1
|
Yacoub HA, Mahmoud MM, Al-Hejin AM, Abujamel TS, Tabrez S, Abd-Elmaksoud S. Effect of Nk-lysin peptides on bacterial growth, MIC, antimicrobial resistance, and viral activities. Anim Biotechnol 2024; 35:2290520. [PMID: 38100547 DOI: 10.1080/10495398.2023.2290520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
NK-lysins from chicken, bovine and human are used as antiviral and antibacterial agents. Gram-negative and gram-positive microorganisms, including Streptococcus pyogenes, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella oxytoca, Shigella sonnei, Klebsiella pneumoniae and Salmonella typhimurium, are susceptible to NK-lysin treatment. The presence of dominant TEM-1 gene was noted in all untreated and treated bacteria, while TOHO-1 gene was absent in all bacteria. Importantly, β-lactamase genes CTX-M-1, CTX-M-8, and CTX-M-9 genes were detected in untreated bacterial strains; however, none of these were found in any bacterial strains following treatment with NK-lysin peptides. NK-lysin peptides are also used to test for inhibition of infectivity, which ranged from 50 to 90% depending on NK-lysin species. Chicken, bo vine and human NK-lysin peptides are demonstrated herein to have antibacterial activity and antiviral activity against Rotavirus (strain SA-11). On the basis of the comparison between these peptides, potent antiviral activity of bovine NK-lysin against Rotavirus (strain SA-11) is particularly evident, inhibiting infection by up to 90%. However, growth was also significantly inhibited by chicken and human NK-lysin peptides, restricted by 80 and 50%, respectively. This study provided a novel treatment using NK-lysin peptides to inhibit expression of β-lactamase genes in β-lactam antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Haitham A Yacoub
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Maged Mostafa Mahmoud
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
| | - Ahmed M Al-Hejin
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
| | - Sherif Abd-Elmaksoud
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Pei Y, Chen Z, Zhao R, An Y, Yisihaer H, Wang C, Bai Y, Liang L, Jin L, Hu Y. A Cyclic Peptide Based on Pheasant Cathelicidin Inhibits Influenza A H1N1 Virus Infection. Antibiotics (Basel) 2024; 13:606. [PMID: 39061288 PMCID: PMC11273436 DOI: 10.3390/antibiotics13070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza viruses are the leading cause of upper respiratory tract infections, leading to several global pandemics and threats to public health. Due to the continuous mutation of influenza A viruses, there is a constant need for the development of novel antiviral therapeutics. Recently, natural antimicrobial peptides have provided an opportunity for the discovery of anti-influenza molecules. Here, we designed several peptides based on pheasant cathelicidin and tested their antiviral activities and mechanisms against the H1N1 virus. Of note, the designed peptides Pc-4 and Pc-5 were found to inhibit replication of the H1N1 virus with an IC50 = 8.14 ± 3.94 µM and 2.47 ± 1.95 µM, respectively. In addition, the cyclic peptide Pc-5 was found to induce type I interferons and the expression of interferon-induced genes. An animal study showed that the cyclic peptide Pc-5 effectively inhibited H1N1 virus infection in a mouse model. Taken together, our work reveals a strategy for designing cyclic peptides and provides novel molecules with therapeutic potential against influenza A virus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lin Jin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Y.P.); (Z.C.); (R.Z.); (Y.A.); (H.Y.); (C.W.); (Y.B.); (L.L.)
| | - Yongting Hu
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Y.P.); (Z.C.); (R.Z.); (Y.A.); (H.Y.); (C.W.); (Y.B.); (L.L.)
| |
Collapse
|
3
|
Wang S, Wang D, Bai Y, Zheng G, Han Y, Wang L, Hu J, Zhu H, Bai Y. Expression of Toll-like receptors and host defence peptides in the cecum of chicken challenged with Eimeria tenella. Parasite Immunol 2024; 46:e13022. [PMID: 38384176 DOI: 10.1111/pim.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Chicken coccidiosis, caused by Eimeria protozoa, affects poultry farming. Toll-like receptors (TLRs) and host defence peptides (HDPs) help host innate immune responses to eliminate invading pathogens, but their roles in Eimeria tenella infection remain poorly understood. Herein, 14-day-old chickens were treated orally with 50,000 E. tenella oocysts and the cecum was dissected at different timepoints. mRNA expression of 10 chicken TLRs (chTLRs) and five HDPs was measured by quantitative real-time PCR. chTLR7 and chTLR15 were upregulated significantly at 3 h post-infection while other chTLRs were downregulated (p < .05). chTLR1a, chTLR1b, chTLR2b and chTLR4 peaked at 36 h post-infection, chTLR3, chTLR5 and chTLR15 peaked at 72 h post-infection and chTLR21 expression was highest among chTLRs, peaking at 48 h post-infection (p < 0.05). For HDPs, cathelicidin (CATH) 1 to 3 and B1 peaked at 48 h post-infection, liver-expressed antimicrobial peptide 2 peaked at 96 h post-infection, and CATH 2 expression was highest among HDPs. CATH2 and CATH3 were markedly upregulated at 3 h post-infection (p < .05). The results provide insight into innate immune molecules during E. tenella infection in chicken, and indicate that innate immune responses may mediate resistance to chicken coccidiosis.
Collapse
Affiliation(s)
- Song Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Danni Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yilin Bai
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Guijie Zheng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yanhui Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Huili Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| |
Collapse
|
4
|
Zhang H, Dong M, Xu H, Li H, Zheng A, Sun G, Jin W. Recombinant Lactococcus lactis Expressing Human LL-37 Prevents Deaths from Viral Infections in Piglets and Chicken. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10155-6. [PMID: 37743432 DOI: 10.1007/s12602-023-10155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Novel antibiotic substitutes are increasingly in demand in the animal husbandry industry. An oral recombinant Lactococcus lactis (L. lactis) expressing human LL-37 (oral LL-37) was developed and its safety and antiviral effectiveness in vivo was tested. In addition to impairing liposome integrity, LL-37 polypeptide from recombinant L. lactis could prevent the host cell infection by a variety of viruses, including recombinant SARS, SARS-CoV-2, Ebola virus, and vesicular stomatitis virus G. Subchronic toxicity studies performed on Sprague-Dawley rats showed that no cumulative toxicity was found during short-term intervention. Oral LL-37 treatment after the onset of fever could reduce mortality in piglets infected with porcine reproductive and respiratory syndrome virus. Moreover, body weight gain of piglets receiving treatment was progressively restored, and nucleic acid positive rebound was not undetected after discontinuation. Oral LL-37 consistently increased the lifespan of chickens infected with Newcastle viruses. These findings suggested a potential use of recombinantly modified microorganisms in veterinary medicine.
Collapse
Affiliation(s)
- Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huihui Xu
- Jilin Yuanheyuan Bioengineering Co., Ltd. Changchun, Jilin Province, 130000, China
| | - Hongyue Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
6
|
Yuan B, Lu X, Yang M, He Q, Cha Z, Fang Y, Yang Y, Xu L, Yan J, Lai R, Wang A, Yu X, Duan Z. A designed antimicrobial peptide with potential ability against methicillin resistant Staphylococcus aureus. Front Microbiol 2022; 13:1029366. [PMID: 36299717 PMCID: PMC9589885 DOI: 10.3389/fmicb.2022.1029366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive pathogenic bacterium, which persistently colonizes the anterior nares of approximately 20-30% of the healthy adult population, and up to 60% is intermittently colonized. With the misuse and overuse of antibiotics, large-scale drug-resistant bacteria, including methicillin-resistant S. aureus (MRSA), have been appeared. MRSA is among the most prevalent pathogens causing community-associated infections. Once out of control, the number of deaths caused by antimicrobial resistance may exceed 10 million annually by 2050. Antimicrobial peptides (AMPs) are regarded as the best solution, for they are not easy to develop drug resistance. Based on our previous research, here we designed a new antimicrobial peptide named GW18, which showed excellent antimicrobial activity against S. aureus, even MRSA, with the hemolysis less than 5%, no cytotoxicity, and no acute toxicity. Notably, administration of GW18 significantly decreased S. aureus infection in mouse model. These findings identify GW18 as the ideal candidate against S. aureus infection.
Collapse
Affiliation(s)
- Bingqian Yuan
- School of Life Sciences, Tianjin University, Tianjin, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaoyu Lu
- School of Life Sciences, Tianjin University, Tianjin, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Min Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyi He
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Zhuocen Cha
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yaqun Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
| | - Yan Yang
- Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Lei Xu
- Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Jingting Yan
- Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaodong Yu
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Zilei Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
| |
Collapse
|
7
|
Peng L, Tian H, Lu Y, Jia K, Ran J, Tao Q, Li G, Wan C, Ye C, Veldhuizen EJA, Chen H, Fang R. Chicken cathelicidin-2 promotes NLRP3 inflammasome activation in macrophages. Vet Res 2022; 53:69. [PMID: 36064470 PMCID: PMC9446576 DOI: 10.1186/s13567-022-01083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chicken cathelicidin-2 (CATH-2) as a host defense peptide has been identified to have potent antimicrobial and immunomodulatory activities. Here, we reported the mechanism by which CATH-2 modulates NLRP3 inflammasome activation. Our results show that CATH-2 and ATP as a positive control induced secretion of IL-1β and IL-1α in LPS-primed macrophages but did not affect secretion of IL-6, IL-12 and TNF-α. Furthermore, CATH-2 induced caspase-1 activation and oligomerization of apoptosis-associated speck-like protein containing a carboxy- terminal caspase recruitment domain (ASC), which is essential for NLRP3 inflammasome activation. However, CATH-2 failed to induce IL-1β secretion in Nlrp3-/-, Asc-/- and Casp1-/- macrophages. Notably, IL-1β and NLRP3 mRNA expression were not affected by CATH-2. In addition, CATH-2-induced NLRP3 inflammasome activation was mediated by K+ efflux but independent of the P2X7 receptor that is required for ATP-mediated K+ efflux. Gene interference of NEK7 kinase which has been identified to directly interact with NLRP3, significantly reduced IL-1β secretion and caspase-1 activation induced by CATH-2. Furthermore, confocal microscopy shows that CATH-2 significantly induced lysosomal leakage with the diffusion of dextran fluorescent signal. Cathepsin B inhibitors completely abrogated IL-1β secretion and caspase-1 activation as well as attenuating the formation of ASC specks induced by CATH-2. These results all indicate that CATH-2-induced activation of NLRP3 inflammasome is mediated by K+ efflux, and involves the NEK7 protein and cathepsin B. In conclusion, our study shows that CATH-2 acts as a second signal to activate NLRP3 inflammasome. Our study provides new insight into CATH-2 modulating immune response.
Collapse
Affiliation(s)
- Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Hongliang Tian
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jinrong Ran
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Qi Tao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Gang Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Wan
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hongwei Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China. .,Immunology Research Center, Institute of Medical Research, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
8
|
Duan Z, Zhang J, Chen X, Liu M, Zhao H, Jin L, Zhang Z, Luan N, Meng P, Wang J, Tan Z, Li Y, Deng G, Lai R. Role of LL-37 in thrombotic complications in patients with COVID-19. Cell Mol Life Sci 2022; 79:309. [PMID: 35596804 PMCID: PMC9123294 DOI: 10.1007/s00018-022-04309-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Blood clot formation induced by dysfunctional coagulation is a frequent complication of coronavirus disease 2019 (COVID-19) and a high-risk factor for severe illness and death. Neutrophil extracellular traps (NETs) are implicated in COVID-19-induced immunothrombosis. Furthermore, human cathelicidin, a NET component, can perturb the interaction between the SARS-CoV-2 spike protein and its ACE2 receptor, which mediates viral entry into cells. At present, however, the levels of cathelicidin antimicrobial peptides after SARS-CoV-2 infection and their role in COVID-19 thrombosis formation remain unclear. In the current study, we analyzed coagulation function and found a decrease in thrombin time but an increase in fibrinogen level, prothrombin time, and activated partial thromboplastin time in COVID-19 patients. In addition, the cathelicidin antimicrobial peptide LL-37 was upregulated by the spike protein and significantly elevated in the plasma of patients. Furthermore, LL-37 levels were negatively correlated with thrombin time but positively correlated with fibrinogen level. In addition to platelet activation, cathelicidin peptides enhanced the activity of coagulation factors, such as factor Xa (FXa) and thrombin, which may induce hypercoagulation in diseases with high cathelicidin peptide levels. Injection of cathelicidin peptides promoted the formation of thrombosis, whereas deletion of cathelicidin inhibited thrombosis in vivo. These results suggest that cathelicidin antimicrobial peptide LL-37 is elevated during SARS-CoV-2 infection, which may induce hypercoagulation in COVID-19 patients by activating coagulation factors.
Collapse
Affiliation(s)
- Zilei Duan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Juan Zhang
- Southwest Hospital, Third Military Medical University (Army Medical University, 29 Gaotanyan Street, Shapingba, Chongqing, 400038, China
| | - Xue Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Ming Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Hongwen Zhao
- Southwest Hospital, Third Military Medical University (Army Medical University, 29 Gaotanyan Street, Shapingba, Chongqing, 400038, China
| | - Lin Jin
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Zhiye Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Ning Luan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Ping Meng
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, 650041, Yunnan, China
| | - Jing Wang
- Department of Laboratory Diagnosis, Chongqing Public Health Medical Center, Public Health Hospital of Southwest University, 109 Baoyu Rd. Shapingba, Chongqing, 400038, China
| | - Zhaoxia Tan
- Southwest Hospital, Third Military Medical University (Army Medical University, 29 Gaotanyan Street, Shapingba, Chongqing, 400038, China
| | - Yaxiong Li
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, 650041, Yunnan, China.
| | - Guohong Deng
- Southwest Hospital, Third Military Medical University (Army Medical University, 29 Gaotanyan Street, Shapingba, Chongqing, 400038, China.
| | - Ren Lai
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China.
| |
Collapse
|
9
|
Anticancer activity of chicken cathelicidin peptides against different types of cancer. Mol Biol Rep 2022; 49:4321-4339. [PMID: 35449320 DOI: 10.1007/s11033-022-07267-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND This study served as the pioneer in studying the anti-cancer role of chicken cathelicidin peptides. METHODS AND RESULTS Chicken cathelicidins were used as anticancer agent against the breast cancer cell line (MCF-7) and human colon cancer cell line (HCT116). In addition, the mechanism of action of the interaction of cationic peptides with breast cancer cell line MCF-7 was also investigated. An in vivo investigation was also achieved to evaluate the role of chicken cathelicidin in Ehrlich ascites cell (EAC) suppression as a tumor model after subcutaneous implantation in mice. It was found during the study that exposure of cell lines to 40 µg/ml of chicken cathelicidin for 72 h reduced cell lines growth rate by 90-95%. These peptides demonstrated down-regulation of (cyclin A1 and cyclin D genes) of MCF-7 cells. The study showed that two- and three-fold expression of both of caspase-3 and - 7 genes in untreated MCF-7 cells compared to treated MCF-7 cells with chicken cathelicidin peptides. Our data showed that chicken (CATH-1) enhance releasing of TNFα, INF-γ and upregulation of granzyme K in treated mice groups, in parallel, the tumor size and volume was reduced in the treated EAC-bearing groups. Tumor of mice groups treated with chicken cathelicidin displayed high area of necrosis compared to untreated EAC-bearing mice. Based on histological analysis and immunohistochemical staining revealed that the tumor section in Ehrlich solid tumor exhibited a strong Bcl2 expression in untreated control compared to mice treated with 10 & 20 µg of cathelicidin. Interestingly, low expression of Bcl2 were observed in mice taken 40 µg/mL of CATH-1. CONCLUSIONS This study drive intention in treatment of cancer through the efficacy of anticancer efficacy of chicken cathelicidin peptides.
Collapse
|
10
|
Gilani SJ, Bin-Jumah MN, Nadeem MS, Kazmi I. Vitamin D attenuates COVID-19 complications via modulation of proinflammatory cytokines, antiviral proteins, and autophagy. Expert Rev Anti Infect Ther 2022; 20:231-241. [PMID: 34112047 PMCID: PMC8477590 DOI: 10.1080/14787210.2021.1941871] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Global emergence of coronavirus disease-19 (COVID-19) has clearly shown variable severity, mortality, and frequency between and within populations worldwide. These striking differences have made many biological variables attractive for future investigations. One of these variables, vitamin D, has been implicated in COVID-19 with rapidly growing scientific evidence. AREAS COVERED The review intended to systematically explore the sources, and immunomodulatory role of vitamin D in COVID-19. Search engines and data sources including Google Scholar, PubMed, NCBI, Scopus, and Web of Science were used for data collection. The search terms used were Vitamin D, COVID-19, immune system, and antiviral mechanism. Overall, 232 sources of information were collected and 188 were included in this review. EXPERT OPINION Interaction of vitamin D and vitamin D receptor (VDR) triggers the cellular events to modulate the immune system by regulation of many genes. Vitamin D operates as a double-edged sword against COVID-19. First, in macrophages, it promotes the production of antimicrobial and antiviral proteins like β-defensin 2 and cathelicidin, and these proteins inhibit the replication of viral particles and promote the clearance of virus from the cells by autophagy. Second, it suppresses cytokine storm and inflammatory processes in COVID-19.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
van Harten RM, Tjeerdsma-van Bokhoven JL, de Greeff A, Balhuizen MD, van Dijk A, Veldhuizen EJ, Haagsman HP, Scheenstra MR. d-enantiomers of CATH-2 enhance the response of macrophages against Streptococcus suis serotype 2. J Adv Res 2022; 36:101-112. [PMID: 35127168 PMCID: PMC8799869 DOI: 10.1016/j.jare.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022] Open
Abstract
D-CATH-2 has strong antimicrobial activities towards multiple S.suis strains. D-CATH-2 ameliorates macrophage function. DCATH-2 binds LTA. DCATH-2 has prophylactic effect against S. suis infection in vivo.
Introduction Due to the increase of antibiotic resistant bacterial strains, there is an urgent need for development of alternatives to antibiotics. Cathelicidins can be such an alternative to antibiotics having both a direct antimicrobial capacity as well as an immunomodulatory function. Previously, the full d-enantiomer of chicken cathelicidin-2 (d-CATH-2) has shown to prophylactically protect chickens against infection 7 days post hatch when administered in ovo three days before hatch. Objectives To further evaluate d-CATH-2 in mammals as a candidate for an alternative to antibiotics. In this study, the prophylactic capacity of d-CATH-2 and two truncated derivatives, d-C(1–21) and d-C(4–21), was determined in mammalian cells. Methods Antibacterial assays; immune cell differentiation and modulation; cytotoxicity, isothermal titration calorimetry; in vivo prophylactic capacity of peptides in an S. suis infection model. Results d-CATH-2 and its derivatives were shown to have a strong direct antibacterial capacity against four different S. suis serotype 2 strains (P1/7, S735, D282, and OV625) in bacterial medium and even stronger in cell culture medium. In addition, d-CATH-2 and its derivatives ameliorated the efficiency of mouse bone marrow-derived macrophages (BMDM) and skewed mouse bone marrow-derived dendritic cells (BMDC) towards cells with a more macrophage-like phenotype. The peptides directly bind lipoteichoic acid (LTA) and inhibit LTA-induced activation of macrophages. In addition, S. suis killed by the peptide was unable to further activate mouse macrophages, which indicates that S. suis was eliminated by the previously reported silent killing mechanism. Administration of d-C(1–21) at 24 h or 7 days before infection resulted in a small prophylactic protection with reduced disease severity and reduced mortality of the treated mice. Conclusion d-enantiomers of CATH-2 show promise as anti-infectives against pathogenic S. suis for application in mammals.
Collapse
Affiliation(s)
- Roel M. van Harten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Astrid de Greeff
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Melanie D. Balhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Albert van Dijk
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Edwin J.A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
- Corresponding author.
| | - Henk P. Haagsman
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Maaike R. Scheenstra
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
12
|
Damour A, Garcia M, Cho HS, Larivière A, Lévêque N, Park C, Bodet C. Characterisation of Antiviral Activity of Cathelicidins from Naked Mole Rat and Python bivittatus on Human Herpes Simplex Virus 1. Pharmaceuticals (Basel) 2021; 14:ph14080715. [PMID: 34451812 PMCID: PMC8398704 DOI: 10.3390/ph14080715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Hg-CATH and Pb-CATH4 are cathelicidins from Heterocephalus glaber and Python bivittatus that have been previously identified as potent antibacterial peptides. However, their antiviral properties were not previously investigated. In this study, their activity against the herpes simplex virus (HSV)-1 was evaluated during primary human keratinocyte infection. Both of them significantly reduced HSV-1 DNA replication and production of infectious viral particles in keratinocytes at noncytotoxic concentrations, with the stronger activity of Pb-CATH4. These peptides did not show direct virucidal activity and did not exhibit significant immunomodulatory properties, except for Pb-CATH4, which exerted a moderate proinflammatory action. All in all, our results suggest that Hg-CATH and Pb-CATH4 could be potent candidates for the development of new therapies against HSV-1.
Collapse
Affiliation(s)
- Alexia Damour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC EA 4331), Université de Poitiers, CEDEX 9, 86073 Poitiers, France; (A.D.); (M.G.); (A.L.); (N.L.)
| | - Magali Garcia
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC EA 4331), Université de Poitiers, CEDEX 9, 86073 Poitiers, France; (A.D.); (M.G.); (A.L.); (N.L.)
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86021 Poitiers, France
| | - Hye-Sun Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (H.-S.C.); (C.P.)
| | - Andy Larivière
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC EA 4331), Université de Poitiers, CEDEX 9, 86073 Poitiers, France; (A.D.); (M.G.); (A.L.); (N.L.)
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86021 Poitiers, France
| | - Nicolas Lévêque
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC EA 4331), Université de Poitiers, CEDEX 9, 86073 Poitiers, France; (A.D.); (M.G.); (A.L.); (N.L.)
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86021 Poitiers, France
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (H.-S.C.); (C.P.)
| | - Charles Bodet
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC EA 4331), Université de Poitiers, CEDEX 9, 86073 Poitiers, France; (A.D.); (M.G.); (A.L.); (N.L.)
- Correspondence:
| |
Collapse
|
13
|
Abo-Al-Ela HG, El-Kassas S, El-Naggar K, Abdo SE, Jahejo AR, Al Wakeel RA. Stress and immunity in poultry: light management and nanotechnology as effective immune enhancers to fight stress. Cell Stress Chaperones 2021; 26:457-472. [PMID: 33847921 PMCID: PMC8065079 DOI: 10.1007/s12192-021-01204-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
The poultry industry plays a significant role in boosting the economy of several countries, particularly developing countries, and acts as a good, cheap, and affordable source of animal protein. A stress-free environment is the main target in poultry production. There are several stressors, such as cold stress, heat stress, high stocking density, and diseases that can affect birds and cause several deleterious changes. Stress reduces feed intake and growth, as well as impairs immune response and function, resulting in high disease susceptibility. These effects are correlated with higher corticosteroid levels that modulate several immune pathways such as cytokine-cytokine receptor interaction and Toll-like receptor signaling along with induction of excessive production of reactive oxygen species (ROS) and thus oxidative stress. Several approaches have been considered to boost bird immunity to overcome stress-associated effects. Of these, dietary supplementation of certain nutrients and management modifications, such as light management, are commonly considered. Dietary supplementations improve bird immunity by improving the development of lymphoid tissues and triggering beneficial immune modulators and responses. Since nano-minerals have higher bioavailability compared to inorganic or organic forms, they are highly recommended to be included in the bird's diet during stress. Additionally, light management is considered a cheap and safe approach to control stress. Changing light from continuous to intermittent and using monochromatic light instead of the normal light improve bird performance and health. Such changes in light management are associated with a reduction of ROS production and increased antioxidant production. In this review, we discuss the impact of stress on the immune system of birds and the transcriptome of oxidative stress and immune-related genes, in addition, how nano-minerals supplementations and light system modulate or mitigate stress-associated effects.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43518, Egypt.
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
14
|
Peng L, Scheenstra MR, van Harten RM, Haagsman HP, Veldhuizen EJA. The immunomodulatory effect of cathelicidin-B1 on chicken macrophages. Vet Res 2020; 51:122. [PMID: 32972448 PMCID: PMC7517697 DOI: 10.1186/s13567-020-00849-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/13/2020] [Indexed: 12/23/2022] Open
Abstract
Cathelicidins (CATHs) play an important role in the innate immune response against microbial infections. Among the four chicken cathelicidins, CATH-B1 is studied the least. In this study, the effect of CATH-B1 on the macrophage response towards avian pathogenic E. coli (APEC) and bacterial ligands was investigated. Our results show that APEC induced CATH-B1 gene expression in both a chicken macrophage cell line (HD11 cells) and primary macrophages, while expression of the other three CATHs was virtually unaffected. While the antimicrobial activity of CATH-B1 is very low under cell culture conditions, it enhanced bacterial phagocytosis by macrophages. Interestingly, CATH-B1 downregulated APEC-induced gene expression of pro-inflammatory cytokines (IFN-β, IL-1β, IL-6 and IL-8) in primary macrophages. In addition, CATH-B1 pre-incubated macrophages showed a significantly higher gene expression of IL-10 after APEC challenge, indicating an overall anti-inflammatory profile for CATH-B1. Using isothermal titration calorimetry (ITC), CATH-B1 was shown to bind LPS. This suggests that CATH-B1 reduces toll like receptor (TLR) 4 dependent activation by APEC which may partly explain the decreased production of pro-inflammatory cytokines by macrophages. On the contrary, direct binding of CATH-B1 to ODN-2006 enhanced the TLR21 dependent activation of macrophages as measured by nitric oxide production. In conclusion, our results show for the first time that CATH-B1 has several immunomodulatory activities and thereby could be an important factor in the chicken immune response.
Collapse
Affiliation(s)
- Lianci Peng
- Department of Biomolecular Health Sciences, Division of Infectious Diseases & Immunology, Section of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Maaike R Scheenstra
- Department of Biomolecular Health Sciences, Division of Infectious Diseases & Immunology, Section of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Roel M van Harten
- Department of Biomolecular Health Sciences, Division of Infectious Diseases & Immunology, Section of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Henk P Haagsman
- Department of Biomolecular Health Sciences, Division of Infectious Diseases & Immunology, Section of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases & Immunology, Section of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands.
| |
Collapse
|