBLA0160T is considered to represent a novel species of the genus Halobellus, for which the name Halobellus ruber sp. nov. is proposed. The type strain is MBLA0160T (= KCTC 4291 T = JCM 34172 T).
Collapse
Affiliation(s)
- Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Deok Jun Yoon
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea.
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Institute for New Drug Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
25
|
UV-A Irradiation Increases Scytonemin Biosynthesis in Cyanobacteria Inhabiting Halites at Salar Grande, Atacama Desert. Microorganisms 2020; 8:microorganisms8111690. [PMID: 33142998 PMCID: PMC7692114 DOI: 10.3390/microorganisms8111690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 02/04/2023] Open
Abstract
Microbial consortia inhabiting evaporitic salt nodules at the Atacama Desert are dominated by unculturable cyanobacteria from the genus Halothece. Halite nodules provide transparency to photosynthetically active radiation and diminish photochemically damaging UV light. Atacama cyanobacteria synthesize scytonemin, a heterocyclic dimer, lipid soluble, UV-filtering pigment (in vivo absorption maximum at 370 nm) that accumulates at the extracellular sheath. Our goal was to demonstrate if UV-A irradiations modulate scytonemin biosynthesis in ground halites containing uncultured Halothece sp. cyanobacteria. Pulverized halite nodules with endolithic colonization were incubated under continuous UV-A radiation (3.6 W/m2) for 96 h, at 67% relative humidity, mimicking their natural habitat. Scytonemin content and relative transcription levels of scyB gene (a key gene in the biosynthesis of scytonemin) were evaluated by spectrophotometry and quantitative RT-PCR, respectively. After 48 h under these experimental conditions, the ratio scytonemin/chlorophyll a and the transcription of scyB gene increased to a maximal 1.7-fold value. Therefore, endolithic Halothece cyanobacteria in halites are metabolically active and UV radiation is an environmental stressor with a positive influence on scyB gene transcription and scytonemin biosynthesis. Endolithobiontic cyanobacteria in Atacama show a resilient evolutive and adaptive strategy to survive in one of the most extreme environments on Earth.
Collapse
|
26
|
A New Record for Microbial Perchlorate Tolerance: Fungal Growth in NaClO 4 Brines and its Implications for Putative Life on Mars. Life (Basel) 2020; 10:life10050053. [PMID: 32353964 PMCID: PMC7281446 DOI: 10.3390/life10050053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
The habitability of Mars is strongly dependent on the availability of liquid water, which is essential for life as we know it. One of the few places where liquid water might be found on Mars is in liquid perchlorate brines that could form via deliquescence. As these concentrated perchlorate salt solutions do not occur on Earth as natural environments, it is necessary to investigate in lab experiments the potential of these brines to serve as a microbial habitat. Here, we report on the sodium perchlorate (NaClO4) tolerances for the halotolerant yeast Debaryomyces hansenii and the filamentous fungus Purpureocillium lilacinum. Microbial growth was determined visually, microscopically and via counting colony forming units (CFU). With the observed growth of D. hansenii in liquid growth medium containing 2.4 M NaClO4, we found by far the highest microbial perchlorate tolerance reported to date, more than twice as high as the record reported prior (for the bacterium Planococcus halocryophilus). It is plausible to assume that putative Martian microbes could adapt to even higher perchlorate concentrations due to their long exposure to these environments occurring naturally on Mars, which also increases the likelihood of microbial life thriving in the Martian brines.
Collapse
|