1
|
Grant ET, De Franco H, Desai MS. Non-SCFA microbial metabolites associated with fiber fermentation and host health. Trends Endocrinol Metab 2025; 36:70-82. [PMID: 38991905 DOI: 10.1016/j.tem.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Dietary fiber is degraded by commensal gut microbes to yield host-beneficial short-chain fatty acids (SCFAs), but personalized responses to fiber supplementation highlight a role for other microbial metabolites in shaping host health. In this review we summarize recent findings from dietary fiber intervention studies describing health impacts attributed to microbial metabolites other than SCFAs, particularly secondary bile acids (2°BAs), aromatic amino acid derivatives, neurotransmitters, and B vitamins. We also discuss shifts in microbial metabolism occurring through altered maternal dietary fiber intake and agricultural practices, which warrant further investigation. To optimize the health benefits of dietary fibers, it is essential to survey a range of metabolites and adapt recommendations on a personalized basis, according to the different functional aspects of the microbiome.
Collapse
Affiliation(s)
- Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Hélène De Franco
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology, and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
2
|
Grant ET, Parrish A, Boudaud M, Hunewald O, Hirayama A, Ollert M, Fukuda S, Desai MS. Dietary fibers boost gut microbiota-produced B vitamin pool and alter host immune landscape. MICROBIOME 2024; 12:179. [PMID: 39307855 PMCID: PMC11418204 DOI: 10.1186/s40168-024-01898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Dietary fibers can alter microbial metabolic output in support of healthy immune function; however, the impact of distinct fiber sources and immunomodulatory effects beyond short-chain fatty acid production are underexplored. In an effort to discern the effects of diverse fibers on host immunity, we employed five distinct rodent diets with varying fiber content and source in specific-pathogen-free, gnotobiotic (containing a 14-member synthetic human gut microbiota), and germ-free mice. RESULTS Broad-scale metabolomics analysis of cecal contents revealed that fiber deprivation consistently reduced the concentrations of microbiota-produced B vitamins. This phenomenon was not always explained by reduced biosynthesis, rather, metatranscriptomic analyses pointed toward increased microbial usage of certain B vitamins under fiber-free conditions, ultimately resulting in a net reduction of host-available B vitamins. Broad immunophenotyping indicated that the local gut effector immune populations and activated T cells accumulate in a microbiota-dependent manner. Supplementation with the prebiotic inulin recovered the availability of microbially produced B vitamins and restored immune homeostasis. CONCLUSIONS Our findings highlight the potential to use defined fiber polysaccharides to boost microbiota-derived B vitamin availability in an animal model and to regulate local innate and adaptive immune populations of the host. Video abstract.
Collapse
Affiliation(s)
- Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4365, Esch-Sur-Alzette, Luxembourg
| | - Amy Parrish
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4365, Esch-Sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000, Odense, Denmark
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, 210-0821, Japan
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000, Odense, Denmark.
| |
Collapse
|
3
|
Fischer F, Pierzchalski A, Riesbeck S, Aldehoff AS, Castaneda-Monsalve VA, Haange SB, von Bergen M, Rolle-Kampczyk UE, Jehmlich N, Zenclussen AC, Herberth G. An in vitro model system for testing chemical effects on microbiome-immune interactions - examples with BPX and PFAS mixtures. Front Immunol 2024; 15:1298971. [PMID: 38953021 PMCID: PMC11215145 DOI: 10.3389/fimmu.2024.1298971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction More than 350,000 chemicals make up the chemical universe that surrounds us every day. The impact of this vast array of compounds on our health is still poorly understood. Manufacturers are required to carry out toxicological studies, for example on the reproductive or nervous systems, before putting a new substance on the market. However, toxicological safety does not exclude effects resulting from chronic exposure to low doses or effects on other potentially affected organ systems. This is the case for the microbiome-immune interaction, which is not yet included in any safety studies. Methods A high-throughput in vitro model was used to elucidate the potential effects of environmental chemicals and chemical mixtures on microbiome-immune interactions. Therefore, a simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species was cultured in vitro in a bioreactor that partially mimics intestinal conditions. The bacteria were continuously exposed to mixtures of representative and widely distributed environmental chemicals, i.e. bisphenols (BPX) and/or per- and polyfluoroalkyl substances (PFAS) at concentrations of 22 µM and 4 µM, respectively. Furthermore, changes in the immunostimulatory potential of exposed microbes were investigated using a co-culture system with human peripheral blood mononuclear cells (PBMCs). Results The exposure to BPX, PFAS or their mixture did not influence the community structure and the riboflavin production of SIHUMIx in vitro. However, it altered the potential of the consortium to stimulate human immune cells: in particular, activation of CD8+ MAIT cells was affected by the exposure to BPX- and PFAS mixtures-treated bacteria. Discussion The present study provides a model to investigate how environmental chemicals can indirectly affect immune cells via exposed microbes. It contributes to the much-needed knowledge on the effects of EDCs on an organ system that has been little explored in this context, especially from the perspective of cumulative exposure.
Collapse
Affiliation(s)
- Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Sarah Riesbeck
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Alix Sarah Aldehoff
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Perinatal Immunology, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
4
|
Zhang WW, Thakur K, Zhang JG, Wei ZJ. Riboflavin ameliorates intestinal inflammation via immune modulation and alterations of gut microbiota homeostasis in DSS-colitis C57BL/6 mice. Food Funct 2024; 15:4109-4121. [PMID: 38597225 DOI: 10.1039/d4fo00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
While there have been advancements in understanding the direct and indirect impact of riboflavin (B2) on intestinal inflammation, the precise mechanisms are still unknown. This study focuses on evaluating the effects of riboflavin (B2) supplementation on a colitis mouse model induced with 3% dextran sodium sulphate (DSS). We administered three different doses of oral B2 (VB2L, VB2M, and VB2H) and assessed its impact on various physiological and biochemical parameters associated with colitis. Mice given any of the three doses exhibited relative improvement in the symptoms and intestinal damage. This was evidenced by the inhibition of the pro-inflammatory cytokines TNF-α, IL-1β, and CALP, along with an increase in the anti-inflammatory cytokine IL-10. B2 supplementation also led to a restoration of oxidative homeostasis, as indicated by a decrease in myeloperoxidase (MPO) and malondialdehyde (MDA) levels and an increase in reduced glutathione (GSH) and catalase (CAT) activities. B2 intervention showed positive effects on intestinal barrier function, confirmed by increased expression of tight junction proteins (occludin and ZO-1). B2 was linked to an elevated relative abundance of Actinobacteriota, Desulfobacterota, and Verrucomicrobiota. Notably, Verrucomicrobiota showed a significant increase in the VB2H group, reaching 15.03% relative abundance. Akkermansia exhibited a negative correlation with colitis and might be linked to anti-inflammatory function. Additionally, a remarkable increase in n-butyric acid, i-butyric acid, and i-valeric acid was reported in the VB2H group. The ameliorating role of B2 in gut inflammation can be attributed to immune system modulation as well as alterations in the gut microbiota composition, along with elevated levels of fecal SCFAs.
Collapse
Affiliation(s)
- Wang-Wei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
5
|
Warmbrunn MV, Attaye I, Aron-Wisnewsky J, Rampanelli E, van der Vossen EW, Hao Y, Koopen A, Bergh PO, Stols-Gonçalves D, Mohamed N, Kemper M, Verdoes X, Wortelboer K, Davids M, Belda E, André S, Hazen S, Clement K, Groen B, van Raalte DH, Herrema H, Backhed F, Nieuwdorp M. Oral histidine affects gut microbiota and MAIT cells improving glycemic control in type 2 diabetes patients. Gut Microbes 2024; 16:2370616. [PMID: 38961712 PMCID: PMC11225920 DOI: 10.1080/19490976.2024.2370616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Amino acids, metabolized by host cells as well as commensal gut bacteria, have signaling effects on host metabolism. Oral supplementation of the essential amino acid histidine has been shown to exert metabolic benefits. To investigate whether dietary histidine aids glycemic control, we performed a case-controlled parallel clinical intervention study in participants with type 2 diabetes (T2D) and healthy controls. Participants received oral histidine for seven weeks. After 2 weeks of histidine supplementation, the microbiome was depleted by antibiotics to determine the microbial contribution to histidine metabolism. We assessed glycemic control, immunophenotyping of peripheral blood mononucelar cells (PBMC), DNA methylation of PBMCs and fecal gut microbiota composition. Histidine improves several markers of glycemic control, including postprandial glucose levels with a concordant increase in the proportion of MAIT cells after two weeks of histidine supplementation. The increase in MAIT cells was associated with changes in gut microbial pathways such as riboflavin biosynthesis and epigenetic changes in the amino acid transporter SLC7A5. Associations between the microbiome and MAIT cells were replicated in the MetaCardis cohort. We propose a conceptual framework for how oral histidine may affect MAIT cells via altered gut microbiota composition and SLC7A5 expression in MAIT cells directly and thereby influencing glycemic control. Future studies should focus on the role of flavin biosynthesis intermediates and SLC7A5 modulation in MAIT cells to modulate glycemic control.
Collapse
Affiliation(s)
- Moritz V. Warmbrunn
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
| | - Judith Aron-Wisnewsky
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
- Amsterdam Amsterdam institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Eduard W.J. van der Vossen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Youling Hao
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, The Netherlands
- Amsterdam Amsterdam institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Annefleur Koopen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska, Gothenburg, Sweden
| | - Daniela Stols-Gonçalves
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Nadia Mohamed
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marleen Kemper
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Xanthe Verdoes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Science research institute, Amsterdam, The Netherlands
- Amsterdam Amsterdam institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Eugeni Belda
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Sébastien André
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Stanley Hazen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karine Clement
- Assistante Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, CRNH Ile de France, Paris, France
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Bert Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Daniel H. van Raalte
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Fredrik Backhed
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate-like T lymphocytes, strikingly enriched at mucosal surfaces and characterized by a semi-invariant αβ T cell receptor (TCR) recognizing microbial derived intermediates of riboflavin synthesis presented by the MHC-Ib molecule MR1. At barrier sites MAIT cells occupy a prime position for interaction with commensal microorganisms, comprising the microbiota. The microbiota is a rich source of riboflavin derived antigens required in early life to promote intra-thymic MAIT cell development and sustain a life-long population of tissue resident cells. A symbiotic relationship is thought to be maintained in health whereby microbes promote maturation and homeostasis, and in turn MAIT cells can engage a TCR-dependent "tissue repair" program in the presence of commensal organisms conducive to sustaining barrier function and integrity of the microbial community. MAIT cell activation can be induced in a MR1-TCR dependent manner or through MR1-TCR independent mechanisms via pro-inflammatory cytokines interleukin (IL)-12/-15/-18 and type I interferon. MAIT cells provide immunity against bacterial, fungal and viral pathogens. However, MAIT cells may have deleterious effects through insufficient or exacerbated effector activity and have been implicated in autoimmune, inflammatory and allergic conditions in which microbial dysbiosis is a shared feature. In this review we summarize the current knowledge on the role of the microbiota in the development and maintenance of circulating and tissue resident MAIT cells. We also explore how microbial dysbiosis, alongside changes in intestinal permeability and imbalance between pro- and anti-inflammatory components of the immune response are together involved in the potential pathogenicity of MAIT cells. Whilst there have been significant improvements in our understanding of how the microbiota shapes MAIT cell function, human data are relatively lacking, and it remains unknown if MAIT cells can conversely influence the composition of the microbiota. We speculate whether, in a human population, differences in microbiomes might account for the heterogeneity observed in MAIT cell frequency across mucosal sites or between individuals, and response to therapies targeting T cells. Moreover, we speculate whether manipulation of the microbiota, or harnessing MAIT cell ligands within the gut or disease-specific sites could offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
7
|
Bisphenols, but not phthalate esters, modulate gene expression in activated human MAIT cells in vitro. Toxicol Rep 2023; 10:348-356. [PMID: 36923442 PMCID: PMC10008924 DOI: 10.1016/j.toxrep.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
One route of human exposure to environmental chemicals is oral uptake. This is primarily true for chemicals that may leach from food packaging materials, such as bisphenols and phthalate esters. Upon ingestion, these compounds are transported along the intestinal tract, from where they can be taken up into the blood stream or distributed to mucosal sites. At mucosal sites, mucosal immune cells and in the blood stream peripheral immune cells may be exposed to these chemicals potentially modulating immune cell functions. In the present study, we investigated the impact of three common bisphenols and two phthalate esters on mucosal-associated invariant T (MAIT) cells in vitro, a frequent immune cell type in the intestinal mucosae and peripheral blood of humans. All compounds were non-cytotoxic at the chosen concentrations. MAIT cell activation was only slightly affected as seen by flow cytometric analysis. Phthalate esters did not affect MAIT cell gene expression, while bisphenol-exposure induced significant changes. Transcriptional changes occurred in ∼ 25 % of genes for BPA, ∼ 22 % for BPF and ∼ 8 % for BPS. All bisphenols down-modulated expression of CCND2, CCL20, GZMB and IRF4, indicating an effect on MAIT cell effector function. Further, BPA and BPF showed a high overlap in modulated genes involved in cellular stress response, activation signaling and effector function suggesting that BPF may not be safe substitute for BPA.
Collapse
Key Words
- BPA, bisphenol A
- BPF, bisphenol F
- BPS, bisphenol S
- Bisphenols
- CD, cluster of differentiation
- DEHP, di(2-ethylhexyl) phthalate
- DINP, diisononyl phthalate
- DMSO, dimethyl sulfoxide
- EFSA, European Food Safety Agency
- EU, European Union
- FCS, fetal calf serum
- IFNg, interferon gamma
- IMDM, Iscove Modified Dulbecco Medium
- Immunomodulation
- In vitro model
- MAIT cells
- MAIT cells, mucosal-associated invariant T cells
- MeOH, methanol
- NHANES, National Health and Nutrition Examination Survey
- PBMC, peripheral blood mononuclear cell
- PE, phthalate ester
- Phthalate ester
- Plasticizers
- RT, room temperature
- SVHC, substance of very high concern
- TDI, tolerable daily intake
- TNF, tumor necrosis factor
- bpc, bacteria per cell
- bw, body weight
Collapse
|
8
|
Dooling SW, Sgritta M, Wang IC, Duque ALRF, Costa-Mattioli M. The Effect of Limosilactobacillus reuteri on Social Behavior Is Independent of the Adaptive Immune System. mSystems 2022; 7:e0035822. [PMID: 36286493 PMCID: PMC9765170 DOI: 10.1128/msystems.00358-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/22/2022] [Indexed: 12/25/2022] Open
Abstract
Gut microbes can modulate almost all aspects of host physiology throughout life. As a result, specific microbial interventions are attracting considerable attention as potential therapeutic strategies for treating a variety of conditions. Nonetheless, little is known about the mechanisms through which many of these microbes work. Recently, we and others have found that the commensal bacterium Limosilactobacillus reuteri (formerly Lactobacillus reuteri) reverses social deficits in several mouse models (genetic, environmental, and idiopathic) for neurodevelopmental disorders in a vagus nerve-, oxytocin-, and biopterin-dependent manner. Given that gut microbes can signal to the brain through the immune system and L. reuteri promotes wound healing via the adaptive immune response, we sought to determine whether the prosocial effect mediated by L. reuteri also depends on adaptive immunity. Here, we found that the effects of L. reuteri on social behavior and related changes in synaptic function are independent of the mature adaptive immune system. Interestingly, these findings indicate that the same microbe (L. reuteri) can affect different host phenotypes through distinct mechanisms. IMPORTANCE Because preclinical animal studies support the idea that gut microbes could represent novel therapeutics for brain disorders, it is essential to fully understand the mechanisms by which gut microbes affect their host's physiology. Previously, we discovered that treatment with Limosilactobacillus reuteri selectively improves social behavior in different mouse models for autism spectrum disorder through the vagus nerve, oxytocin reward signaling in the brain, and biopterin metabolites (BH4) in the gut. However, given that (i) the immune system remains a key pathway for host-microbe interactions and that (ii) L. reuteri has been shown to facilitate wound healing through the adaptive immune system, we examined here whether the prosocial effects of L. reuteri require immune signaling. Unexpectedly, we found that the mature adaptive immune system (i.e., conventional B and T cells) is not required for L. reuteri to reverse social deficits and related changes in synaptic function. Overall, these findings add new insight into the mechanism through which L. reuteri modulates brain function and behavior. More importantly, they highlight that a given bacterial species can modulate different phenotypes (e.g., wound healing versus social behavior) through separate mechanisms.
Collapse
Affiliation(s)
- Sean W. Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Martina Sgritta
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - I-Ching Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ana Luiza Rocha Faria Duque
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Gao MG, Zhao XS. Mining the multifunction of mucosal-associated invariant T cells in hematological malignancies and transplantation immunity: A promising hexagon soldier in immunomodulatory. Front Immunol 2022; 13:931764. [PMID: 36052080 PMCID: PMC9427077 DOI: 10.3389/fimmu.2022.931764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved innate-like T cells capable of recognizing bacterial and fungal ligands derived from vitamin B biosynthesis. Under different stimulation conditions, MAIT cells can display different immune effector phenotypes, exerting immune regulation and anti-/protumor responses. Based on basic biological characteristics, including the enrichment of mucosal tissue, the secretion of mucosal repair protective factors (interleukin-17, etc.), and the activation of riboflavin metabolites by intestinal flora, MAIT cells may play an important role in the immune regulation effect of mucosal lesions or inflammation. At the same time, activated MAIT cells secrete granzyme B, perforin, interferon γ, and other toxic cytokines, which can mediate anti-tumor effects. In addition, since a variety of hematological malignancies express the targets of MAIT cell-specific effector molecules, MAIT cells are also a potentially attractive target for cell therapy or immunotherapy for hematological malignancies. In this review, we will provide an overview of MAIT research related to blood system diseases and discuss the possible immunomodulatory or anti-tumor roles that unique biological characteristics or effector phenotypes may play in hematological diseases.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- *Correspondence: Xiao-Su Zhao,
| |
Collapse
|
10
|
Krause JL, Engelmann B, Nunes da Rocha U, Pierzchalski A, Chang HD, Zenclussen AC, von Bergen M, Rolle-Kampczyk U, Herberth G. MAIT cell activation is reduced by direct and microbiota-mediated exposure to bisphenols. ENVIRONMENT INTERNATIONAL 2022; 158:106985. [PMID: 34991247 DOI: 10.1016/j.envint.2021.106985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Oral uptake is the primary route of human bisphenol exposure, resulting in an exposure of the intestinal microbiota and intestine-associated immune cells. Therefore, we compared the impact of bisphenol A (BPA), bisphenol F (BPF) and bisphenol S (BPS) on (i) intestinal microbiota, (ii) microbiota-mediated immunomodulatory effects and (iii) direct effects on mucosal-associated invariant T (MAIT) cells in vitro. We acutely exposed human fecal microbiota, Bacteroides thetaiotaomicron and Escherichia coli to BPA and its analogues BPF and BPS referring to the European tolerable daily intake (TDI), i.e. 2.3 µg/mL, 28.3 µg/mL and 354.0 µg/mL. Growth and viability of E. coli was most susceptible to BPF, whereas B.thetaiotaomicron and fecal microbiota were affected by BPA > BPF > BPS. At 354.0 µg/mL bisphenols altered microbial diversity in compound-specific manner and modulated microbial metabolism, with BPA already acting on metabolism at 28.3 µg/mL. Microbiota-mediated effects on MAIT cells were observed for the individual bacteria at 354.0 µg/mL only. However, BPA and BPF directly modulated MAIT cell responses at low concentrations, whereby bisphenols at concentrations equivalent for the current TDI had no modulatory effects for microbiota or for MAIT cells. Our findings indicate that acute bisphenol exposure may alter microbial metabolism and impact directly on immune cells.
Collapse
Affiliation(s)
- J L Krause
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; present address: German Rheumatism Research Center Berlin, a Leibniz Institute - DRFZ, Schwiete laboratory for microbiota and inflammation, Berlin, Germany
| | - B Engelmann
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - U Nunes da Rocha
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - A Pierzchalski
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - H D Chang
- present address: German Rheumatism Research Center Berlin, a Leibniz Institute - DRFZ, Schwiete laboratory for microbiota and inflammation, Berlin, Germany; Chair of Cytometry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - A C Zenclussen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - M von Bergen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany; Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Germany
| | - U Rolle-Kampczyk
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - G Herberth
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany.
| |
Collapse
|
11
|
Coker MO, Cairo C, Garzino-Demo A. HIV-Associated Interactions Between Oral Microbiota and Mucosal Immune Cells: Knowledge Gaps and Future Directions. Front Immunol 2021; 12:676669. [PMID: 34616391 PMCID: PMC8488204 DOI: 10.3389/fimmu.2021.676669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Even with sustained use of antiretroviral therapy (ART), HIV-infected individuals have an increased risk of systemic comorbid conditions and oral pathologies, including opportunistic infections, oral mucosal inflammation, and gingival and periodontal diseases. The immune-mediated mechanisms that drive this increased risk, in the context of sustained viral suppression, are unclear. HIV infection, even when controlled, alters microbial communities contributing to a chronic low-grade inflammatory state that underlies these non-HIV co-morbidities. The higher prevalence of dental caries, and mucosal and periodontal inflammation reported in HIV-infected individuals on ART is often associated with differentially abundant oral microbial communities, possibly leading to a heightened susceptibility to inflammation. This mini-review highlights current gaps in knowledge regarding the microbe-mediated oral mucosal immunity with HIV infection while discussing opportunities for future research investigations and implementation of novel approaches to elucidate these gaps. Interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-infected individuals. More broadly, additional research is needed to bolster general models of microbiome-mediated chronic immune activation and aid the development of precise microbiota-targeted interventions to reverse or mitigate adverse outcomes.
Collapse
Affiliation(s)
- Modupe O Coker
- Department of Oral Biology, School of Dental Medicine at Rutgers, Newark, NJ, United States.,Department of Epidemiology, School of Public Health at Rutgers, Newark, NJ, United States
| | - Cristiana Cairo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
12
|
The role of microbiota in respiratory health and diseases, particularly in tuberculosis. Biomed Pharmacother 2021; 143:112108. [PMID: 34560539 DOI: 10.1016/j.biopha.2021.112108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Trillions of beneficial and hostile microorganisms live in the human respiratory and gastrointestinal tracts, which act as gatekeepers in maintaining human health, i.e., protecting the body from pathogens by colonizing mucosal surfaces with microbiota-derived antimicrobial metabolites such as short-chain fatty acids or host-derived cytokines and chemokines. It is widely accepted that the microbiome interacts with each other and with the host in a mutually beneficial relationship. Microbiota in the respiratory tract may also play a crucial role in immune homeostasis, maturation, and maintenance of respiratory physiology. Anti-TB antibiotics may cause dysbiosis in the lung and intestinal microbiota, affecting colonization resistance and making the host more susceptible to Mycobacterium tuberculosis (M. tuberculosis) infection. This review discusses recent advances in our understanding of the lung microbiota composition, the lungs and intestinal microbiota related to respiratory health and diseases, microbiome sequencing and analysis, the bloodstream, and the lymphatic system that underpin the gut-lung axis in M. tuberculosis-infected humans and animals. We also discuss the gut-lung axis interactions with the immune system, the role of the microbiome in TB pathogenesis, and the impact of anti-TB antibiotic therapy on the microbiota in animals, humans, and drug-resistant TB individuals.
Collapse
|
13
|
Gao MG, Hong Y, Zhao XY, Pan XA, Sun YQ, Kong J, Wang ZD, Wang FR, Wang JZ, Yan CH, Wang Y, Huang XJ, Zhao XS. The Potential Roles of Mucosa-Associated Invariant T Cells in the Pathogenesis of Gut Graft-Versus-Host Disease After Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:720354. [PMID: 34539656 PMCID: PMC8448388 DOI: 10.3389/fimmu.2021.720354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Gut acute graft-versus-host disease (aGVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is associated with high mortality. Mucosa-associated invariant T (MAIT) cells are a group of innate-like T cells enriched in the intestine that can be activated by riboflavin metabolites from various microorganisms. However, little is known about the function or mechanism of action of MAIT cells in the occurrence of gut aGVHD in humans. In our study, multiparameter flow cytometry (FCM) was used to evaluate the number of MAIT cells and functional cytokines. 16S V34 region amplicon sequencing analysis was used to analyze the intestinal flora of transplant patients. In vitro stimulation and coculture assays were used to study the activation and function of MAIT cells. The number and distribution of MAIT cells in intestinal tissues were analyzed by immunofluorescence technology. Our study showed that the number and frequency of MAIT cells in infused grafts in gut aGVHD patients were lower than those in no-gut aGVHD patients. Recipients with a high number of MAITs in infused grafts had a higher abundance of intestinal flora in the early posttransplantation period (+14 days). At the onset of gut aGVHD, the number of MAIT cells decreased in peripheral blood, and the activation marker CD69, chemokine receptors CXCR3 and CXCR4, and transcription factors Rorγt and T-bet tended to increase. Furthermore, when gut aGVHD occurred, the proportion of MAIT17 was higher than that of MAIT1. The abundance of intestinal flora with non-riboflavin metabolic pathways tended to increase in gut aGVHD patients. MAIT cells secreted more granzyme B, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ under the interleukin (IL)-12/IL-18 stimulation [non-T-cell receptor (TCR) signal] and secreted most of the IL-17 under the cluster of differentiation (CD)3/CD28 stimulation (TCR signal). MAIT cells inhibited the proliferation of CD4+ T cells in vitro. In conclusion, the lower number of MAIT cells in infused grafts was related to the higher incidence of gut aGVHD, and the number of MAIT cells in grafts may affect the composition of the intestinal flora of recipients early after transplantation. The flora of the riboflavin metabolism pathway activated MAIT cells and promoted the expression of intestinal protective factors to affect the occurrence of gut aGVHD in humans.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yan Hong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xin-An Pan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Abstract
Tuberculosis (TB) remains an infectious disease of global significance and a
leading cause of death in low- and middle-income countries. Significant effort
has been directed towards understanding Mycobacterium
tuberculosis genomics, virulence, and pathophysiology within the
framework of Koch postulates. More recently, the advent of “-omics” approaches
has broadened our appreciation of how “commensal” microbes have coevolved with
their host and have a central role in shaping health and susceptibility to
disease. It is now clear that there is a diverse repertoire of interactions
between the microbiota and host immune responses that can either sustain or
disrupt homeostasis. In the context of the global efforts to combatting TB, such
findings and knowledge have raised important questions: Does microbiome
composition indicate or determine susceptibility or resistance to
M. tuberculosis infection? Is the
development of active disease or latent infection upon M.
tuberculosis exposure influenced by the microbiome? Does
microbiome composition influence TB therapy outcome and risk of reinfection with
M. tuberculosis? Can the microbiome be
actively managed to reduce risk of M.
tuberculosis infection or recurrence of TB? Here, we
explore these questions with a particular focus on microbiome-immune
interactions that may affect TB susceptibility, manifestation and progression,
the long-term implications of anti-TB therapy, as well as the potential of the
host microbiome as target for clinical manipulation.
Collapse
Affiliation(s)
- Giorgia Mori
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Faculty
of Medicine, The University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
15
|
Augmentation of the Riboflavin-Biosynthetic Pathway Enhances Mucosa-Associated Invariant T (MAIT) Cell Activation and Diminishes Mycobacterium tuberculosis Virulence. mBio 2021; 13:e0386521. [PMID: 35164552 PMCID: PMC8844931 DOI: 10.1128/mbio.03865-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells play a critical role in antimicrobial defense. Despite increased understanding of their mycobacterial ligands and the clinical association of MAIT cells with tuberculosis (TB), their function in protection against Mycobacterium tuberculosis infection remains unclear. Here, we show that overexpressing key genes of the riboflavin-biosynthetic pathway potentiates MAIT cell activation and results in attenuation of M. tuberculosis virulence in vivo. Further, we observed greater control of M. tuberculosis infection in MAIThi CAST/EiJ mice than in MAITlo C57BL/6J mice, highlighting the protective role of MAIT cells against TB. We also endogenously adjuvanted Mycobacterium bovis BCG with MR1 ligands via overexpression of the lumazine synthase gene ribH and evaluated its protective efficacy in the mouse model of M. tuberculosis infection. Altogether, our findings demonstrate that MAIT cells confer host protection against TB and that overexpression of genes in the riboflavin-biosynthetic pathway attenuates M. tuberculosis virulence. Enhancing MAIT cell-mediated immunity may also offer a novel approach toward improved vaccines against TB. IMPORTANCE Mucosa-associated invariant T (MAIT) cells are an important subset of innate lymphocytes that recognize microbial ligands derived from the riboflavin biosynthesis pathway and mediate antimicrobial immune responses. Modulated MAIT cell responses have been noted in different forms of tuberculosis. However, it has been unclear if increased MAIT cell abundance is protective against TB disease. In this study, we show that augmentation of the mycobacterial MAIT cell ligands leads to higher MAIT cell activation with reduced M. tuberculosis virulence and that elevated MAIT cell abundance confers greater control of M. tuberculosis infection. Our study also highlights the potential of endogenously adjuvanting the traditional BCG vaccine with MR1 ligands to augment MAIT cell activation. This study increases current knowledge on the roles of the riboflavin-biosynthetic pathway and MAIT cell activation in M. tuberculosis virulence and host immunity against TB.
Collapse
|
16
|
Gebru YA, Choi MR, Raja G, Gupta H, Sharma SP, Choi YR, Kim HS, Yoon SJ, Kim DJ, Suk KT. Pathophysiological Roles of Mucosal-Associated Invariant T Cells in the Context of Gut Microbiota-Liver Axis. Microorganisms 2021; 9:microorganisms9020296. [PMID: 33535703 PMCID: PMC7912788 DOI: 10.3390/microorganisms9020296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of T lymphocytes expressing a semi-invariant T-cell receptor (TCR) present as TCR Vα7.2-Jα33 in humans and TCR Vα19-Jα33 in mice. They are activated by ligands produced during microbial biosynthesis of riboflavin that is presented by major histocompatibility complex class I-related (MR1) molecules on antigen-presenting cells. MAIT cells also possess interleukin (IL)-12 and IL-18 receptors and can be activated by the respective cytokines released from microbially stimulated antigen-presenting cells. Therefore, MAIT cells can be involved in bacterial and viral defenses and are a significant part of the human immune system. They are particularly abundant in the liver, an organ serving as the second firewall of gut microbes next to the intestinal barrier. Therefore, the immune functions of MAIT cells are greatly impacted by changes in the gut-microbiota and play important roles in the gut-liver pathogenesis axis. In this review, we discuss the nature and mechanisms of MAIT cell activation and their dynamics during different types of liver pathogenesis conditions. We also share our perspectives on important aspects that should be explored further to reveal the exact roles that MAIT cells play in liver pathogenesis in the context of the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ki Tae Suk
- Correspondence: ; Tel.: +82-10-5365-5700; Fax: +82-033-248-5826
| |
Collapse
|
17
|
MAIT cells, guardians of skin and mucosa? Mucosal Immunol 2021; 14:803-814. [PMID: 33753874 PMCID: PMC7983967 DOI: 10.1038/s41385-021-00391-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Mucosal Associated Invariant T (MAIT) cells are evolutionary conserved innate-like T cells able to recognize bacterial and fungal ligands derived from vitamin B biosynthesis. These cells are particularly present in liver and blood but also populate mucosal sites including skin, oral, intestinal, respiratory, and urogenital tracts that are in contact with the environment and microbiota of their host. Growing evidence suggests important involvement of MAIT cells in safeguarding the mucosa against external microbial threats. Simultaneously, mucosal MAIT cells have been implicated in immune and inflammatory pathologies affecting these organs. Here, we review the specificities of mucosal MAIT cells, their functions in the protection and maintenance of mucosal barriers, and their interactions with other mucosal cells.
Collapse
|
18
|
Emerging Role for MAIT Cells in Control of Antimicrobial Resistance. Trends Microbiol 2020; 29:504-516. [PMID: 33353796 DOI: 10.1016/j.tim.2020.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance is a serious threat to global public health as antibiotics are losing effectiveness due to rapid development of resistance. The human immune system facilitates control and clearance of resistant bacterial populations during the course of antimicrobial therapy. Here we review current knowledge of mucosa-associated invariant T (MAIT) cells, an arm of the immune system on the border between innate and adaptive, and their critical place in human antibacterial immunity. We propose that MAIT cells play important roles against antimicrobial-resistant infections through their capacity to directly clear multidrug-resistant bacteria and overcome mechanisms of antimicrobial resistance. Finally, we discuss outstanding questions pertinent to the possible advancement of host-directed therapy as an alternative intervention strategy for antimicrobial-resistant bacterial infections.
Collapse
|
19
|
Amini A, Pang D, Hackstein CP, Klenerman P. MAIT Cells in Barrier Tissues: Lessons from Immediate Neighbors. Front Immunol 2020; 11:584521. [PMID: 33329559 PMCID: PMC7734211 DOI: 10.3389/fimmu.2020.584521] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells present at considerable frequencies in human blood and barrier tissues, armed with an expanding array of effector functions in response to homeostatic perturbations. Analogous to other barrier immune cells, their phenotype and function is driven by crosstalk with host and dynamic environmental factors, most pertinently the microbiome. Given their distribution, they must function in diverse extracellular milieus. Tissue-specific and adapted functions of barrier immune cells are shaped by transcriptional programs and regulated through a blend of local cellular, inflammatory, physiological, and metabolic mediators unique to each microenvironment. This review compares the phenotype and function of MAIT cells with other barrier immune cells, highlighting potential areas for future exploration. Appreciation of MAIT cell biology within tissues is crucial to understanding their niche in health and disease.
Collapse
Affiliation(s)
- Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Declan Pang
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Carl-Philipp Hackstein
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|