1
|
Loperena-Barber M, Elizalde-Bielsa A, Salvador-Bescós M, Ruiz-Rodríguez P, Pellegrini JM, Renau-Mínguez C, Lancaster R, Zúñiga-Ripa A, Iriarte M, Bengoechea JA, Coscollá M, Gorvel JP, Moriyón I, Conde-Álvarez R. "Phylogenomic insights into brucellaceae: The Pseudochrobactrum algeriensis case". INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105625. [PMID: 38906517 DOI: 10.1016/j.meegid.2024.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The genus Pseudochrobactrum encompasses free-living bacteria phylogenetically close to Ochrobactrum opportunistic pathogens and to Brucella, facultative intracellular parasites causing brucellosis, a worldwide-extended and grave zoonosis. Recently, Pseudochrobactrum strains were isolated from Brucella natural hosts on Brucella selective media, potentially causing diagnostic confusions. Strikingly, P. algeriensis was isolated from cattle lymph nodes, organs that are inimical to bacteria. Here, we analyse P. algeriensis potential virulence factors in comparison with Ochrobactrum and Brucella. Consistent with genomic analyses, Western-Blot analyses confirmed that P. algeriensis lacks the ability to synthesize the N-formylperosamine O-polysaccharide characteristic of the lipopolysaccharide (LPS) of smooth Brucella core species. However, unlike other Pseudochrobactrum but similar to some early diverging brucellae, P. algeriensis carries genes potentially synthetizing a rhamnose-based O-polysaccharide LPS. Lipid A analysis by MALDI-TOF demonstrated that P. algeriensis LPS bears a lipid A with a reduced pathogen-associated molecular pattern, a trait shared with Ochrobactrum and Brucella that is essential to generate a highly stable outer membrane and to delay immune activation. Also, although not able to multiply intracellularly in macrophages, the analysis of P. algeriensis cell lipid envelope revealed the presence of large amounts of cationic aminolipids, which may account for the extremely high resistance of P. algeriensis to bactericidal peptides and could favor colonization of mucosae and transient survival in Brucella hosts. However, two traits critical in Brucella pathogenicity are either significantly different (T4SS [VirB]) or absent (erythritol catabolic pathway) in P. algeriensis. This work shows that, while diverging in other characteristics, lipidic envelope features relevant in Brucella pathogenicity are conserved in Brucellaceae. The constant presence of these features strongly suggests that reinforcement of the envelope integrity as an adaptive advantage in soil was maintained in Brucella because of the similarity of some environmental challenges, such as the action of cationic peptide antibiotics and host defense peptides. This information adds knowledge about the evolution of Brucellaceae, and also underlines the taxonomical differences of the three genera compared.
Collapse
Affiliation(s)
- Maite Loperena-Barber
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Aitor Elizalde-Bielsa
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Paula Ruiz-Rodríguez
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | | | - Chantal Renau-Mínguez
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | - Rebecca Lancaster
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Amaia Zúñiga-Ripa
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Mireia Coscollá
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, CNRS, INSERM, Aix-Marseille University, Marseille, France
| | - Ignacio Moriyón
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
2
|
Middlebrook EA, Katani R, Fair JM. OrthoPhyl-streamlining large-scale, orthology-based phylogenomic studies of bacteria at broad evolutionary scales. G3 (BETHESDA, MD.) 2024; 14:jkae119. [PMID: 38839049 PMCID: PMC11304591 DOI: 10.1093/g3journal/jkae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
There are a staggering number of publicly available bacterial genome sequences (at writing, 2.0 million assemblies in NCBI's GenBank alone), and the deposition rate continues to increase. This wealth of data begs for phylogenetic analyses to place these sequences within an evolutionary context. A phylogenetic placement not only aids in taxonomic classification but informs the evolution of novel phenotypes, targets of selection, and horizontal gene transfer. Building trees from multi-gene codon alignments is a laborious task that requires bioinformatic expertise, rigorous curation of orthologs, and heavy computation. Compounding the problem is the lack of tools that can streamline these processes for building trees from large-scale genomic data. Here we present OrthoPhyl, which takes bacterial genome assemblies and reconstructs trees from whole genome codon alignments. The analysis pipeline can analyze an arbitrarily large number of input genomes (>1200 tested here) by identifying a diversity-spanning subset of assemblies and using these genomes to build gene models to infer orthologs in the full dataset. To illustrate the versatility of OrthoPhyl, we show three use cases: E. coli/Shigella, Brucella/Ochrobactrum and the order Rickettsiales. We compare trees generated with OrthoPhyl to trees generated with kSNP3 and GToTree along with published trees using alternative methods. We show that OrthoPhyl trees are consistent with other methods while incorporating more data, allowing for greater numbers of input genomes, and more flexibility of analysis.
Collapse
Affiliation(s)
- Earl A Middlebrook
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| | - Robab Katani
- 401 Huck Life Sciences Building, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jeanne M Fair
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| |
Collapse
|
3
|
L'Hôte L, Light I, Mattiangeli V, Teasdale MD, Halpin Á, Gourichon L, Key FM, Daly KG. An 8000 years old genome reveals the Neolithic origin of the zoonosis Brucella melitensis. Nat Commun 2024; 15:6132. [PMID: 39033187 PMCID: PMC11271283 DOI: 10.1038/s41467-024-50536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Brucella melitensis is a major livestock bacterial pathogen and zoonosis, causing disease and infection-related abortions in small ruminants and humans. A considerable burden to animal-based economies today, the presence of Brucella in Neolithic pastoral communities has been hypothesised but we lack direct genomic evidence thus far. We report a 3.45X B. melitensis genome preserved in an ~8000 year old sheep specimen from Menteşe Höyük, Northwest Türkiye, demonstrating that the pathogen had evolved and was circulating in Neolithic livestock. The genome is basal with respect to all known B. melitensis and allows the calibration of the B. melitensis speciation time from the primarily cattle-infecting B. abortus to approximately 9800 years Before Present (BP), coinciding with a period of consolidation and dispersal of livestock economies. We use the basal genome to timestamp evolutionary events in B. melitensis, including pseudogenization events linked to erythritol response, the supposed determinant of the pathogen's placental tropism in goats and sheep. Our data suggest that the development of herd management and multi-species livestock economies in the 11th-9th millennium BP drove speciation and host adaptation of this zoonotic pathogen.
Collapse
Affiliation(s)
- Louis L'Hôte
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Ian Light
- Max Planck Institute for Infection Biology, Evolutionary Pathogenomics, 10117, Berlin, Germany
| | | | - Matthew D Teasdale
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Áine Halpin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Felix M Key
- Max Planck Institute for Infection Biology, Evolutionary Pathogenomics, 10117, Berlin, Germany
| | - Kevin G Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
4
|
Scholz HC, Heckers KO, Appelt S, Geier-Dömling D, Schlegel P, Wattam AR. Isolation of Brucella inopinata from a White's tree frog ( Litoria caerulea): pose exotic frogs a potential risk to human health? Front Microbiol 2023; 14:1173252. [PMID: 37362939 PMCID: PMC10285381 DOI: 10.3389/fmicb.2023.1173252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Cold-blooded hosts, particularly exotic frogs, have become a newly recognized reservoir for atypical Brucella species and strains worldwide, but their pathogenicity to humans remains largely unknown. Here we report the isolation and molecular characterization of a B. inopinata strain (FO700662) cultured from clinical samples taken from a captive diseased White's Tree Frog (Litoria caerulea) in Switzerland. The isolation of B. inopinata from a frog along with other reports of human infection by atypical Brucella raises the question of whether atypical Brucella could pose a risk to human health and deserves further attention. Methods The investigations included histopathological analysis of the frog, bacterial culture and in-depth molecular characterization of strain FO700662 based on genome sequencing data. Results and Discussion Originally identified as Ochrobactrum based on its rapid growth and biochemical profile, strain FO700622 was positive for the Brucella- specific markers bcsp31 and IS711. It showed the specific banding pattern of B. inopinata in conventional Bruce-ladder multiplex PCR and also had identical 16S rRNA and recA gene sequences as B. inopinata. Subsequent genome sequencing followed by core genome-based MLST (cgMLST) analysis using 2704 targets (74% of the total chromosome) revealed only 173 allelic differences compared to the type strain of B. inopinata BO1T, while previously considered the closest related strain BO2 differed in 2046 alleles. The overall average nucleotide identity (ANI) between the type strain BO1T and FO700622 was 99,89%, confirming that both strains were almost identical. In silico MLST-21 and MLVA-16 also identified strain FO700662 as B. inopinata. The nucleotide and amino acid-based phylogenetic reconstruction and comparative genome analysis again placed the isolate together with B. inopinata with 100% support. In conclusion, our data unequivocally classified strain FO700622, isolated from an exotic frog, as belonging to B. inopinata.
Collapse
Affiliation(s)
- Holger C. Scholz
- Department of Bacteriology and Toxinology, Bundeswehr Institute of Microbiology, Munich, Germany
| | - Kim O. Heckers
- LABOklin GmbH and Co KG, Labor für klinische Diagnostik, Bad Kissingen, Germany
| | - Sandra Appelt
- Department of Bacteriology and Toxinology, Bundeswehr Institute of Microbiology, Munich, Germany
| | | | - Patrick Schlegel
- Kleintierpraxis Dr. med vet. Patrick Schlegel, Sargans, Switzerland
| | - Alice R. Wattam
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Dorneles EMS, Santana JA, Costa ACTRB, Júnior DGJ, Heinemann MB, Lage AP. Equine brucellosis: current understanding and challenges. J Equine Vet Sci 2023:104298. [PMID: 37072072 DOI: 10.1016/j.jevs.2023.104298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
Brucellosis in equines, including horses, donkeys, and mules, is characterized by abscesses in tendons, bursae, and joints. Reproductive disorders, which are common in other animals, are rare in both males and females. Joint breeding of horses, cattle, and pigs was found as the main risk factor for equine brucellosis, with the transmission from equines to cattle or among equines possible, although unlikely. Hence, evaluation of the disease in equines can be considered an indirect indicator of the effectiveness of brucellosis control measures employed for other domestic species. Generally, the disease in equines reflects disease status in the sympatric domestic species, mainly cattle. It is important to note that in equines, the disease has no validated diagnostic test, which limits the interpretation of available data. Finally, it is important to mention that equines also represent significant Brucella spp. infection sources for humans. Considering the zoonotic aspect of brucellosis, the significant losses due to infection, and the representativeness of horses, mules, and donkeys in the society, as well as the continuous efforts to control and eradicate the disease in livestock, in this review, we covered the various aspects of brucellosis in equines and compile the sparse and diffuse information on the subject.
Collapse
Affiliation(s)
- Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais. Caixa Postal 3037, Campus Universitário, 37200-900, Brazil.
| | - Jordana Almeida Santana
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha da, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Anna Cecília Trolesi Reis Borges Costa
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais. Caixa Postal 3037, Campus Universitário, 37200-900, Brazil
| | - Danilo Guedes Junqueira Júnior
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha da, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcos Bryan Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Professor Orlando Marques de Paiva, 87. Butantã. São Paulo, São Paulo, 05508-270, Brazil
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha da, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil..
| |
Collapse
|
6
|
Pereira CR, de Jesus Sousa T, Lima da Silva A, Gonçalves Dos Santos R, Minharro S, Costa Custódio DA, Pickard DJ, O'Callaghan D, Foster JT, de Castro Soares S, Juca Ramos RT, Góes-Neto A, Matiuzzi da Costa M, Lage AP, Azevedo V, Seles Dorneles EM. First report and whole-genome sequencing of Pseudochrobactrum saccharolyticum in Latin America. Microbes Infect 2023; 25:105018. [PMID: 35940401 DOI: 10.1016/j.micinf.2022.105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
The Brucellaceae family comprises microorganisms similar both phenotypically and genotypically, making it difficult to identify the etiological agent of these infections. This study reports the first isolation, identification, and characterization of Pseudochrobactrum saccharolyticum (strain 115) from Latin America. Strain 115 was isolated in 2007 from a bovine in Brazil and was initially classified as Brucella spp. by classical microbiological tests and bcsp31 PCR. The antimicrobial susceptibility of strain 115 was tested against drugs used to treat human brucellosis by minimal inhibitory concentration test. Subsequently, the whole genome of the strain was sequenced, assembled, and characterized. Phylogenetic trees built from 16S rRNA and recA gene sequences enabled the classification of strain 115 as Pseudochrobactrum spp. Phylogenomic analysis using Single Nucleotide Polymorphisms and Average Nucleotide Identity allowed the classification of the strain as P. saccharolyticum. Additionally, a Tetra Correlation Search identified one related genome from the same species, which was compared with strain 115 by analyzing genomic islands. This is the first identification and whole-genome sequence of P. saccharolyticum in Latin America and highlights a challenge in the diagnosis of bovine brucellosis, which could be solved by including the sequencing of 16S rRNA and recA genes in routine diagnostics.
Collapse
Affiliation(s)
- Carine Rodrigues Pereira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Thiago de Jesus Sousa
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Lima da Silva
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roselane Gonçalves Dos Santos
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sílvia Minharro
- Centro de Ciência da Saúde - Medicina - Araguaína, Universidade Federal de Tocantins, Tocantins, Brazil
| | - Dirceia Aparecida Costa Custódio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Derek J Pickard
- Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - David O'Callaghan
- IVBIC, INSERM, Universite de Montpellier, Nimes, France; CNR Brucella, Laboratoire de Microbiologie, CHU Nimes, Nimes, France
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Siomar de Castro Soares
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Ciências Naturais, Universidade Federal Do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Rommel Thiago Juca Ramos
- Instituto de Ciências Biológicas, Centro de Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Pará, Brazil
| | - Aristóteles Góes-Neto
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Matiuzzi da Costa
- Universidade Federal Do Vale Do São Francisco, Departamento de Zootecnia, Petrolina, Pernambuco, Brazil
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Molecular characterization of zoonotic Brucella species isolated from animal and human samples in Iran. Acta Trop 2022; 229:106363. [PMID: 35149040 DOI: 10.1016/j.actatropica.2022.106363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/20/2022]
Abstract
Brucellosis is an endemic infection in Iran and represents a serious health problem in humans and livestock causing important economic losses. The objective of this study was to undertake molecular characterization of Brucella spp. isolated from humans and livestock in several provinces of Iran including by multi-locus sequence typing (MLST), in order to understand the genotypes circulating in Iran and their relationship to genotypes globally. A total of 23 Brucella isolates were isolated from eight milk samples (seven cows, and one camel), human blood samples (seven), bovine lymph nodes (two), and samples from aborted fetuses (three sheep, two cows, and one goat). Phenotypic and molecular identification of Brucella isolates was performed on all isolated bacteria and showed that all were either Brucella melitensis or Brucella abortus. B. melitensis was associated with ovine/caprine and camel samples, most human isolates, and a significant minority of cattle isolates. In contrast B. abortus from livestock was associated only with isolations from bovine samples, as well as a single human sample. These results indicate that both B. melitensis and B. abortus contribute to the human brucellosis burden in Iran. B. melitensis isolates comprised three MLST-9 genotypes, the common and globally distributed ST8, a single representative of ST7, and several additional examples of ST102, a genotype previously only reported in a single isolate from a human brucellosis case believed to be acquired through travel to Iran. B. abortus isolates represented two globally common MLST-9 genotypes (ST1 and ST2), with relationships to biotype and other PCR-based typing methods consistent with previous observations. The results provide the basis for further studies examining the molecular epidemiology of Brucella circulating in Iran and the relationships of local isolates to those present globally.
Collapse
|
8
|
Moreno E, Blasco JM, Letesson JJ, Gorvel JP, Moriyón I. Pathogenicity and Its Implications in Taxonomy: The Brucella and Ochrobactrum Case. Pathogens 2022; 11:377. [PMID: 35335701 PMCID: PMC8954888 DOI: 10.3390/pathogens11030377] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
The intracellular pathogens of the genus Brucella are phylogenetically close to Ochrobactrum, a diverse group of free-living bacteria with a few species occasionally infecting medically compromised patients. A group of taxonomists recently included all Ochrobactrum organisms in the genus Brucella based on global genome analyses and alleged equivalences with genera such as Mycobacterium. Here, we demonstrate that such equivalencies are incorrect because they overlook the complexities of pathogenicity. By summarizing Brucella and Ochrobactrum divergences in lifestyle, structure, physiology, population, closed versus open pangenomes, genomic traits, and pathogenicity, we show that when they are adequately understood, they are highly relevant in taxonomy and not unidimensional quantitative characters. Thus, the Ochrobactrum and Brucella differences are not limited to their assignments to different "risk-groups", a biologically (and hence, taxonomically) oversimplified description that, moreover, does not support ignoring the nomen periculosum rule, as proposed. Since the epidemiology, prophylaxis, diagnosis, and treatment are thoroughly unrelated, merging free-living Ochrobactrum organisms with highly pathogenic Brucella organisms brings evident risks for veterinarians, medical doctors, and public health authorities who confront brucellosis, a significant zoonosis worldwide. Therefore, from taxonomical and practical standpoints, the Brucella and Ochrobactrum genera must be maintained apart. Consequently, we urge researchers, culture collections, and databases to keep their canonical nomenclature.
Collapse
Affiliation(s)
- Edgardo Moreno
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40101, Costa Rica
| | - José María Blasco
- Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, 50059 Zaragoza, Spain;
| | - Jean Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Faculty of Science, University of Namur, 5000 Namur, Belgium;
| | - Jean Pierre Gorvel
- Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, CIML, 13009 Marseille, France
| | - Ignacio Moriyón
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, 31008 Pamplona, Spain;
| |
Collapse
|
9
|
Jeyaraman M, Muthu S, Sarangan P, Jeyaraman N, Packkyarathinam RP. Ochrobactrum anthropi - An Emerging Opportunistic Pathogen in Musculoskeletal Disorders - A Case Report and Review of Literature. J Orthop Case Rep 2022; 12:85-90. [PMID: 36199934 PMCID: PMC9499045 DOI: 10.13107/jocr.2022.v12.i03.2730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/20/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Ochrobactrum anthropi is an opportunistic and rare human pathogen, which is seen widely in the environment. O. anthropi infections have been reported in both immunocompetent and immunocompromised individuals. There is no proper consensus on the diagnosis and management of O. anthropi related infections. CASE REPORT We report a case of O. anthropi related left distal clavicular osteomyelitis in an immunocompetent individual with an elaborative diagnostic and treatment algorithm for its effective management. CONCLUSION A comprehensive management strategy with a combination of implant removal (if present) with extensive surgical debridement of bone and soft tissue and intravenous antibiotics results in successful eradication of O. anthropi infection.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India
- Address of Correspondence: Dr. Madhan Jeyaraman, Department of Orthopaedics, Faculty of Medicine - Sri Lalithambigai Medical College and Hospital, Chennai, Tamil Nadu, India. E-mail:
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India
| | - Prasanna Sarangan
- Department of Microbiology, Shri Sathya Sai Medical College and Research Institute, Chengalpattu, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli, Tamil Nadu, India
| | | |
Collapse
|
10
|
Jia J, Shi W, Dong F, Meng Q, Yuan L, Chen C, Yao K. Identification and molecular epidemiology of routinely determined Streptococcus pneumoniae with negative Quellung reaction results. J Clin Lab Anal 2022; 36:e24293. [PMID: 35170080 PMCID: PMC8993597 DOI: 10.1002/jcla.24293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Some streptococci strains identified as Streptococcus pneumoniae (S. pneumoniae) by routine clinical methods exhibiting negative Quellung reaction results may belong to other species of viridans group streptococci or non‐typeable S. pneumoniae. The purpose of this study was to investigate the identification and molecular characteristics of S. pneumoniae with negative Quellung reaction results. Methods One hundred and five isolates identified as S. pneumoniae using routine microbiological methods with negative Quellung reaction results were included. Multilocus sequence analysis (MLSA) was used as a gold standard in species identification, and the capacity of matrix‐assisted laser desorption ionization‐time of flight mass spectrometry (MALDI‐TOF MS) in identification was evaluated. Capsular genes and sequence types of S. pneumoniae isolates were determined by sequential multiplex PCR and multilocus sequence typing. Antimicrobial susceptibility patterns were determined via broth microdilution with a commercialized 96‐well plate. Results Among the isolates, 81 were identified as S. pneumoniae and 24 were S. pseudopneumoniae by MLSA. MALDI‐TOF MS misidentified six S. pneumoniae isolates as S. pseudopneumoniae and nine S. pseudopneumoniae isolates as S. pneumoniae or S. mitis/S. oralis. Thirty‐one sequence types (STs) were detected for these 81 S. pneumoniae isolates, and the dominant ST was ST‐bj12 (16, 19.8%). The non‐susceptibility rates of S. pseudopneumoniae were comparable to those of NESp strains. Conclusions Some S. pneumoniae isolates identified by routine methods were S. pseudopneumoniae. Most NESp strains have a different genetic background compared with capsulated S. pneumoniae strains. The resistance patterns of S. pseudopneumoniae against common antibiotics were comparable to those of NESp.
Collapse
Affiliation(s)
- Ju Jia
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Wei Shi
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Fang Dong
- Clinical Laboratory, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Qingying Meng
- Clinical Laboratory, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Lin Yuan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Changhui Chen
- Department of Pediatrics, Youyang County People's Hospital, Chongqing, China
| | - Kaihu Yao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Loperena-Barber M, Khames M, Leclercq SO, Zygmunt MS, Babot ED, Zúñiga-Ripa A, Gutiérrez A, Oumouna M, Moriyón I, Cloeckaert A, Conde-Álvarez R. Pseudochrobactrum algeriensis sp. nov., isolated from lymph nodes of Algerian cattle. Int J Syst Evol Microbiol 2022; 72:005223. [PMID: 35133261 PMCID: PMC9836036 DOI: 10.1099/ijsem.0.005223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Three Gram-negative, rod-shaped, oxidase-positive, non-spore-forming, non-motile strains (C130915_07T, C150915_16 and C150915_17) were isolated from lymph nodes of Algerian cows. On the basis of 16S rRNA gene and whole genome similarities, the isolates were almost identical and clearly grouped in the genus Pseudochrobactrum. This allocation was confirmed by the analysis of fatty acids (C19:cyclo, C18 : 1, C18 : 0, C16 : 1 and C16 : 0) and of polar lipids (major components: phosphatidylethanolamine, ornithine-lipids, phosphatidylglycerol, cardiolipin and phosphatidylcholine, plus moderate amounts of phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine and other aminolipids). Genomic, physiological and biochemical data differentiated these isolates from previously described Pseudochrobactrum species in DNA relatedness, carbon assimilation pattern and growth temperature range. Thus, these organisms represent a novel species of the genus Pseudochrobactrum, for which the name Pseudochrobactrum algeriensis sp. nov. is proposed (type strain C130915_07T=CECT30232T=LMG 32378T).
Collapse
Affiliation(s)
- Maite Loperena-Barber
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Mammar Khames
- Laboratory of Experimental Biology and Pharmacology. Department of Biology, University of Medea, 26000 Medea, Algeria
| | | | | | - Esteban D. Babot
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Amaia Zúñiga-Ripa
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Mustapha Oumouna
- Laboratory of Experimental Biology and Pharmacology. Department of Biology, University of Medea, 26000 Medea, Algeria
| | - Ignacio Moriyón
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | | | - Raquel Conde-Álvarez
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
- *Correspondence: Raquel Conde-Álvarez,
| |
Collapse
|
12
|
Pelerito A, Nunes A, Grilo T, Isidro J, Silva C, Ferreira AC, Valdezate S, Núncio MS, Georgi E, Gomes JP. Genetic Characterization of Brucella spp.: Whole Genome Sequencing-Based Approach for the Determination of Multiple Locus Variable Number Tandem Repeat Profiles. Front Microbiol 2021; 12:740068. [PMID: 34867857 PMCID: PMC8633399 DOI: 10.3389/fmicb.2021.740068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Brucellosis is an important zoonosis that is emerging in some regions of the world, gaining increased relevance with the inclusion of the causing agent Brucella spp. in the class B bioterrorism group. Until now, multi-locus VNTR Analysis (MLVA) based on 16 loci has been considered as the gold standard for Brucella typing. However, this methodology is laborious, and, with the rampant release of Brucella genomes, the transition from the traditional MLVA to whole genome sequencing (WGS)-based typing is on course. Nevertheless, in order to avoid a disruptive transition with the loss of massive genetic data obtained throughout the last decade and considering that the transition timings will vary considerably among different countries, it is important to determine WGS-based MLVA alleles of the nowadays sequenced genomes. On this regard, we aimed to evaluate the performance of a Python script that had been previously developed for the rapid in silico extraction of the MLVA alleles, by comparing it to the PCR-based MLVA procedure over 83 strains from different Brucella species. The WGS-based MLVA approach detected 95.3% of all possible 1,328 hits (83 strains×16 loci) and showed an agreement rate with the PCR-based MLVA procedure of 96.4% for MLVA-16. According to our dataset, we suggest the use of a minimal depth of coverage of ~50x and a maximum number of ~200 contigs as guiding “boundaries” for the future application of the script. In conclusion, the evaluated script seems to be a very useful and robust tool for the in silico determination of MLVA profiles of Brucella strains, allowing retrospective and prospective molecular epidemiological studies, which are important for maintaining an active epidemiological surveillance of brucellosis.
Collapse
Affiliation(s)
- Ana Pelerito
- Emergency Response and Biopreparedness Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.,CBIOS - Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal.,Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Teresa Grilo
- Emergency Response and Biopreparedness Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Catarina Silva
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal.,Centre for Toxicogenomics and Human Health (ToxOmics), Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Cristina Ferreira
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal.,National Institute for Agrarian and Veterinary Research, I.P. (INIAV, IP), Oeiras, Portugal
| | - Sylvia Valdezate
- ISCIII Reference and Research Laboratory for Taxonomy, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Sofia Núncio
- Emergency Response and Biopreparedness Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal.,Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| |
Collapse
|
13
|
Whatmore AM, Foster JT. Emerging diversity and ongoing expansion of the genus Brucella. INFECTION GENETICS AND EVOLUTION 2021; 92:104865. [PMID: 33872784 DOI: 10.1016/j.meegid.2021.104865] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Remarkable genetic diversity and breadth of host species has been uncovered in the Brucella genus over the past decade, fundamentally changing our concept of what it means to be a Brucella. From ocean fishes and marine mammals, to pond dwelling amphibians, forest foxes, desert rodents, and cave-dwelling bats, Brucella have revealed a variety of previously unknown niches. Classical microbiological techniques have been able to help us classify many of these new strains but at times have limited our ability to see the true relationships among or within species. The closest relatives of Brucella are soil bacteria and the adaptations of Brucella spp. to live intracellularly suggest that the genus has evolved to live in vertebrate hosts. Several recently discovered species appear to have phenotypes that are intermediate between soil bacteria and core Brucella, suggesting that they may represent ancestral traits that were subsequently lost in the traditional species. Remarkably, the broad relationships among Brucella species using a variety of sequence and fragment-based approaches have been upheld when using comparative genomics with whole genomes. Nonetheless, genomes are required for fine-scale resolution of many of the relationships and for understanding the evolutionary history of the genus. We expect that the coming decades will reveal many more hosts and previously unknown diversity in a wide range of environments.
Collapse
Affiliation(s)
- Adrian M Whatmore
- OIE and FAO Brucellosis Reference Laboratory, Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, United Kingdom.
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
14
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
15
|
Arnold ME, Courcier EA, Stringer LA, McCormick CM, Pascual-Linaza AV, Collins SF, Trimble NA, Ford T, Thompson S, Corbett D, Menzies FD. A Bayesian analysis of a Test and Vaccinate or Remove study to control bovine tuberculosis in badgers (Meles meles). PLoS One 2021; 16:e0246141. [PMID: 33508004 PMCID: PMC7842978 DOI: 10.1371/journal.pone.0246141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
A novel five year Test and Vaccinate or Remove (TVR) wildlife research intervention project in badgers (Meles meles) commenced in 2014 in a 100km2 area of Northern Ireland. It aimed to increase the evidence base around badgers and bovine TB and help create well-informed and evidence-based strategies to address the issue of cattle-to-cattle spread and spread between cattle and badgers. It involved real-time trap-side testing of captured badgers and vaccinating those that tested negative for bTB (BadgerBCG-BCG Danish 1331) and removal of those that tested bTB positive using the Dual-Path Platform VetTB test (DPP) for cervids (Chembio Diagnostic Systems, Medford, NY USA). Four diagnostic tests were utilised within the study interferon gamma release assay (IGRA), culture (clinical samples and post mortem), DPP using both whole blood and DPP using serum. BCG Sofia (SL222) was used in the final two years because of supply issues with BadgerBCG. Objectives for this study were to evaluate the performance of the DPP in field conditions and whether any trend was apparent in infection prevalence over the study period. A Bayesian latent class model of diagnostic test evaluation in the absence of a gold standard was applied to the data. Temporal variation in the sensitivity of DPP and interferon gamma release assay (IGRA) due to the impact of control measures was investigated using logistic regression and individual variability was assessed. Bayesian latent class analysis estimated DPP with serum to have a sensitivity of 0.58 (95% CrI: 0.40-0.76) and specificity of 0.97 (95% CrI: 0.95-0.98). The DPP with whole blood showed a higher sensitivity (0.69 (95% CrI: 0.48-0.88)) but similar specificity (0.98 (95% Crl: 0.96-0.99)). The change from BCG Danish to BCG Sofia significantly impacted on DPP serum test characteristics. In addition, there was weak evidence of increasing sensitivity of IGRA over time and differences in DPP test sensitivity between adults and cubs. An exponential decline model was an appropriate representation of the infection prevalence over the 5 years, with a starting prevalence of 14% (95% CrI: 0.10-0.20), and an annual reduction of 39.1% (95% CrI: 26.5-50.9). The resulting estimate of infection prevalence in year 5 of the study was 1.9% (95% CrI: 0.8-3.8). These results provide field evidence of a statistically significant reduction in badger TB prevalence supporting a TVR approach to badger intervention. They give confidence in the reliability and reproducibility in the DPP Whole Blood as a real time trap-side diagnostic test for badgers, and describe the effect of vaccination and reduced infection prevalence on test characteristics.
Collapse
Affiliation(s)
- Mark E. Arnold
- Animal and Plant Health Agency Sutton Bonington, Sutton Bonington, Loughborough, England
| | - Emily A. Courcier
- Veterinary Epidemiology Unit, Department of Agriculture, Environment and Rural Affairs, Belfast, Northern Ireland
| | - Lesley A. Stringer
- Veterinary Epidemiology Unit, Department of Agriculture, Environment and Rural Affairs, Belfast, Northern Ireland
| | - Carl M. McCormick
- Veterinary Epidemiology Unit, Department of Agriculture, Environment and Rural Affairs, Belfast, Northern Ireland
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland
| | - Ana V. Pascual-Linaza
- Animal and Plant Health Agency Sutton Bonington, Sutton Bonington, Loughborough, England
| | - Shane F. Collins
- TVR Field Implementation Unit, Department of Agriculture, Environment and Rural Affairs, Newry, Northern Ireland
| | - Nigel A. Trimble
- TVR Field Implementation Unit, Department of Agriculture, Environment and Rural Affairs, Newry, Northern Ireland
| | - Tom Ford
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland
| | - Suzan Thompson
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland
| | - David Corbett
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland
| | - Fraser D. Menzies
- Veterinary Epidemiology Unit, Department of Agriculture, Environment and Rural Affairs, Belfast, Northern Ireland
| |
Collapse
|
16
|
Rajendhran J. Genomic insights into Brucella. INFECTION GENETICS AND EVOLUTION 2020; 87:104635. [PMID: 33189905 DOI: 10.1016/j.meegid.2020.104635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
Brucellosis is a zoonotic disease caused by certain species of Brucella. Each species has its preferred host animal, though it can infect other animals too. For a longer period, only six classical species were recognized in the genus Brucella. No vaccine is available for human brucellosis. Therefore, human brucellosis can be controlled only by controlling brucellosis in animals. The genus is now expanding with the newly isolated atypical strains from various animals, including marine mammals. Presently, 12 species of Brucella have been recognized. The first genome of Brucella was released in 2002, and today, we have more than 1500 genomes of Brucella spp. isolated worldwide. Multiple genome sequences are available for the major zoonotic species, B. abortus, B. melitensis, and B. suis. The Brucella genome has two chromosomes with the approximate sizes of 2.1 and 1.2 Mbp. The genome of Brucella is highly conserved across all the species at the nucleotide level. One of the unanswered questions is what makes host preference in different species of Brucella. Here, I summarize the recent advancements in the Brucella genomics research.
Collapse
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|