1
|
Walker HL, Miller RS, Pomeroy LW, Arruda AG. Characterizing risk factors for infection of Mycobacterium bovis between wild pigs and domestic cattle from an outbreak response - California, 1961-1967. Prev Vet Med 2025; 235:106399. [PMID: 39662208 DOI: 10.1016/j.prevetmed.2024.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
In the United States (US), a national control program from bovine tuberculosis (bTB) has been successful at greatly reducing the incidence of Mycobacterium bovis infection in domestic cattle and mitigating exposure to humans. However, experience in many countries, including the US, has demonstrated that eradication of animal tuberculosis (TB) from wildlife can complicate disease control programs. Wild pigs may serve as an important maintenance species for TB, contributing to outbreaks in cattle and hampering disease control programs. In the US, on the Hawaiian island of Molokai, wild pigs facilitated TB transmission, but risk factors contributing to infection of TB were not characterized. To fill this gap, we retrospectively analyzed data from an outbreak of M. bovis in wild pigs and domestic cattle in California during 1961-1967. Using generalized linear models we investigated demographic risk factors (age and sex) for TB infection in wild pigs as well as the association among wild pig and domestic cattle prevalence. Our models demonstrated a predictive accuracy of 87.8 % and suggest adult female wild pigs have significantly lower odds of being TB positive (odds ratio (OR) = 0.41, p value = 0.022). Furthermore, our models identified a possible positive association between male wild pigs and TB status (OR = 2.37, p value = 0.055). We also found evidence of differences in geographic risks. Our findings contribute to the existing literature describing risk factors of M. bovis infection in wild pigs and can be used to support targeted surveillance activities in wild pigs.
Collapse
Affiliation(s)
- Heather L Walker
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1920 Coffey Rd, Columbus, OH 43210, USA.
| | - Ryan S Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, 2150 Centre Avenue, Bldg B, Fort Collins, CO 80526, USA.
| | - Laura W Pomeroy
- Division of Environmental Health Sciences, College of Public Health, and Translational Data Analytics Institute, The Ohio State University, 1841 Neil Ave, Columbus, OH 43210, USA.
| | - Andreia G Arruda
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1920 Coffey Rd, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Soliman NS, Soliman MS, Khairat SM, Gad MA, Shawky S, Elkholy AA. Genetic diversities and drug resistance in Mycobacterium bovis isolates from zoonotic tuberculosis using whole genome sequencing. BMC Genomics 2024; 25:1024. [PMID: 39487429 PMCID: PMC11529264 DOI: 10.1186/s12864-024-10909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Zoonotic human tuberculosis (TB) caused by Mycobacterium bovis (M. bovis) is as vital as Mycobacterium tuberculosis, however with scarce available information. We aimed to use whole-genome sequencing (WGS) technology to take a deep insight into the circulating genotypes of human M. bovis and the genomic characteristics underlying virulence and drug resistance. METHODS The study included smear positive Ziehl-Neelsen samples from patients with suspected tuberculosis. Samples were cultured on Lowenstein-Jensen media and suspected colonies of M. bovis were selected to undergo DNA extraction and WGS. Data was analysed using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), and online bioinformatics tools. A phylogenetic tree was constructed for our sequenced strains, in addition to a set of 59 previously sequenced M. bovis genomes from different hosts and countries. RESULTS Out of total 112 mycobacterial positive cultures, five M. bovis were isolated and underwent WGS. All sequenced strains belonged to Mycobacterium tuberculosis var bovis, spoligotype BOV_1; BOV_11. Resistance gene mutations were determined in 100% of strains to pyrazinamide (pncA and rpsA), isoniazid (KatG and ahpC), ethambutol (embB, embC, embR and ubiA), streptomycin (rpsl) and fluoroquinolones (gyrA and gyrB). Rifampin (rpoB and rpoC) and delamanid (fbiC) resistance genes were found in 80% of strains. The major represented virulence classes were the secretion system, cell surface components and regulation system. The phylogenetic analysis revealed close genetic relatedness of three sequenced M. bovis strains to previous reported cow strains from Egypt and human strains from France, as well as relatedness of one M. bovis strain to four human Algerian strains. One sequenced strain was related to one cow strain from Egypt and a human strain from South Africa. CONCLUSIONS All sequenced M. bovis isolates showed the same spoligotype, but diverse phylogeny. Resistance gene mutations were detected for anti-TB drugs including pyrazinamide, isoniazid, streptomycin, ethambutol, fluoroquinolones, cycloserine, rifampin and delamanid. The virulence profile comprised genes assigned mainly to secretion system, cell surface components and regulation system. Phylogenetic analysis revealed genetic relatedness between our isolates and previously sequenced bovine strains from Egypt as well as human strains from other nearby countries in the region.
Collapse
Affiliation(s)
- Noha Salah Soliman
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - May Sherif Soliman
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Maha Ali Gad
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherine Shawky
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amani Ali Elkholy
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Scaltriti E, Iyad K, Boniotti MB, Menozzi I, Bolzoni L, Ippolito D, Ciarello FP, Loda D, D’Incau M, Zanoni M, Presti VDML, Mazzone P, Gavaudan S, Pacciarini ML. Inside Mycobacterium bovis SB0120 spoligotype circulating in Italy: analysis of the most frequent genotypes by whole genome sequencing. Front Microbiol 2024; 15:1416605. [PMID: 39132144 PMCID: PMC11310128 DOI: 10.3389/fmicb.2024.1416605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Bovine tuberculosis (bTB) is a chronic inflammatory disease primarily caused by Mycobacterium bovis. The infection affects domestic animals and wildlife, posing a zoonotic risk to humans. To understand the dynamics of transmission and genetic diversity in Italy's M. bovis population, we conducted whole-genome sequencing (WGS) analysis on two prevalent genotypes, belonging to Spoligotype SB0120, identified in different geographical and temporal contexts. By comparing these genomes with international M. bovis isolates, we identified a distinct clade within the lineage La1.2, encompassing the Italian SB0120 isolates, indicating a genomic segregation of Italian M. bovis from other European isolates. Within Italy, a significant level of genetic variability emerged across regions, while isolates within epidemiologically linked outbreaks exhibited minimal genetic diversity. Additionally, isolates derived from cattle and wild boars within a tuberculosis hotspot in Central Italy and from cattle and black pigs in Sicily formed unified clonal clusters. This indicates the presence of persistent strains circulating in the examined regions. The genetic diversity within herds was limited, as specific clones endured over time within certain herds. This research enhances our comprehension of the epidemiology and transmission patterns of bTB in Italy, thereby aiding the development of precise control strategies and disease management. Using WGS and implementing standardized protocols and databases will be pivotal in combating bTB and promoting One-Health approaches to address this noteworthy public health concern.
Collapse
Affiliation(s)
- Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Karaman Iyad
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Maria Beatrice Boniotti
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Ilaria Menozzi
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale Della Lombardia e Dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Dorotea Ippolito
- Area Territoriale Barcellona Pozzo di Gotto, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Barcellona Pozzo di Gotto, Messina, Italy
| | - Flavia Pruiti Ciarello
- Area Territoriale Barcellona Pozzo di Gotto, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Barcellona Pozzo di Gotto, Messina, Italy
| | - Daniela Loda
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Mario D’Incau
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Mariagrazia Zanoni
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| | - Vincenzo Di Marco Lo Presti
- Area Territoriale Barcellona Pozzo di Gotto, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Barcellona Pozzo di Gotto, Messina, Italy
| | - Piera Mazzone
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Perugia, Italy
| | - Stefano Gavaudan
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Ancona, Italy
| | - Maria Lodovica Pacciarini
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna – IZSLER, Brescia, Italy
| |
Collapse
|
4
|
Pereira AC, Lourenço J, Themudo G, Botelho A, Cunha MV. Population structure and history of Mycobacterium bovis European 3 clonal complex reveal transmission across ecological corridors of unrecognized importance in Portugal. Microbiol Spectr 2024; 12:e0382923. [PMID: 38771094 PMCID: PMC11218495 DOI: 10.1128/spectrum.03829-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Mycobacterium bovis causes animal tuberculosis in livestock and wildlife, with an impact on animal health and production, wildlife management, and public health. In this work, we sampled a multi-host tuberculosis community from the official hotspot risk area of Portugal over 16 years, generating the largest available data set in the country. Using phylogenetic and ecological modeling, we aimed to reconstruct the history of circulating lineages across the livestock-wildlife interface to inform intervention and the implementation of genomic surveillance within the official eradication plan. We find evidence for the co-circulation of M. bovis European 1 (Eu1), Eu2, and Eu3 clonal complexes, with Eu3 providing sufficient temporal signal for further phylogenetic investigation. The Eu3 most recent common ancestor (bovine) was dated in the 1990s, subsequently transitioning to wildlife (red deer and wild boar). Isolate clustering based on sample metadata was used to inform phylogenetic inference, unravelng frequent transmission between two clusters that represent an ecological corridor of previously unrecognized importance in Portugal. The latter was associated with transmission at the livestock-wildlife interface toward locations with higher temperature and precipitation, lower agriculture and road density, and lower host densities. This is the first analysis of M. bovis Eu3 complex in Iberia, shedding light on background ecological factors underlying long-term transmission and informing where efforts could be focused within the larger hotspot risk area of Portugal. IMPORTANCE Efforts to strengthen surveillance and control of animal tuberculosis (TB) are ongoing worlwide. Here, we developed an eco-phylodynamic framework based on discrete phylogenetic approaches informed by M. bovis whole-genome sequence data representing a multi-host transmission system at the livestock-wildlife interface, within a rich ecological landscape in Portugal, to understand transmission processes and translate this knowledge into disease management benefits. We find evidence for the co-circulation of several M. bovis clades, with frequent transmission of the Eu3 lineage among cattle and wildlife populations. Most transition events between different ecological settings took place toward host, climate and land use gradients, underscoring animal TB expansion and a potential corridor of unrecognized importance for M. bovis maintenance. Results stress that animal TB is an established wildlife disease without ecological barriers, showing that control measures in place are insufficient to prevent long-distance transmission and spillover across multi-host communities, demanding new interventions targeting livestock-wildlife interactions.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - José Lourenço
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Gonçalo Themudo
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Botelho
- INIAV, I.P.—National Institute for Agrarian and Veterinary Research, Oeiras, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Silva-Pereira TT, Soler-Camargo NC, Guimarães AMS. Diversification of gene content in the Mycobacterium tuberculosis complex is determined by phylogenetic and ecological signatures. Microbiol Spectr 2024; 12:e0228923. [PMID: 38230932 PMCID: PMC10871547 DOI: 10.1128/spectrum.02289-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
We analyzed the pan-genome and gene content modulation of the most diverse genome data set of the Mycobacterium tuberculosis complex (MTBC) gathered to date. The closed pan-genome of the MTBC was characterized by reduced accessory and strain-specific genomes, compatible with its clonal nature. However, significantly fewer gene families were shared between MTBC genomes as their phylogenetic distance increased. This effect was only observed in inter-species comparisons, not within-species, which suggests that species-specific ecological characteristics are associated with changes in gene content. Gene loss, resulting from genomic deletions and pseudogenization, was found to drive the variation in gene content. This gene erosion differed among MTBC species and lineages, even within M. tuberculosis, where L2 showed more gene loss than L4. We also show that phylogenetic proximity is not always a good proxy for gene content relatedness in the MTBC, as the gene repertoire of Mycobacterium africanum L6 deviated from its expected phylogenetic niche conservatism. Gene disruptions of virulence factors, represented by pseudogene annotations, are mostly not conserved, being poor predictors of MTBC ecotypes. Each MTBC ecotype carries its own accessory genome, likely influenced by distinct selective pressures such as host and geography. It is important to investigate how gene loss confer new adaptive traits to MTBC strains; the detected heterogeneous gene loss poses a significant challenge in elucidating genetic factors responsible for the diverse phenotypes observed in the MTBC. By detailing specific gene losses, our study serves as a resource for researchers studying the MTBC phenotypes and their immune evasion strategies.IMPORTANCEIn this study, we analyzed the gene content of different ecotypes of the Mycobacterium tuberculosis complex (MTBC), the pathogens of tuberculosis. We found that changes in their gene content are associated with their ecological features, such as host preference. Gene loss was identified as the primary driver of these changes, which can vary even among different strains of the same ecotype. Our study also revealed that the gene content relatedness of these bacteria does not always mirror their evolutionary relationships. In addition, some genes of virulence can be variably lost among strains of the same MTBC ecotype, likely helping them to evade the immune system. Overall, our study highlights the importance of understanding how gene loss can lead to new adaptations in these bacteria and how different selective pressures may influence their genetic makeup.
Collapse
Affiliation(s)
- Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Naila Cristina Soler-Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Marcia Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Allen A, Magee R, Devaney R, Ardis T, McNally C, McCormick C, Presho E, Doyle M, Ranasinghe P, Johnston P, Kirke R, Harwood R, Farrell D, Kenny K, Smith J, Gordon S, Ford T, Thompson S, Wright L, Jones K, Prodohl P, Skuce R. Whole-Genome sequencing in routine Mycobacterium bovis epidemiology - scoping the potential. Microb Genom 2024; 10:001185. [PMID: 38354031 PMCID: PMC10926703 DOI: 10.1099/mgen.0.001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Mycobacterium bovis the main agent of bovine tuberculosis (bTB), presents as a series of spatially-localised micro-epidemics across landscapes. Classical molecular typing methods applied to these micro-epidemics, based on genotyping a few variable loci, have significantly improved our understanding of potential epidemiological links between outbreaks. However, they have limited utility owing to low resolution. Conversely, whole-genome sequencing (WGS) provides the highest resolution data available for molecular epidemiology, producing richer outbreak tracing, insights into phylogeography and epidemic evolutionary history. We illustrate these advantages by focusing on a common single lineage of M. bovis (1.140) from Northern Ireland. Specifically, we investigate the spatial sub-structure of 20 years of herd-level multi locus VNTR analysis (MLVA) surveillance data and WGS data from a down sampled subset of isolates of this MLVA type over the same time frame. We mapped 2108 isolate locations of MLVA type 1.140 over the years 2000-2022. We also mapped the locations of 148 contemporary WGS isolates from this lineage, over a similar geographic range, stratifying by single nucleotide polymorphism (SNP) relatedness cut-offs of 15 SNPs. We determined a putative core range for the 1.140 MLVA type and SNP-defined sequence clusters using a 50 % kernel density estimate, using cattle movement data to inform on likely sources of WGS isolates found outside of core ranges. Finally, we applied Bayesian phylogenetic methods to investigate past population history and reproductive number of the 1.140 M. bovis lineage. We demonstrate that WGS SNP-defined clusters exhibit smaller core ranges than the established MLVA type - facilitating superior disease tracing. We also demonstrate the superior functionality of WGS data in determining how this lineage was disseminated across the landscape, likely via cattle movement and to infer how its effective population size and reproductive number has been in flux since its emergence. These initial findings highlight the potential of WGS data for routine monitoring of bTB outbreaks.
Collapse
Affiliation(s)
- Adrian Allen
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Ryan Magee
- Queen’s University Belfast, school of Biological Sciences, UK
| | - Ryan Devaney
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Tara Ardis
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Caitlín McNally
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Carl McCormick
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Eleanor Presho
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Michael Doyle
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Purnika Ranasinghe
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Philip Johnston
- Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, UK
| | - Raymond Kirke
- Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, UK
| | - Roland Harwood
- Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, UK
| | - Damien Farrell
- Central Veterinary Research Laboratory, Kildare, Ireland
- University College Dublin, Dublin, Ireland
| | - Kevin Kenny
- Central Veterinary Research Laboratory, Kildare, Ireland
| | | | | | - Tom Ford
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Suzan Thompson
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Lorraine Wright
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Kerri Jones
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | - Paulo Prodohl
- Queen’s University Belfast, school of Biological Sciences, UK
| | - Robin Skuce
- Agrifood and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| |
Collapse
|
7
|
Pereira AC, Reis AC, Cunha MV. Genomic epidemiology sheds light on the emergence and spread of Mycobacterium bovis Eu2 Clonal Complex in Portugal. Emerg Microbes Infect 2023; 12:2253340. [PMID: 37640285 PMCID: PMC10484045 DOI: 10.1080/22221751.2023.2253340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
ABSTRACTAnimal tuberculosis (TB) remains a serious concern for animal and human health. Mycobacterium bovis circulates in multi-host systems, dominated by the European 2 clonal complex (Eu2) in Iberia. In this work, we use genomic epidemiology to infer the emergence, spread, and spatiotemporal patterns of Eu2 in the official epidemiological risk area of animal TB in Portugal. Phylogenetic analysis of 144 M. bovis whole-genome sequences from cattle, wild boar, and red deer, representing the 2002-2021 period, distinguished three Eu2 clades that evolved independently. The major Eu2 clade underwent phylodynamic inferences to estimate the time and location of outbreaks, host transitions, and spatial diffusion as well. The origin of this Eu2 clade was attributed to the red deer population in the Castelo Branco district, near the border with Spain. Most host transitions were intraspecific (80%), while interspecific transmissions between wildlife species (wild boar-red deer), and between wild boar and cattle, were highly supported. Phylogeographic reconstruction evidenced that most transitions (82%) occur within municipalities, highlighting local transmission corridors.Our study indicates that M. bovis continues to spread at the cattle-wildlife interface within the animal TB hotspot area, possibly driven by the foraging behaviour of wild boar near agricultural lands. Red deer seems to be an important driver of TB within wildlife hosts, while the wild boar links the multi-host wildlife community and livestock. This work highlights the value of combining genomic epidemiology with phylodynamic inference to resolve host jumps and spatial patterns of M. bovis, providing real-time clues about points of intervention.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana C. Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
8
|
Zahran M, El-Shabasy RM, Elrashedy A, Mousa W, Nayel M, Salama A, Zaghawa A, Elsify A. Recent progress in the genotyping of bovine tuberculosis and its rapid diagnosis via nanoparticle-based electrochemical biosensors. RSC Adv 2023; 13:31795-31810. [PMID: 37908649 PMCID: PMC10613952 DOI: 10.1039/d3ra05606f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine tuberculosis (bTB) is considered a worldwide infectious zoonotic disease. Mycobacterium bovis causes bTB disease. It is one of the Mycobacterium tuberculosis complex (MTBC) members. MTBC is a clonal complex of close relatives with approximately 99.95% similarity. M. bovis is a spillover pathogen that can transmit from animals to humans and rarely from humans to animals with contact. Genotyping techniques are important to discriminate and differentiate between MTBC species. Spoligotyping and mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) are widely used but they have some limitations. As an alternative, whole genome sequencing approaches have been utilized due to their high-resolution power. They are employed in typing M. bovis and explain the evolutionary and phylogenetic relationships between isolates. The control of bTB disease has attracted a large amount of attention. Rapid and proper diagnosis is necessary for monitoring the disease as an initial step for its control and treatment. Nanotechnology has a potential impact on the rapid diagnosis and treatment of bTB through the use of nanocarrier and metal nanoparticles (NPs). Special attention has been paid to voltammetric and impedimetric electrochemical strategies as facile, sensitive, and selective methods for the efficient detection of tuberculosis. The efficacy of these sensors is enhanced in the presence of NPs, which act as recognition and/or redox probes. Gold, silver, copper, cobalt, graphene, and magnetic NPs, as well as polypyrrole nanowires and multiwalled carbon nanotubes have been employed for detecting tuberculosis. Overall, NP-based electrochemical sensors represent a promising tool for the diagnosis of bTB.
Collapse
Affiliation(s)
- Moustafa Zahran
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
- Menoufia Company for Water and Wastewater, Holding Company for Water and Wastewater Menoufia 32514 Egypt
| | - Rehan M El-Shabasy
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
- Chemistry Department, The American University in Cairo AUC Avenue New Cairo 11835 Egypt
| | - Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Walid Mousa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Ahmed Elsify
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| |
Collapse
|
9
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. Exploring the role of wastewater-based epidemiology in understanding tuberculosis burdens in Africa. ENVIRONMENTAL RESEARCH 2023; 231:115911. [PMID: 37105295 PMCID: PMC10318412 DOI: 10.1016/j.envres.2023.115911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
Tuberculosis (TB) remains a persistent challenge to public health and presents a substantial menace, especially in developing nations of sub-Saharan Africa. It exerts a considerable strain on healthcare systems in these regions. Effective control requires reliable surveillance, which can be improved by incorporating environmental data alongside clinical data. Molecular advances have led to the development of alternative surveillance methods, such as wastewater-based epidemiology. This studyinvestigated the presence, concentration, and diversity of Mycobacterium tuberculosis complex, the cause of TB, in from six African countries: Ghana, Nigeria, Kenya, Uganda, Cameroon, and South Africa. Samples were collected from wastewater treatment plants. All samples were found to contain Mycobacterium species that have been linked to TB in both humans and animals, including Mycobacterium tuberculosis complex, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium africanum, and Mycobacterium caprae, at varying concentrations. The highest median concentration was found in Ghana, reaching up to 4.7 Log copies/ml for MTBC, 4.6 Log copies/ml for M. bovis, and 3.4 Log copies/ml for M. africanum. The presence of M. africanum outside of West Africa was found in South Africa, Kenya, and Uganda and could indicate the spread of the pathogen. The study underscores the usefulness of wastewater-based epidemiology for tracking TB and shows that even treated wastewater may contain these pathogens, posing potential public health risks.
Collapse
Affiliation(s)
- Hlengiwe N Mtetwa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa; Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D Amoah
- Department of Environmental Science, University of Arizona, Tuscon, USA
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa; Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
10
|
Rossi G, Shih BBJ, Egbe NF, Motta P, Duchatel F, Kelly RF, Ndip L, Sander M, Tanya VN, Lycett SJ, Bronsvoort BM, Muwonge A. Unraveling the epidemiology of Mycobacterium bovis using whole-genome sequencing combined with environmental and demographic data. Front Vet Sci 2023; 10:1086001. [PMID: 37266384 PMCID: PMC10230100 DOI: 10.3389/fvets.2023.1086001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/14/2023] [Indexed: 06/03/2023] Open
Abstract
When studying the dynamics of a pathogen in a host population, one crucial question is whether it transitioned from an epidemic (i.e., the pathogen population and the number of infected hosts are increasing) to an endemic stable state (i.e., the pathogen population reached an equilibrium). For slow-growing and slow-evolving clonal pathogens such as Mycobacterium bovis, the causative agent of bovine (or animal) and zoonotic tuberculosis, it can be challenging to discriminate between these two states. This is a result of the combination of suboptimal detection tests so that the actual extent of the pathogen prevalence is often unknown, as well as of the low genetic diversity, which can hide the temporal signal provided by the accumulation of mutations in the bacterial DNA. In recent years, the increased availability, efficiency, and reliability of genomic reading techniques, such as whole-genome sequencing (WGS), have significantly increased the amount of information we can use to study infectious diseases, and therefore, it has improved the precision of epidemiological inferences for pathogens such as M. bovis. In this study, we use WGS to gain insights into the epidemiology of M. bovis in Cameroon, a developing country where the pathogen has been reported for decades. A total of 91 high-quality sequences were obtained from tissue samples collected in four abattoirs, 64 of which were with complete metadata. We combined these with environmental, demographic, ecological, and cattle movement data to generate inferences using phylodynamic models. Our findings suggest M. bovis in Cameroon is slowly expanding its epidemiological range over time; therefore, endemic stability is unlikely. This suggests that animal movement plays an important role in transmission. The simultaneous prevalence of M. bovis in co-located cattle and humans highlights the risk of such transmission being zoonotic. Therefore, using genomic tools as part of surveillance would vastly improve our understanding of disease ecology and control strategies.
Collapse
Affiliation(s)
- Gianluigi Rossi
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
- Centre of Expertise on Animal Diseases Outbreaks, EPIC, Edinburgh, United Kingdom
| | - Barbara Bo-Ju Shih
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
| | - Nkongho Franklyn Egbe
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | - Paolo Motta
- The Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand
| | - Florian Duchatel
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
| | - Robert Francis Kelly
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Lucy Ndip
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | | | | | - Samantha J. Lycett
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
- Centre of Expertise on Animal Diseases Outbreaks, EPIC, Edinburgh, United Kingdom
| | - Barend Mark Bronsvoort
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
- Centre of Expertise on Animal Diseases Outbreaks, EPIC, Edinburgh, United Kingdom
| | - Adrian Muwonge
- The Roslin Institute, R(D)SVS, University of Edinburgh – Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
11
|
Charles C, Conde C, Vorimore F, Cochard T, Michelet L, Boschiroli ML, Biet F. Features of Mycobacterium bovis Complete Genomes Belonging to 5 Different Lineages. Microorganisms 2023; 11:177. [PMID: 36677470 PMCID: PMC9865570 DOI: 10.3390/microorganisms11010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Mammalian tuberculosis (TB) is a zoonotic disease mainly due to Mycobacterium bovis (M. bovis). A current challenge for its eradication is understanding its transmission within multi-host systems. Improvements in long-read sequencing technologies have made it possible to obtain complete bacterial genomes that provide a comprehensive view of species-specific genomic features. In the context of TB, new genomic references based on complete genomes genetically close to field strains are also essential to perform precise field molecular epidemiological studies. A total of 10 M. bovis strains representing each genetic lineage identified in France and in other countries were selected for performing complete assembly of their genomes. Pangenome analysis revealed a "closed" pangenome composed of 3900 core genes and only 96 accessory genes. Whole genomes-based alignment using progressive Mauve showed remarkable conservation of the genomic synteny except that the genomes have a variable number of copies of IS6110. Characteristic genomic traits of each lineage were identified through the discovery of specific indels. Altogether, these results provide new genetic features that improve the description of M. bovis lineages. The availability of new complete representative genomes of M. bovis will be useful to epidemiological studies and better understand the transmission of this clonal-evolving pathogen.
Collapse
Affiliation(s)
- Ciriac Charles
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Cyril Conde
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Fabien Vorimore
- Laboratory for Food Safety, Unit of ‘Pathogenic E. coli’ (COLiPATH) & Genomics Platform ‘IdentyPath’ (IDPA), ANSES, 94701 Maisons-Alfort, France
| | - Thierry Cochard
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Lorraine Michelet
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
| | - Maria Laura Boschiroli
- Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CEDEX, 94701 Maisons-Alfort, France
| | - Franck Biet
- Infectiologie et Santé Publique (ISP), Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, UMR 1282, 37380 Nouzilly, France
| |
Collapse
|
12
|
Pépin J, Fox A, LeBlanc L, De Wals P, Rousseau MC. In the footsteps of Albert Calmette: an ecological study of TB, leprosy and potential exposure to wild-type Mycobacterium bovis. Trans R Soc Trop Med Hyg 2022; 116:1112-1122. [PMID: 35460554 DOI: 10.1093/trstmh/trac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND One hundred years ago, Albert Calmette developed an avirulent strain of Mycobacterium bovis, but there is no evidence that his BCG strain was more immunogenic than wild-type M. bovis. Geographic variations in BCG efficacy remain ill-understood. We hypothesized that exposure to M. bovis through unpasteurized milk might protect against Mycobacterium tuberculosis and Mycobacterium leprae. METHODS After excluding high-income countries (with universal milk pasteurization) and microstates, an ecological study comprising 113 countries was conducted. National data were obtained from United Nations agencies and international organizations about milk production per capita (1980-1999) as a proxy for exposure to wild-type M. bovis, TB (2000-2019) and leprosy (2005-2019) incidence, HIV prevalence (2000-2019), human development index (2010), global hunger index (2010), neonatal BCG coverage (1980-1999), urbanization (2000) and temperature (1990-2020). Multiple linear regression analyses were performed using log-transformed variables. RESULTS For TB, the association differed by region. An inverse association with milk production was seen in regions outside, but not within, sub-Saharan Africa, after adjustment for confounders. The incidence of leprosy was inversely associated with milk production when combining all countries, but the association was stronger in sub-Saharan Africa. CONCLUSIONS Exposure to wild-type M. bovis through unpasteurized milk may provide cross-protection against M. tuberculosis and M. leprae and contribute to geographic disparities in BCG efficacy. This needs to be confirmed by individual-level studies.
Collapse
Affiliation(s)
- Jacques Pépin
- Department of microbiology and infectious diseases, Université de Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Aicha Fox
- Department of microbiology and infectious diseases, Université de Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Louiselle LeBlanc
- Department of microbiology and infectious diseases, Université de Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Philippe De Wals
- Department of social and preventive medicine, Université Laval, 2725 chemin Ste-Foy, Québec, Québec, G1V 4G5, Canada
| | - Marie-Claude Rousseau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, 531 boulevard des Prairies, Laval, Québec, H7V 1B7 Canada
| |
Collapse
|
13
|
Soler-Camargo NC, Silva-Pereira TT, Zimpel CK, Camacho MF, Zelanis A, Aono AH, Patané JS, Dos Santos AP, Guimarães AMS. The rate and role of pseudogenes of the Mycobacterium tuberculosis complex. Microb Genom 2022; 8. [PMID: 36250787 DOI: 10.1099/mgen.0.000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whole-genome sequence analyses have significantly contributed to the understanding of virulence and evolution of the Mycobacterium tuberculosis complex (MTBC), the causative pathogens of tuberculosis. Most MTBC evolutionary studies are focused on single nucleotide polymorphisms and deletions, but rare studies have evaluated gene content, whereas none has comprehensively evaluated pseudogenes. Accordingly, we describe an extensive study focused on quantifying and predicting possible functions of MTBC and Mycobacterium canettii pseudogenes. Using NCBI's PGAP-detected pseudogenes, we analysed 25 837 pseudogenes from 158 MTBC and M. canetii strains and combined transcriptomics and proteomics of M. tuberculosis H37Rv to gain insights about pseudogenes' expression. Our results indicate significant variability concerning rate and conservancy of in silico predicted pseudogenes among different ecotypes and lineages of tuberculous mycobacteria and pseudogenization of important virulence factors and genes of the metabolism and antimicrobial resistance/tolerance. We show that in silico predicted pseudogenes contribute considerably to MTBC genetic diversity at the population level. Moreover, the transcription machinery of M. tuberculosis can fully transcribe most pseudogenes, indicating intact promoters and recent pseudogene evolutionary emergence. Proteomics of M. tuberculosis and close evaluation of mutational lesions driving pseudogenization suggest that few in silico predicted pseudogenes are likely capable of neofunctionalization, nonsense mutation reversal, or phase variation, contradicting the classical definition of pseudogenes. Such findings indicate that genome annotation should be accompanied by proteomics and protein function assays to improve its accuracy. While indels and insertion sequences are the main drivers of the observed mutational lesions in these species, population bottlenecks and genetic drift are likely the evolutionary processes acting on pseudogenes' emergence over time. Our findings unveil a new perspective on MTBC's evolution and genetic diversity.
Collapse
Affiliation(s)
- Naila Cristina Soler-Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Maurício F Camacho
- Functional Proteomics Laboratory, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Alexandre H Aono
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, Brazil.,Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | | | | | - Ana Marcia Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University
| |
Collapse
|
14
|
Ncube P, Bagheri B, Goosen WJ, Miller MA, Sampson SL. Evidence, Challenges, and Knowledge Gaps Regarding Latent Tuberculosis in Animals. Microorganisms 2022; 10:1845. [PMID: 36144447 PMCID: PMC9503773 DOI: 10.3390/microorganisms10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium bovis and other Mycobacterium tuberculosis complex (MTBC) pathogens that cause domestic animal and wildlife tuberculosis have received considerably less attention than M. tuberculosis, the primary cause of human tuberculosis (TB). Human TB studies have shown that different stages of infection can exist, driven by host-pathogen interactions. This results in the emergence of heterogeneous subpopulations of mycobacteria in different phenotypic states, which range from actively replicating (AR) cells to viable but slowly or non-replicating (VBNR), viable but non-culturable (VBNC), and dormant mycobacteria. The VBNR, VBNC, and dormant subpopulations are believed to underlie latent tuberculosis (LTB) in humans; however, it is unclear if a similar phenomenon could be happening in animals. This review discusses the evidence, challenges, and knowledge gaps regarding LTB in animals, and possible host-pathogen differences in the MTBC strains M. tuberculosis and M. bovis during infection. We further consider models that might be adapted from human TB research to investigate how the different phenotypic states of bacteria could influence TB stages in animals. In addition, we explore potential host biomarkers and mycobacterial changes in the DosR regulon, transcriptional sigma factors, and resuscitation-promoting factors that may influence the development of LTB.
Collapse
Affiliation(s)
| | | | | | | | - Samantha Leigh Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, Cape Town 7505, South Africa
| |
Collapse
|
15
|
Legall N, Salvador LCM. Selective sweep sites and SNP dense regions differentiate Mycobacterium bovis isolates across scales. Front Microbiol 2022; 13:787856. [PMID: 36160199 PMCID: PMC9489834 DOI: 10.3389/fmicb.2022.787856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium bovis, a bacterial zoonotic pathogen responsible for the economically and agriculturally important livestock disease bovine tuberculosis (bTB), infects a broad mammalian host range worldwide. This characteristic has led to bidirectional transmission events between livestock and wildlife species as well as the formation of wildlife reservoirs, impacting the success of bTB control measures. Next Generation Sequencing (NGS) has transformed our ability to understand disease transmission events by tracking variant sites, however the genomic signatures related to host adaptation following spillover, alongside the role of other genomic factors in the M. bovis transmission process are understudied problems. We analyzed publicly available M. bovis datasets collected from 700 hosts across three countries with bTB endemic regions (United Kingdom, United States, and New Zealand) to investigate if genomic regions with high SNP density and/or selective sweep sites play a role in Mycobacterium bovis adaptation to new environments (e.g., at the host-species, geographical, and/or sub-population levels). A simulated M. bovis alignment was created to generate null distributions for defining genomic regions with high SNP counts and regions with selective sweeps evidence. Random Forest (RF) models were used to investigate evolutionary metrics within the genomic regions of interest to determine which genomic processes were the best for classifying M. bovis across ecological scales. We identified in the M. bovis genomes 14 and 132 high SNP density and selective sweep regions, respectively. Selective sweep regions were ranked as the most important in classifying M. bovis across the different scales in all RF models. SNP dense regions were found to have high importance in the badger and cattle specific RF models in classifying badger derived isolates from livestock derived ones. Additionally, the genes detected within these genomic regions harbor various pathogenic functions such as virulence and immunogenicity, membrane structure, host survival, and mycobactin production. The results of this study demonstrate how comparative genomics alongside machine learning approaches are useful to investigate further the nature of M. bovis host-pathogen interactions.
Collapse
Affiliation(s)
- Noah Legall
- Interdisciplinary Disease Ecology Across Scales Research Traineeship Program, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Liliana C. M. Salvador
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
16
|
Romano GE, Silva-Pereira TT, de Melo FM, Sisco MC, Banari AC, Zimpel CK, Soler-Camargo NC, Guimarães AMDS. Unraveling the metabolism of Mycobacterium caprae using comparative genomics. Tuberculosis (Edinb) 2022; 136:102254. [PMID: 36126496 DOI: 10.1016/j.tube.2022.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/01/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022]
Abstract
In our laboratory, Mycobacterium caprae has poor growth in standard medium (SM) 7H9-OADC supplemented with pyruvate and Tween-80. Our objectives were to identify mutations affecting M. caprae metabolism and use this information to design a culture medium to improve its growth. We selected 77 M. caprae genomes and sequenced M. caprae NLA000201913 used in our experiments. Mutations present in >95% of the strains compared to Mycobacterium tuberculosis H37Rv were analyzed in silico for their deleterious effects on proteins of metabolic pathways. Apart from the known defect in the pyruvate kinase, M. caprae has important lesions in enzymes of the TCA cycle, methylmalonyl cycle, B12 metabolism, and electron-transport chain. We provide evidence of enzymatic redundancy elimination and epistatic mutations, and possible production of toxic metabolites hindering M. caprae growth in vitro. A newly designed SM supplemented with l-glutamate allowed faster growth and increased final microbial mass of M. caprae. However, possible accumulation of metabolic waste-products and/or nutritional limitations halted M. caprae growth prior to a M. tuberculosis-like stationary phase. Our findings suggest that M. caprae relies on GABA and/or glyoxylate shunts for in vitro growth in routine media. The newly developed medium will improve experiments with this bacterium by allowing faster growth in vitro.
Collapse
Affiliation(s)
- Giovanni Emiddio Romano
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Filipe Menegatti de Melo
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Maria Carolina Sisco
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Alexandre Campos Banari
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, 87 Prof Dr Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-270, Brazil.
| | - Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, 87 Prof Dr Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-270, Brazil.
| | - Naila Cristina Soler-Camargo
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, 87 Prof Dr Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-270, Brazil.
| | - Ana Marcia de Sá Guimarães
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University. 625 Harrison Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
17
|
Acquah SEK, Asare P, Danso EK, Tetteh P, Tetteh AY, Boateng D, Osei-Wusu S, Afum T, Ayamdooh YI, Akugre EA, Samad OA, Quaye L, Obiri-Danso K, Kock R, Asante-Poku A, Yeboah-Manu D. Molecular epidemiology of bovine tuberculosis in Northern Ghana identifies several uncharacterized bovine spoligotypes and suggests possible zoonotic transmission. PLoS Negl Trop Dis 2022; 16:e0010649. [PMID: 35951638 PMCID: PMC9398027 DOI: 10.1371/journal.pntd.0010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/23/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Objective
We conducted an abattoir-based cross-sectional study in the five administrative regions of Northern Ghana to determine the distribution of bovine tuberculosis (BTB) among slaughtered carcasses and identify the possibility of zoonotic transmission.
Methods
Direct smear microscopy was done on 438 tuberculosis-like lesions from selected cattle organs and cultured on Lowenstein-Jensen media. Acid-fast bacilli (AFB) isolates were confirmed as members of the Mycobacterium tuberculosis complex (MTBC) by PCR amplification of IS6110 and rpoß. Characterization and assignment into MTBC lineage and sub-lineage were done by spoligotyping, with the aid of the SITVIT2, miruvntrplus and mbovis.org databases. Spoligotype data was compared to that of clinical M. bovis isolates from the same regions to identify similarities.
Results
A total of 319/438 (72.8%) lesion homogenates were smear positive out of which, 84.6% (270/319) had microscopic grade of at least 1+ for AFB. Two hundred and sixty-five samples (265/438; 60.5%) were culture positive, of which 212 (80.0%) were MTBC. Approximately 16.7% (34/203) of the isolates with correctly defined spoligotypes were negative for IS6110 PCR but were confirmed by rpoß. Spoligotyping characterized 203 isolates as M. bovis (198, 97.5%), M. caprae (3, 1.5%), M. tuberculosis (Mtbss) lineage (L) 4 Cameroon sub-lineage, (1, 0.5%), and M. africanum (Maf) L6 (1, 0.5%). A total of 53 unique spoligotype patterns were identified across the five administrative regions (33 and 28 were identified as orphan respectively by the SITVIT2 and mbovis.org databases), with the most dominant spoligotype being SIT1037/ SB0944 (77/203, 37.93%). Analysis of the bovine and human M. bovis isolates showed 75% (3/4) human M. bovis isolates sharing the same spoligotype pattern with the bovine isolates.
Conclusion
Our study identified that approximately 29% of M. bovis strains causing BTB in Northern Ghana are caused by uncharacterized spoligotypes. Our findings suggest possible zoonotic transmission and highlight the need for BTB disease control in Northern Ghana.
Collapse
Affiliation(s)
- Samuel Ekuban Kobina Acquah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Clinical Microbiology, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana
- Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- * E-mail: (PA); (DYM)
| | - Emelia Konadu Danso
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Phillip Tetteh
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Amanda Yaa Tetteh
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Daniel Boateng
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Theophilus Afum
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Eric Agongo Akugre
- Veterinary Services Directorate, Ministry of Food and Agriculture, Bolgatanga, Ghana
| | - Omar Abdul Samad
- Veterinary Services Directorate, Ministry of Food and Agriculture, Wa, Ghana
| | - Lawrence Quaye
- Department of Biomedical Laboratory Sciences, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Richard Kock
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- * E-mail: (PA); (DYM)
| |
Collapse
|
18
|
Paliwal D, Thom M, Hussein A, Ravishankar D, Wilkes A, Charleston B, Jones IM. Towards Reverse Vaccinology for Bovine TB: High Throughput Expression of Full Length Recombinant Mycobacterium bovis Proteins. Front Mol Biosci 2022; 9:889667. [PMID: 36032666 PMCID: PMC9402895 DOI: 10.3389/fmolb.2022.889667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis caused by Mycobacterium bovis, is a significant global pathogen causing economic loss in livestock and zoonotic TB in man. Several vaccine approaches are in development including reverse vaccinology which uses an unbiased approach to select open reading frames (ORF) of potential vaccine candidates, produce them as recombinant proteins and assesses their immunogenicity by direct immunization. To provide feasibility data for this approach we have cloned and expressed 123 ORFs from the M. bovis genome, using a mixture of E. coli and insect cell expression. We used a concatenated open reading frames design to reduce the number of clones required and single chain fusion proteins for protein pairs known to interact, such as the members of the PPE-PE family. Over 60% of clones showed soluble expression in one or the other host and most allowed rapid purification of the tagged bTB protein from the host cell background. The catalogue of recombinant proteins represents a resource that may be suitable for test immunisations in the development of an effective bTB vaccine.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Areej Hussein
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Alex Wilkes
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- *Correspondence: Ian M. Jones,
| |
Collapse
|
19
|
Dong Y, Feng Y, Ou X, Liu C, Fan W, Zhao Y, Hu Y, Zhou X. Genomic analysis of diversity, biogeography, and drug resistance in Mycobacterium bovis. Transbound Emerg Dis 2022; 69:e2769-e2778. [PMID: 35695307 DOI: 10.1111/tbed.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Mycobacterium bovis is the cause of bovine tuberculosis, and it can also cause disease in humans, with symptoms similar to those caused by Mycobacterium tuberculosis. However, our understanding of its genomic diversity, biogeography, and drug resistance remains incomplete. We performed a comparative and phylogenetic analysis of 3,228 M. bovis genomes from 24 countries. Following drug susceptibility testing, we applied a bacterial genome-wide association study to capture associations between genomic variation and drug resistance in 74 newly isolated strains from China. The data show that the cattle-adapted M. bovis were divided into six lineages with a strong phylogeographical population structure. Lineage 1 and Lineage 6 are the most widespread globally, while others show a strong geographical restriction. 17.39% of M. bovis isolates were resistant to at least one drug in China. Furthermore, we identify genomic variations associated with an increased risk of resistance acquisition. This study furthers our knowledge of M. bovis diversity, biogeography, and drug resistance and will facilitate more deeply informed genomic tracking and surveillance to minimize its threat to human health, as a cause of zoonotic tuberculosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuhui Dong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xichao Ou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Chunfa Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Weixing Fan
- National Reference Laboroatory for Animal Tuberculosis, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
20
|
Valcheva V, Perea C, Savova-Lalkovska T, Dimitrova A, Radulski L, Mokrousov I, Marinov K, Najdenski H, Bonovska M. Mycobacterium bovis and M. caprae in Bulgaria: insight into transmission and phylogeography gained through whole-genome sequencing. BMC Vet Res 2022; 18:148. [PMID: 35461250 PMCID: PMC9034630 DOI: 10.1186/s12917-022-03249-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND This study aimed to characterize recent Mycobacterium bovis/M. caprae isolates from Bulgaria by whole-genome sequencing (WGS) to gain a first insight into their molecular diversity, transmission, and position within the global phylogeography of this important zoonotic species. RESULTS The isolates were obtained from cattle in diverse locations of Bulgaria in 2015-2020 and were identified by microbiological and PCR assays. WGS data were used for phylogenetic analysis that also included M. bovis global dataset. Thirty-seven M. bovis/caprae isolates from Bulgaria were studied and 34 of them were SNP genotyped. The isolates were subdivided into 3 major phylogenetic groups. Type Mbovis-13 (Eu2 complex [western Europe and northern Africa]) included one isolate. Mbovis-37 type included 5 isolates outside of known clonal complexes. The Bulgarian M. caprae isolates formed a sub-group within the Mcaprae-27B cluster which also included 22 M. caprae isolates from Poland, Spain, Germany, and the Republic of Congo. The Bulgarian M. caprae isolates share their latest common ancestors with Spanish isolates. The Mbovis-37 group shares a distant common ancestor (pairwise distance 22-29 SNPs) with an isolate from Poland but was very distant (> 200 SNPs) from the rest of the tree. The Mbovis-13 group shares a common ancestor with two human isolates from Germany. Phylogeographically, both M. bovis clades had limited circulation in northeastern Bulgaria while the majority of the studied isolates (M. caprae) were from central and western provinces. A phylogenetic network-based analysis demonstrated that 11 Bulgarian isolates were separated by 1 to 6 SNPs within four clusters, mostly forming pairs of isolates. CONCLUSION The obtained WGS analysis positioned the Bulgarian isolates within the global phylogeography of M. bovis/M. caprae. Hypothetically, the observed phylogenetic diversity may not have resulted from livestock trade routes, but instead may reflect the deeply rooted M. bovis/M. caprae phylogeography of Europe. A high level of genetic divergence between the majority of the studied isolates suggests limited active transmission of bTB in Bulgaria during the survey period. At the same time, a possibility of the endemic presence of circulating bTB strains in the form of the latent persistent disease cannot be ruled out.
Collapse
Affiliation(s)
- Violeta Valcheva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria.
| | - Claudia Perea
- National Veterinary Services Laboratories, United States Department of Agriculture, Ames, IA, USA
| | - Tanya Savova-Lalkovska
- National Diagnostic and Research Veterinary Medical Institute "Prof. Dr. G. Pavlov", Sofia, Bulgaria
| | - Albena Dimitrova
- National Diagnostic and Research Veterinary Medical Institute "Prof. Dr. G. Pavlov", Sofia, Bulgaria
| | | | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | | | - Hristo Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria
| | - Magdalena Bonovska
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev str., 1113, Sofia, Bulgaria
| |
Collapse
|
21
|
Couvin D, Cervera-Marzal I, David A, Reynaud Y, Rastogi N. SITVITBovis—a publicly available database and mapping tool to get an improved overview of animal and human cases caused by Mycobacterium bovis. Database (Oxford) 2022; 2022:6506437. [PMID: 35028657 PMCID: PMC8962452 DOI: 10.1093/database/baab081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022]
Abstract
Limited data are available for bovine tuberculosis and the infections it can cause in humans and other mammals. We therefore constructed a publicly accessible SITVITBovis database that incorporates genotyping and epidemiological data on Mycobacterium bovis. It also includes limited data on Mycobacterium caprae (previously synonymous with the name M. bovis subsp. Caprae) that can infect both animals and humans. SITVITBovis incorporates data on 25,741 isolates corresponding to 60 countries of origin (75 countries of isolation). It reports a total of 1000 spoligotype patterns: 537 spoligotype international types (SITs, containing 25 278 clinical isolates) and 463 orphan patterns, allowing a wide overview of the geographic distribution of various phylogenetical sublineages (BOV_1, BOV_2, BOV_3 and BOV_4-CAPRAE). The SIT identifiers of the SITVITBovis were compared to the SB numbers of the Mbovis.org database to facilitate crosscheck among databases. Note that SITVITBovis also contains limited information on mycobacterial interspersed repetitive units-variable number of tandem repeats when available. Significant differences were observed when comparing age/gender of human isolates as well as various hosts. The database includes information on the regions where a strain was isolated as well as hosts involved, making it possible to see geographic trends. SITVITBovis is publicly accessible at: http://www.pasteur-guadeloupe.fr:8081/SITVIT_Bovis. Finally, a future second version is currently in progress to allow query of associated whole-genome sequencing data. Database URLhttp://www.pasteur-guadeloupe.fr:8081/SITVIT_Bovis
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory–TB and Mycobacteria Unit, Institut Pasteur de Guadeloupe , Abymes 97183, Guadeloupe, France
| | - Iñaki Cervera-Marzal
- WHO Supranational TB Reference Laboratory–TB and Mycobacteria Unit, Institut Pasteur de Guadeloupe , Abymes 97183, Guadeloupe, France
| | - Audrey David
- WHO Supranational TB Reference Laboratory–TB and Mycobacteria Unit, Institut Pasteur de Guadeloupe , Abymes 97183, Guadeloupe, France
| | - Yann Reynaud
- WHO Supranational TB Reference Laboratory–TB and Mycobacteria Unit, Institut Pasteur de Guadeloupe , Abymes 97183, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory–TB and Mycobacteria Unit, Institut Pasteur de Guadeloupe , Abymes 97183, Guadeloupe, France
| |
Collapse
|
22
|
Lorente-Leal V, Farrell D, Romero B, Álvarez J, de Juan L, Gordon SV. Performance and Agreement Between WGS Variant Calling Pipelines Used for Bovine Tuberculosis Control: Toward International Standardization. Front Vet Sci 2022; 8:780018. [PMID: 34970617 PMCID: PMC8712436 DOI: 10.3389/fvets.2021.780018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
Whole genome sequencing (WGS) and allied variant calling pipelines are a valuable tool for the control and eradication of infectious diseases, since they allow the assessment of the genetic relatedness of strains of animal pathogens. In the context of the control of tuberculosis (TB) in livestock, mainly caused by Mycobacterium bovis, these tools offer a high-resolution alternative to traditional molecular methods in the study of herd breakdown events. However, despite the increased use and efforts in the standardization of WGS methods in human tuberculosis around the world, the application of these WGS-enabled approaches to control TB in livestock is still in early development. Our study pursued an initial evaluation of the performance and agreement of four publicly available pipelines for the analysis of M. bovis WGS data (vSNP, SNiPgenie, BovTB, and MTBseq) on a set of simulated Illumina reads generated from a real-world setting with high TB prevalence in cattle and wildlife in the Republic of Ireland. The overall performance of the evaluated pipelines was high, with recall and precision rates above 99% once repeat-rich and problematic regions were removed from the analyses. In addition, when the same filters were applied, distances between inferred phylogenetic trees were similar and pairwise comparison revealed that most of the differences were due to the positioning of polytomies. Hence, under the studied conditions, all pipelines offer similar performance for variant calling to underpin real-world studies of M. bovis transmission dynamics.
Collapse
Affiliation(s)
- Víctor Lorente-Leal
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Beatriz Romero
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Álvarez
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Stiens J, Arnvig KB, Kendall SL, Nobeli I. Challenges in defining the functional, non-coding, expressed genome of members of the Mycobacterium tuberculosis complex. Mol Microbiol 2021; 117:20-31. [PMID: 34894010 DOI: 10.1111/mmi.14862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
A definitive transcriptome atlas for the non-coding expressed elements of the members of the Mycobacterium tuberculosis complex (MTBC) does not exist. Incomplete lists of non-coding transcripts can be obtained for some of the reference genomes (e.g., M. tuberculosis H37Rv) but to what extent these transcripts have homologues in closely related species or even strains is not clear. This has implications for the analysis of transcriptomic data; non-coding parts of the transcriptome are often ignored in the absence of formal, reliable annotation. Here, we review the state of our knowledge of non-coding RNAs in pathogenic mycobacteria, emphasizing the disparities in the information included in commonly used databases. We then proceed to review ways of combining computational solutions for predicting the non-coding transcriptome with experiments that can help refine and confirm these predictions.
Collapse
Affiliation(s)
- Jennifer Stiens
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, UK
| | - Kristine B Arnvig
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Sharon L Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
24
|
Zwyer M, Çavusoglu C, Ghielmetti G, Pacciarini ML, Scaltriti E, Van Soolingen D, Dötsch A, Reinhard M, Gagneux S, Brites D. A new nomenclature for the livestock-associated Mycobacterium tuberculosis complex based on phylogenomics. OPEN RESEARCH EUROPE 2021; 1:100. [PMID: 37645186 PMCID: PMC10445919 DOI: 10.12688/openreseurope.14029.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 08/31/2023]
Abstract
Background: The bacteria that compose the Mycobacterium tuberculosis complex (MTBC) cause tuberculosis (TB) in humans and in different animals, including livestock. Much progress has been made in understanding the population structure of the human-adapted members of the MTBC by combining phylogenetics with genomics. Accompanying the discovery of new genetic diversity, a body of operational nomenclature has evolved to assist comparative and molecular epidemiological studies of human TB. By contrast, for the livestock-associated MTBC members, Mycobacterium bovis, M. caprae and M. orygis, there has been a lack of comprehensive nomenclature to accommodate new genetic diversity uncovered by emerging phylogenomic studies. We propose to fill this gap by putting forward a new nomenclature covering the main phylogenetic groups within M. bovis, M. caprae and M. orygis. Methods: We gathered a total of 8,736 whole-genome sequences (WGS) from public sources and 39 newly sequenced strains, and selected a subset of 829 WGS, representative of the worldwide diversity of M. bovis, M. caprae and M. orygis. We used phylogenetics and genetic diversity patterns inferred from WGS to define groups. Results: We propose to divide M. bovis, M. caprae and M. orygis in three main phylogenetic lineages, which we named La1, La2 and La3, respectively. Within La1, we identified several monophyletic groups, which we propose to classify into eight sublineages (La1.1-La1.8). These sublineages differed in geographic distribution, with some being geographically restricted and others globally widespread, suggesting different expansion abilities. To ease molecular characterization of these MTBC groups by the community, we provide phylogenetically informed, single nucleotide polymorphisms that can be used as barcodes for genotyping. These markers were implemented in KvarQ and TB-Profiler, which are platform-independent, open-source tools. Conclusions: Our results contribute to an improved classification of the genetic diversity within the livestock-associated MTBC, which will benefit future molecular epidemiological and evolutionary studies.
Collapse
Affiliation(s)
- Michaela Zwyer
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Cengiz Çavusoglu
- Department of Medical Microbiology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Giovanni Ghielmetti
- Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, University of Zurich, Zurich, Switzerland
| | - Maria Lodovica Pacciarini
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Dick Van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands Antilles
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anna Dötsch
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Miriam Reinhard
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Sebastien Gagneux
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Daniela Brites
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| |
Collapse
|
25
|
Abstract
Animal tuberculosis (TB) is an emergent disease caused by Mycobacterium bovis, one of the animal-adapted ecotypes of the Mycobacterium tuberculosis complex (MTC). In this work, whole-genome comparative analyses of 70 M. bovis were performed to gain insights into the pan-genome architecture. The comparison across M. bovis predicted genome composition enabled clustering into the core- and accessory-genome components, with 2736 CDS for the former, while the accessory moiety included 3897 CDS, of which 2656 are restricted to one/two genomes only. These analyses predicted an open pan-genome architecture, with an average of 32 CDS added by each genome and show the diversification of discrete M. bovis subpopulations supported by both core- and accessory-genome components. The functional annotation of the pan-genome classified each CDS into one or several COG (Clusters of Orthologous Groups) categories, revealing ‘transcription’ (total average CDSs, n=258), ‘lipid metabolism and transport’ (n=242), ‘energy production and conversion’ (n=214) and ‘unknown function’ (n=876) as the most represented. The closer analysis of polymorphisms in virulence-related genes in a restrict group of M. bovis from a multi-host system enabled the identification of clade-monomorphic non-synonymous SNPs, illustrating clade-specific virulence landscapes and correlating with disease severity. This first comparative pan-genome study of a diverse collection of M. bovis encompassing all clonal complexes indicates a high percentage of accessory genes and denotes an open, dynamic non-conservative pan-genome structure, with high evolutionary potential, defying the canons of MTC biology. Furthermore, it shows that M. bovis can shape its virulence repertoire, either by acquisition and loss of genes or by SNP-based diversification, likely towards host immune evasion, adaptation and persistence.
Collapse
Affiliation(s)
- Ana C Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
26
|
Lima DAR, Zimpel CK, Patané JS, Silva-Pereira TT, Etges RN, Rodrigues RA, Dávila AMR, Ikuta CY, Ferreira Neto JS, Guimarães AMS, Araújo FR. Genomic analysis of an outbreak of bovine tuberculosis in a man-made multi-host species system: A call for action on wildlife in Brazil. Transbound Emerg Dis 2021; 69:e580-e591. [PMID: 34633756 DOI: 10.1111/tbed.14343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
We report on a 15-year-long outbreak of bovine tuberculosis (bTB) in wildlife from a Brazilian safari park. A timeline of diagnostic events and whole-genome sequencing (WGS) of 21 Mycobacterium bovis isolates from deer and llamas were analyzed. Accordingly, from 2003 to 2018, at least 16 animals, from eight species, died due to TB, which is likely an underestimated number. In three occasions since 2013, the deer presented positive tuberculin tests, leading to the park closure and culling of all deer. WGS indicated that multiple M. bovis strains were circulating, with at least three founding introductions since the park inauguration in 1977. Using a previously sequenced dataset of 71 M. bovis genomes from cattle, we found no recent transmission events between nearby farms and the park based on WGS. Lastly, by discussing socio-economic and environmental factors escaping current regulatory gaps that were determinant of this outbreak, we pledge for the development of a plan to report and control bTB in wildlife in Brazil.
Collapse
Affiliation(s)
- Daiane A R Lima
- Department of Veterinary Medicine, Graduate Program in Veterinary Sciences, School of Veterinary Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Cristina K Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - José S Patané
- Center for Bioinformatics and Computational Biology, Butantan Institute, São Paulo, São Paulo, Brazil
| | - Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Rodrigo N Etges
- Livestock and Rural Development, Secretary of Agriculture, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rudielle A Rodrigues
- Department of Veterinary Medicine, Graduate Program in Veterinary Sciences, School of Veterinary Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Alberto M R Dávila
- Computational and Systems Biology Laboratory and Graduate Program on Biodiversity and Health, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Cássia Y Ikuta
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - José S Ferreira Neto
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ana Marcia S Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Flábio R Araújo
- Embrapa Beef Cattle, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
27
|
Reis AC, Cunha MV. Genome-wide estimation of recombination, mutation and positive selection enlightens diversification drivers of Mycobacterium bovis. Sci Rep 2021; 11:18789. [PMID: 34552144 PMCID: PMC8458382 DOI: 10.1038/s41598-021-98226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Genome sequencing has reinvigorated the infectious disease research field, shedding light on disease epidemiology, pathogenesis, host-pathogen interactions and also evolutionary processes exerted upon pathogens. Mycobacterium tuberculosis complex (MTBC), enclosing M. bovis as one of its animal-adapted members causing tuberculosis (TB) in terrestrial mammals, is a paradigmatic model of bacterial evolution. As other MTBC members, M. bovis is postulated as a strictly clonal, slowly evolving pathogen, with apparently no signs of recombination or horizontal gene transfer. In this work, we applied comparative genomics to a whole genome sequence (WGS) dataset composed by 70 M. bovis from different lineages (European and African) to gain insights into the evolutionary forces that shape genetic diversification in M. bovis. Three distinct approaches were used to estimate signs of recombination. Globally, a small number of recombinant events was identified and confirmed by two independent methods with solid support. Still, recombination reveals a weaker effect on M. bovis diversity compared with mutation (overall r/m = 0.037). The differential r/m average values obtained across the clonal complexes of M. bovis in our dataset are consistent with the general notion that the extent of recombination may vary widely among lineages assigned to the same taxonomical species. Based on this work, recombination in M. bovis cannot be excluded and should thus be a topic of further effort in future comparative genomics studies for which WGS of large datasets from different epidemiological scenarios across the world is crucial. A smaller M. bovis dataset (n = 42) from a multi-host TB endemic scenario was then subjected to additional analyses, with the identification of more than 1,800 sites wherein at least one strain showed a single nucleotide polymorphism (SNP). The majority (87.1%) was located in coding regions, with the global ratio of non-synonymous upon synonymous alterations (dN/dS) exceeding 1.5, suggesting that positive selection is an important evolutionary force exerted upon M. bovis. A higher percentage of SNPs was detected in genes enriched into "lipid metabolism", "cell wall and cell processes" and "intermediary metabolism and respiration" functional categories, revealing their underlying importance in M. bovis biology and evolution. A closer look on genes prone to horizontal gene transfer in the MTBC ancestor and included in the 3R (DNA repair, replication and recombination) system revealed a global average negative value for Taijima's D neutrality test, suggesting that past selective sweeps and population expansion after a recent bottleneck remain as major evolutionary drivers of the obligatory pathogen M. bovis in its struggle with the host.
Collapse
Affiliation(s)
- Ana C Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Room 2.4.11, 1749-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Room 2.4.11, 1749-016, Lisbon, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
28
|
Kim TW, Jang YH, Jeong MK, Seo Y, Park CH, Kang S, Lee YJ, Choi JS, Yoon SS, Kim JM. Single-nucleotide polymorphism-based epidemiological analysis of Korean Mycobacterium bovis isolates. J Vet Sci 2021; 22:e24. [PMID: 33774940 PMCID: PMC8007439 DOI: 10.4142/jvs.2021.22.e24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 11/20/2022] Open
Abstract
Background Bovine tuberculosis (TB) is caused by Mycobacterium bovis, a well-known cause of zoonotic tuberculosis in cattle and deer, and has been investigated in many physiological and molecular studies. However, detailed genome-level studies of M. bovis have not been performed in Korea. Objectives To survey whole genome-wide single-nucleotide polymorphism (SNP) variants in Korean M. bovis field isolates and to define M. bovis groups in Korea by comparing SNP typing with spoligotyping and variable number tandem repeat typing. Methods A total of 46 M. bovis field isolates, isolated from laryngopharyngeal lymph nodes and lungs of Korean cattle, wild boar, and Korean water deer, were used to identify SNPs by performing whole-genome sequencing. SNP sites were confirmed via polymerase chain reaction using 87 primer pairs. Results We identified 34 SNP sites with different frequencies across M. bovis isolates, and performed SNP typing and epidemiological analysis, which divided the 46 field isolates into 16 subtypes. Conclusions Through SNP analysis, detailed differences in samples with identical spoligotypes could be detected. SNP analysis is, therefore, a useful epidemiological tracing tool that could enable better management of bovine TB, thus preventing further outbreaks and reducing the impact of this disease.
Collapse
Affiliation(s)
- Tae Woon Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Yun Ho Jang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Min Kyu Jeong
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Yoonjeong Seo
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Chan Ho Park
- Gangwondo Livestock & Veterinary Service, Chuncheon 24203, Korea
| | - Sinseok Kang
- Chung Cheongbukdo Livestock & Veterinary Service, Jungbu-Branch, Chungju 27336, Korea
| | - Young Ju Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Jeong Soo Choi
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Soon Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Jae Myung Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
29
|
Perea C, Ciaravino G, Stuber T, Thacker TC, Robbe-Austerman S, Allepuz A, de Val BP. Whole-Genome SNP Analysis Identifies Putative Mycobacterium bovis Transmission Clusters in Livestock and Wildlife in Catalonia, Spain. Microorganisms 2021; 9:microorganisms9081629. [PMID: 34442709 PMCID: PMC8401651 DOI: 10.3390/microorganisms9081629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
The high-resolution WGS analyses of MTBC strains have provided useful insight for determining sources of infection for animal tuberculosis. In Spain, tuberculosis in livestock is caused by Mycobacterium bovis and Mycobacterium caprae, where wildlife reservoirs play an important role. We analyzed a set of 125 M. bovis isolates obtained from livestock and wildlife from Catalonia to investigate strain diversity and identify possible sources and/or causes of infection. Whole-genome SNP profiles were used for phylogenetic reconstruction and pairwise SNP distance analysis. Additionally, SNPs were investigated to identify virulence and antimicrobial resistance factors to investigate clade-specific associations. Putative transmission clusters (≤12 SNPs) were identified, and associated epidemiological metadata were used to determine possible explanatory factors for transmission. M. bovis distribution was heterogeneous, with 7 major clades and 21 putative transmission clusters. In order of importance, the explanatory factors associated were proximity and neighborhood, residual infection, livestock-wildlife interaction, shared pasture, and movement. Genes related to lipid transport and metabolism showed the highest number of SNPs. All isolates were pyrazinamide resistant, and five were additionally resistant to isoniazid, but no clade-specific associations could be determined. Our findings highlight the importance of high-resolution molecular surveillance to monitor bovine tuberculosis dynamics in a low-prevalence setting.
Collapse
Affiliation(s)
- Claudia Perea
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
- Correspondence:
| | - Giovanna Ciaravino
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (G.C.); (A.A.)
| | - Tod Stuber
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Tyler C. Thacker
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA 50010, USA; (T.S.); (T.C.T.); (S.R.-A.)
| | - Alberto Allepuz
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (G.C.); (A.A.)
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), 08197 Bellaterra, Spain;
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Bernat Pérez de Val
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), 08197 Bellaterra, Spain;
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| |
Collapse
|
30
|
Reis AC, Salvador LCM, Robbe-Austerman S, Tenreiro R, Botelho A, Albuquerque T, Cunha MV. Whole Genome Sequencing Refines Knowledge on the Population Structure of Mycobacterium bovis from a Multi-Host Tuberculosis System. Microorganisms 2021; 9:1585. [PMID: 34442664 PMCID: PMC8401292 DOI: 10.3390/microorganisms9081585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
Classical molecular analyses of Mycobacterium bovis based on spoligotyping and Variable Number Tandem Repeat (MIRU-VNTR) brought the first insights into the epidemiology of animal tuberculosis (TB) in Portugal, showing high genotypic diversity of circulating strains that mostly cluster within the European 2 clonal complex. Previous surveillance provided valuable information on the prevalence and spatial occurrence of TB and highlighted prevalent genotypes in areas where livestock and wild ungulates are sympatric. However, links at the wildlife-livestock interfaces were established mainly via classical genotype associations. Here, we apply whole genome sequencing (WGS) to cattle, red deer and wild boar isolates to reconstruct the M. bovis population structure in a multi-host, multi-region disease system and to explore links at a fine genomic scale between M. bovis from wildlife hosts and cattle. Whole genome sequences of 44 representative M. bovis isolates, obtained between 2003 and 2015 from three TB hotspots, were compared through single nucleotide polymorphism (SNP) variant calling analyses. Consistent with previous results combining classical genotyping with Bayesian population admixture modelling, SNP-based phylogenies support the branching of this M. bovis population into five genetic clades, three with apparent geographic specificities, as well as the establishment of an SNP catalogue specific to each clade, which may be explored in the future as phylogenetic markers. The core genome alignment of SNPs was integrated within a spatiotemporal metadata framework to further structure this M. bovis population by host species and TB hotspots, providing a baseline for network analyses in different epidemiological and disease control contexts. WGS of M. bovis isolates from Portugal is reported for the first time in this pilot study, refining the spatiotemporal context of TB at the wildlife-livestock interface and providing further support to the key role of red deer and wild boar on disease maintenance. The SNP diversity observed within this dataset supports the natural circulation of M. bovis for a long time period, as well as multiple introduction events of the pathogen in this Iberian multi-host system.
Collapse
Affiliation(s)
- Ana C. Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Liliana C. M. Salvador
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | | | - Rogério Tenreiro
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Ana Botelho
- INIAV, IP-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (A.B.); (T.A.)
| | - Teresa Albuquerque
- INIAV, IP-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (A.B.); (T.A.)
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| |
Collapse
|
31
|
Rodrigues RDA, Ribeiro Araújo F, Rivera Dávila AM, Etges RN, Parkhill J, van Tonder AJ. Genomic and temporal analyses of Mycobacterium bovis in southern Brazil. Microb Genom 2021; 7. [PMID: 34016251 PMCID: PMC8209730 DOI: 10.1099/mgen.0.000569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium bovis is a causal agent of bovine tuberculosis (bTB), one of the most important diseases currently facing the cattle industry worldwide. Tracing the source of M. bovis infections of livestock is an important tool for understanding the epidemiology of bTB and defining control/eradication strategies. In this study, whole genome sequencing (WGS) of 74 M. bovis isolates sourced from naturally infected cattle in the State of Rio Grande do Sul (RS), southern Brazil, was used to evaluate the population structure of M. bovis in the region, identify potential transmission events and date the introduction of clonal complex (CC) European 2 (Eu2). In silico spoligotyping identified 11 distinct patterns including four new profiles and two CCs, European 1 (Eu1) and Eu2. The analyses revealed a high level of genetic diversity in the majority of herds and identified putative transmission clusters that suggested that within- and between-herd transmission is occurring in RS. In addition, a comparison with other published M. bovis isolates from Argentina, Brazil, Paraguay and Uruguay demonstrated some evidence for a possible cross-border transmission of CC Eu1 into RS from Uruguay or Argentina. An estimated date for the introduction of CC Eu2 into RS in the middle of the 19th century correlated with the historical introduction of cattle into RS to improve existing local breeds. These findings contribute to the understanding of the population structure of M. bovis in southern Brazil and highlight the potential of WGS in surveillance and helping to identify bTB transmission.
Collapse
Affiliation(s)
- Rudielle de Arruda Rodrigues
- Postgraduate Program in Veterinary Science, Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | | | - Alberto Martín Rivera Dávila
- Computational and Systems Biology Laboratory, Graduate Program in Biodiversity and Health, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
32
|
Sales ÉB, Fonseca AA, Gonçalves CM, Lage AP, Andrade GI, Suffys PN, Gomes HM, Dias NL, Ferreira Neto JS, Guimarães AMDS, Heinemann MB. Multispacer Sequence Typing for Mycobacterium bovis Genotyping. Front Vet Sci 2021; 8:666283. [PMID: 33981748 PMCID: PMC8107269 DOI: 10.3389/fvets.2021.666283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The molecular typing of Mycobacterium bovis, which causes bovine tuberculosis, can be accomplished by combining different polymorphic markers, contributing to its epidemiological investigation. Multispacer sequence typing (MST) is a sequencing-based method that employs intergenic regions susceptible to higher mutation rates given the low selection pressure. It has been applied to M. tuberculosis, but not to M. bovis. The aim of this study was to evaluate a MST for M. bovis. A total of 58 strains isolated from tissues with lesions suggestive of bovine tuberculosis, coming from cattle herds in six Brazilian states and four standard samples of M. bovis were typified employing the MST technique. Fourteen intergenic regions were used, and four types of genetic events were reported: single nucleotide mutation (SNP), insertion, deletion, and tandem repeat (TR). Seven loci were chosen for typing. Twenty-eight type sequences (ST) were identified, indicating type sequences (ST) were identified, indicating a 92.9% HGDI (Hunter Gaston Discriminatory Index). The data were used to analyze the evolutionary patterns of these isolates and correlate them to phylogeographic lineages based on the formation of clonal complexes generated from eBURST software. Later, we associated the MST with spoligotyping technique, currently considered the gold standard for classification of M. bovis. The results support the MST as an alternative method for genotyping of M. bovis. The method has the advantage of sequencing and the availability of sequences analyzed in public databases, which can be used by professionals around the world as a tool for further analysis. This was the first study to identify the variability of isolates of M. bovis by the MST method.
Collapse
Affiliation(s)
- Érica Bravo Sales
- Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, Minas Gerais, Brazil
| | - Antônio Augusto Fonseca
- Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, Minas Gerais, Brazil
| | | | - Andrey Pereira Lage
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giovanna Ivo Andrade
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Natanael Lamas Dias
- Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
33
|
Smith K, Kleynhans L, Warren RM, Goosen WJ, Miller MA. Cell-Mediated Immunological Biomarkers and Their Diagnostic Application in Livestock and Wildlife Infected With Mycobacterium bovis. Front Immunol 2021; 12:639605. [PMID: 33746980 PMCID: PMC7969648 DOI: 10.3389/fimmu.2021.639605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium bovis has the largest host range of the Mycobacterium tuberculosis complex and infects domestic animal species, wildlife, and humans. The presence of global wildlife maintenance hosts complicates bovine tuberculosis (bTB) control efforts and further threatens livestock and wildlife-related industries. Thus, it is imperative that early and accurate detection of M. bovis in all affected animal species is achieved. Further, an improved understanding of the complex species-specific host immune responses to M. bovis could enable the development of diagnostic tests that not only identify infected animals but distinguish between infection and active disease. The primary bTB screening standard worldwide remains the tuberculin skin test (TST) that presents several test performance and logistical limitations. Hence additional tests are used, most commonly an interferon-gamma (IFN-γ) release assay (IGRA) that, similar to the TST, measures a cell-mediated immune (CMI) response to M. bovis. There are various cytokines and chemokines, in addition to IFN-γ, involved in the CMI component of host adaptive immunity. Due to the dominance of CMI-based responses to mycobacterial infection, cytokine and chemokine biomarkers have become a focus for diagnostic tests in livestock and wildlife. Therefore, this review describes the current understanding of host immune responses to M. bovis as it pertains to the development of diagnostic tools using CMI-based biomarkers in both gene expression and protein release assays, and their limitations. Although the study of CMI biomarkers has advanced fundamental understanding of the complex host-M. bovis interplay and bTB progression, resulting in development of several promising diagnostic assays, most of this research remains limited to cattle. Considering differences in host susceptibility, transmission and immune responses, and the wide variety of M. bovis-affected animal species, knowledge gaps continue to pose some of the biggest challenges to the improvement of M. bovis and bTB diagnosis.
Collapse
Affiliation(s)
- Katrin Smith
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
34
|
Carneiro PA, Zimpel CK, Pasquatti TN, Silva-Pereira TT, Takatani H, Silva CBDG, Abramovitch RB, Sa Guimaraes AM, Davila AMR, Araujo FR, Kaneene JB. Genetic Diversity and Potential Paths of Transmission of Mycobacterium bovis in the Amazon: The Discovery of M. bovis Lineage Lb1 Circulating in South America. Front Vet Sci 2021; 8:630989. [PMID: 33665220 PMCID: PMC7921743 DOI: 10.3389/fvets.2021.630989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis (bTB) has yet to be eradicated in Brazil. Herds of cattle and buffalo are important sources of revenue to people living in the banks of the Amazon River basin. A better understanding of Mycobacterium bovis (M. bovis) populational structure and transmission dynamics affecting these animals can significantly contribute in efforts to improve their sanitary status. Herein, we sequenced the whole genome of 22 M. bovis isolates (15 from buffalo and 7 from cattle) from 10 municipalities in the region of the Lower Amazon River Basin in Brazil and performed phylogenomic analysis and Single Nucleotide Polymorphism (SNP)-based transmission inference to evaluate population structure and transmission networks. Additionally, we compared these genomes to others obtained in unrelated studies in the Marajó Island (n = 15) and worldwide (n = 128) to understand strain diversity in the Amazon and to infer M. bovis lineages. Our results show a higher genomic diversity of M. bovis genomes obtained in the Lower Amazon River region when compared to the Marajó Island, while no significant difference was observed between M. bovis genomes obtained from cattle and buffalo (p ≥ 0.05). This high genetic diversity is reflected by the weak phylogenetic clustering of M. bovis from the Lower Amazon River region based on geographic proximity and in the detection of only two putative transmission clusters in the region. One of these clusters is the first description of inter-species transmission between cattle and buffalo in the Amazon, bringing implications to the bTB control program. Surprisingly, two M. bovis lineages were detected in our dataset, namely Lb1 and Lb3, constituting the first description of Lb1 in South America. Most of the strains of this study (13/22) and all 15 strains of the Marajó Island carried no clonal complex marker, suggesting that the recent lineage classification better describe the diversity of M. bovis in the Amazon.
Collapse
Affiliation(s)
- Paulo Alex Carneiro
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Amazonas State Federal Institute, Manaus, Brazil
| | - Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | | | - Taiana T. Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Haruo Takatani
- Agência de Defesa Agropecuaria Do Amazonas, Manaus, Brazil
| | | | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Ana Marcia Sa Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alberto M. R. Davila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute and Graduate Program in Biodiversity and Health, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - John B. Kaneene
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
35
|
Allen AR, Ford T, Skuce RA. Does Mycobacterium tuberculosis var. bovis Survival in the Environment Confound Bovine Tuberculosis Control and Eradication? A Literature Review. Vet Med Int 2021; 2021:8812898. [PMID: 33628412 PMCID: PMC7880718 DOI: 10.1155/2021/8812898] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bovine tuberculosis (bTB) is one of the globe's most common, multihost zoonoses and results in substantial socioeconomic costs for governments, farming industries, and tax payers. Despite decades of surveillance and research, surprisingly, little is known about the exact mechanisms of transmission. In particular, as a facultative intracellular pathogen, to what extent does survival of the causative agent, Mycobacterium tuberculosis var. bovis (M. bovis), in the environment constitute an epidemiological risk for livestock and wildlife? Due largely to the classical pathology of cattle cases, the received wisdom was that bTB was spread by direct inhalation and exchange of bioaerosols containing droplets laden with bacteria. Other members of the Mycobacterium tuberculosis complex (MTBC) exhibit differing host ranges, an apparent capacity to persist in environmental fomites, and they favour a range of different transmission routes. It is possible, therefore, that infection from environmental sources of M. bovis could be a disease transmission risk. Recent evidence from GPS-collared cattle and badgers in Britain and Ireland suggests that direct transmission by infectious droplets or aerosols may not be the main mechanism for interspecies transmission, raising the possibility of indirect transmission involving a contaminated, shared environment. The possibility that classical pulmonary TB can be simulated and recapitulated in laboratory animal models by ingestion of contaminated feed is a further intriguing indication of potential environmental risk. Livestock and wildlife are known to shed M. bovis onto pasture, soil, feedstuffs, water, and other fomites; field and laboratory studies have indicated that persistence is possible, but variable, under differing environmental conditions. Given the potential infection risk, it is timely to review the available evidence, experimental approaches, and methodologies that could be deployed to address this potential blind spot and control point. Although we focus on evidence from Western Europe, the concepts are widely applicable to other multihost bTB episystems.
Collapse
Affiliation(s)
- Adrian R. Allen
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Bacteriology Branch, Stoney Road Stormont, Belfast BT4 3SD, Northern Ireland, UK
| | - Tom Ford
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Bacteriology Branch, Stoney Road Stormont, Belfast BT4 3SD, Northern Ireland, UK
| | - Robin A. Skuce
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Bacteriology Branch, Stoney Road Stormont, Belfast BT4 3SD, Northern Ireland, UK
| |
Collapse
|
36
|
Meiring C, Higgitt R, Dippenaar A, Roos E, Buss P, Hewlett J, Cooper D, Rogers P, Klerk‐Lorist L, Schalkwyk L, Hausler G, Helden P, Möller M, Warren R, Miller M. Characterizing epidemiological and genotypic features of
Mycobacterium bovis
infection in wild dogs (
Lycaon pictus
). Transbound Emerg Dis 2020. [DOI: 10.1111/tbed.13947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Christina Meiring
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Roxanne Higgitt
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Anzaan Dippenaar
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Eduard Roos
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Peter Buss
- Veterinary Wildlife Services South African National Parks Skukuza South Africa
| | - Jennie Hewlett
- Veterinary Wildlife Services South African National Parks Skukuza South Africa
- Paraclinical Department Faculty of Veterinary Science University of Pretoria Onderstepoort South Africa
| | - Dave Cooper
- Ezemvelo KZN Wildlife Mtubatuba South Africa
| | - Peter Rogers
- Provet Wildlife Services & Companion Animal Hospital Hoedspruit South Africa
| | - Lin‐Mari Klerk‐Lorist
- Department of Agriculture, Forestry and FisheriesOffice of the State Veterinarian Skukuza South Africa
| | - Louis Schalkwyk
- Department of Agriculture, Forestry and FisheriesOffice of the State Veterinarian Skukuza South Africa
| | - Guy Hausler
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Paul Helden
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Marlo Möller
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Rob Warren
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Michele Miller
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| |
Collapse
|
37
|
Smith K, Kleynhans L, Snyders C, Bernitz N, Cooper D, van Helden P, Warren RM, Miller MA, Goosen WJ. Use of the MILLIPLEX ® bovine cytokine/chemokine multiplex assay to identify Mycobacterium bovis-infection biomarkers in African buffaloes (Syncerus caffer). Vet Immunol Immunopathol 2020; 231:110152. [PMID: 33227620 DOI: 10.1016/j.vetimm.2020.110152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/17/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022]
Abstract
As a recognized Mycobacterium bovis maintenance host, the African buffalo (Syncerus caffer) poses transmission risks to livestock, humans and other wildlife. Early detection of M. bovis infection is critical for limiting its spread. Currently, tests detecting cell-mediated immune responses are used for diagnosis in buffaloes. However, these may have suboptimal sensitivity or specificity, depending on the blood stimulation method. Recent evidence suggests that assays using combinations of host cytokine biomarkers may increase diagnostic performance. Therefore, this study aimed to investigate the application of a MILLIPLEX® bovine cytokine/chemokine multiplex assay to identify candidate biomarkers of M. bovis infection in buffaloes. Whole blood from twelve culture-confirmed M. bovis-infected buffaloes, stimulated with the QuantiFERON® TB Gold Plus in-tube system, was tested using the MILLIPLEX® platform. Results indicated binding of bovine antibodies to fifteen buffalo cytokine/chemokine targets. Moreover, there was a significant difference in concentrations between unstimulated and TB antigen-stimulated buffalo samples for seven cytokines/chemokines included in the kit. Although these preliminary results require further investigation in larger sample sets and a comparison between M. bovis-infected and uninfected cohorts, the utility of the MILLIPLEX® platform in a novel species was demonstrated, in addition to identifying potential African buffalo cytokines for future research.
Collapse
Affiliation(s)
- Katrin Smith
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice Snyders
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Netanya Bernitz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - David Cooper
- Ezemvelo KwaZulu-Natal Wildlife, PO Box 25, Mtubatuba 3935, South Africa
| | - Paul van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
38
|
Guimaraes AMS, Zimpel CK. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020; 8:E667. [PMID: 32375210 PMCID: PMC7285088 DOI: 10.3390/microorganisms8050667] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis is the main pathogen of bovine, zoonotic, and wildlife tuberculosis. Despite the existence of programs for bovine tuberculosis (bTB) control in many regions, the disease remains a challenge for the veterinary and public health sectors, especially in developing countries and in high-income nations with wildlife reservoirs. Current bTB control programs are mostly based on test-and-slaughter, movement restrictions, and post-mortem inspection measures. In certain settings, contact tracing and surveillance has benefited from M. bovis genotyping techniques. More recently, whole-genome sequencing (WGS) has become the preferential technique to inform outbreak response through contact tracing and source identification for many infectious diseases. As the cost per genome decreases, the application of WGS to bTB control programs is inevitable moving forward. However, there are technical challenges in data analyses and interpretation that hinder the implementation of M. bovis WGS as a molecular epidemiology tool. Therefore, the aim of this review is to describe M. bovis genotyping techniques and discuss current standards and challenges of the use of M. bovis WGS for transmission investigation, surveillance, and global lineages distribution. We compiled a series of associated research gaps to be explored with the ultimate goal of implementing M. bovis WGS in a standardized manner in bTB control programs.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Cristina K. Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|