1
|
Mahdizade Ari M, Mirkalantari S, Darban-Sarokhalil D, Darbandi A, Razavi S, Talebi M. Investigating the antimicrobial and anti-inflammatory effects of Lactobacillus and Bifidobacterium spp. on cariogenic and periodontitis pathogens. Front Microbiol 2024; 15:1383959. [PMID: 38881669 PMCID: PMC11177620 DOI: 10.3389/fmicb.2024.1383959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of probiotics is emerging as an innovative approach to managing oral health issues and mediating the immune system. The current study assessed the in vitro impacts of non-orally isolated probiotics on periodontitis and tooth decay pathogens. Methods Briefly, the persistence of probiotics in exposure to oral cavity enzymes, hydrogen peroxide, and saliva samples was examined. It was also investigated the biofilm formation and aggregation ability of probiotics, the adherence of probiotics in human gingival fibroblast cell (HGFC) lines and molar teeth samples, and the potential of probiotics to co-aggregate with oral pathogens. Additionally, the current study evaluated the effects of live probiotics on virulence gene expression, biofilm production of main oral pathogens, and changes in inflammation markers. Results The probiotics remained alive when exposed to enzymes in the oral cavity, hydrogen peroxide, and saliva at baseline, 1, 3, and 5 h after incubation at 37°C (p-value <0.05). Probiotics demonstrated to produce biofilm and aggregation, as well as adherence to HGFCs and maxillary molars (p-value >0.05). They showed significant co-aggregation with oral pathogens, which were recorded as 65.57% for B. bifidum 1001 with S. mutans, 50.06% for B. bifidum 1005 with P. gingivalis, 35.6% for L. plantarum 156 with F. nucleatum, and 18.7% for B. longum 1044 with A. actinomycetemcomitans after 8 h of incubation. A balance between pro-inflammatory and anti-inflammatory cytokines, along with inhibition of biofilm formation and changes in virulence gene transcripts, were observed. However, most of these changes were not statistically significant (p-value >0.05). Conclusion This study demonstrated the direct link between adhesiveness, aggregation, and biofilm formation with probiotic antibacterial activity. In addition to the careful selection of suitable probiotic strains, the concentration and origin of probiotic isolates should be considered.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Tannock GW. Understanding the gut microbiota by considering human evolution: a story of fire, cereals, cooking, molecular ingenuity, and functional cooperation. Microbiol Mol Biol Rev 2024; 88:e0012722. [PMID: 38126754 PMCID: PMC10966955 DOI: 10.1128/mmbr.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
SUMMARYThe microbial community inhabiting the human colon, referred to as the gut microbiota, is mostly composed of bacterial species that, through extensive metabolic networking, degrade and ferment components of food and human secretions. The taxonomic composition of the microbiota has been extensively investigated in metagenomic studies that have also revealed details of molecular processes by which common components of the human diet are metabolized by specific members of the microbiota. Most studies of the gut microbiota aim to detect deviations in microbiota composition in patients relative to controls in the hope of showing that some diseases and conditions are due to or exacerbated by alterations to the gut microbiota. The aim of this review is to consider the gut microbiota in relation to the evolution of Homo sapiens which was heavily influenced by the consumption of a nutrient-dense non-arboreal diet, limited gut storage capacity, and acquisition of skills relating to mastering fire, cooking, and cultivation of cereal crops. The review delves into the past to gain an appreciation of what is important in the present. A holistic view of "healthy" microbiota function is proposed based on the evolutionary pathway shared by humans and gut microbes.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Shama S, Ranade AV, Qaisar R, Khan NA, Tauseef I, Elmoselhi A, Siddiqui R. Enhancing microbial diversity as well as multi-organ health in hind-limb unloaded mice. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:62-71. [PMID: 38245349 DOI: 10.1016/j.lssr.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 01/22/2024]
Abstract
During space travel, the gut microbiota is changed which can lead to health-related issues. Previously, we utilized the hind-limb unloaded (HU) mouse, which is an established ground-based in-vivo model of microgravity and observed altered gut microbiota. In this study, we evaluated the beneficial effects of novel bacterial conditioned media in HU mice to understand if they can offset the effects of unloading in the HU mouse model. We aimed to explore the influence of bacterial conditioned media on diversity and quantity of intestinal microbes in HU mice, and investigated the microarchitecture of mice retinas and kidneys to evaluate the potential systemic effects of bacterial conditioned media in HU mice. Four-month-old, male C57/Bl6 mice were separated into groups: including the ground-based control group, the HU group mice fed with vehicle as placebo (HU-placebo mice), and the HU group fed with bacterial conditioned media (HU-CP mice) and kept under controlled environmental conditions for three weeks. Next, mice were sacrificed; gut dissections were conducted, and metagenomic analysis of bacterial species was performed via DNA extraction and 16S rRNA analysis. The results revealed an HU-induced reduction in intestinal microbial diversity, and an increase in pathogenic bacteria dominated by Firmicutes (45%). In contrast, supplementation with bacterial conditioned media for three weeks led to a significant increase in gut microbial diversity with noticeable changes in the OTUs abundance in the HU mice. Additionally, HU-induced muscle weakness and structural abnormalities in the retina and kidney were partially prevented with bacterial conditioned media. Moreover, a greater diversity of several bacteria in the HU-CP was observed including, Bacteriodota, Firmicutes, Proteobacteria, Actionobacteriota, Verrucomicorbiota, Cyanobacteria, Gemmatimonadota, Acidobacteriota, Chloroflexi, Myxococcota, and others. Prospective research involving molecular mechanistic studies are needed to comprehend the systemic effects of bacterial metabolites conditioned media on experimental animal models under chronic stress.
Collapse
Affiliation(s)
- Shama Shama
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates; Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Anu V Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan.
| | - Adel Elmoselhi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey; College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| |
Collapse
|
4
|
Zang T, Han L, Lu Z, Tan L, Liang D, Shen X, Liao X, Liu Y, Ren H, Sun J. The History and Prediction of Prebiotics and Postbiotics: A Patent Analysis. Nutrients 2024; 16:380. [PMID: 38337666 PMCID: PMC10857523 DOI: 10.3390/nu16030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Prebiotics and postbiotics have gained attention as functional food additives due to their substantial influence on the gut microbiome and potential implications for human health on a broader scale. In addition, the number of patents for these additives has also increased, yet their functional classification has been problematic. In this study, we classified 2215 patents granted from 2001 to 2020 by functionality to enable predictions of future development directions. These patents encompassed subjects as diverse as feed supplementation, regulation of intestinal homeostasis, prevention of gastrointestinal ailments, targeted drug administration and augmentation of drug potency. The progression of patents issued during this time frame could be divided into three phases: occasional accounts prior to 2001, a period from 2001 to 2013 during which an average of 42 patents were issued annually, followed by a surge exceeding 140 patents annually after 2013. The latter increase has indicated that pre- and post-biotics have been recognized as biologically relevant. Patent mining therefore can enable forecasts of the future trajectory of these biologics and provide insights to evaluate their advancement. Moreover, this research is the first attempt to generalize and predict the directions of prebiotics and postbiotics using patent information and offers a comprehensive perspective for the potential utilization of prebiotics and postbiotics across a wide variety of fields.
Collapse
Affiliation(s)
- Tao Zang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (T.Z.); (L.H.); (Z.L.); (L.T.); (D.L.); (X.S.); (X.L.); (Y.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Lu Han
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (T.Z.); (L.H.); (Z.L.); (L.T.); (D.L.); (X.S.); (X.L.); (Y.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxiang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (T.Z.); (L.H.); (Z.L.); (L.T.); (D.L.); (X.S.); (X.L.); (Y.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Lulu Tan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (T.Z.); (L.H.); (Z.L.); (L.T.); (D.L.); (X.S.); (X.L.); (Y.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Dunsheng Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (T.Z.); (L.H.); (Z.L.); (L.T.); (D.L.); (X.S.); (X.L.); (Y.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofan Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (T.Z.); (L.H.); (Z.L.); (L.T.); (D.L.); (X.S.); (X.L.); (Y.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (T.Z.); (L.H.); (Z.L.); (L.T.); (D.L.); (X.S.); (X.L.); (Y.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (T.Z.); (L.H.); (Z.L.); (L.T.); (D.L.); (X.S.); (X.L.); (Y.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (T.Z.); (L.H.); (Z.L.); (L.T.); (D.L.); (X.S.); (X.L.); (Y.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (T.Z.); (L.H.); (Z.L.); (L.T.); (D.L.); (X.S.); (X.L.); (Y.L.); (H.R.)
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
5
|
Gao Z, Yin S, Jin K, Nie W, Wang L, Cheng L. Effectiveness and safety of probiotics on patients with severe acute pancreatitis: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e36454. [PMID: 38115294 PMCID: PMC10727534 DOI: 10.1097/md.0000000000036454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND This meta-analysis aimed to assess the efficacy and safety of probiotics in conjunction with early enteral nutrition for the treatment of severe acute pancreatitis (SAP). This study focused on multiple clinical endpoints, including mortality rate, risk of organ failure, and duration of hospital stay. METHODS In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The study adhered to the Patient, Intervention, Comparison, Outcome framework and utilized randomized controlled trials to examine the impact of probiotics on patients with SAP. Data extraction and quality assessment were conducted independently by 2 evaluators, with discrepancies resolved collaboratively, or by a third adjudicator. Statistical analyses were performed using chi-square statistics, I2 metrics, and both fixed- and random-effects models, as dictated by heterogeneity levels. RESULTS The meta-analysis covered 6 randomized controlled trials. Compared to control groups (placebo or standard care without probiotics), probiotics did not significantly reduce mortality rates or organ failure risk. However, they notably shortened hospital stays by a weighted mean difference of -5.49 days (95% confidence interval: -10.40 to -0.58; P = .010). The overall bias risk was low to moderate. CONCLUSIONS Probiotics combined with early enteral nutrition did not significantly improve mortality rates or reduce the risk of organ failure in patients with SAP, but shortened hospital stays. Further studies are required to corroborate these findings.
Collapse
Affiliation(s)
- Zhiling Gao
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Shuomiao Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Kui Jin
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Weiqun Nie
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Longmei Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Ling Cheng
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
6
|
Basiji K, Sendani AA, Ghavami SB, Farmani M, Kazemifard N, Sadeghi A, Lotfali E, Aghdaei HA. The critical role of gut-brain axis microbiome in mental disorders. Metab Brain Dis 2023; 38:2547-2561. [PMID: 37436588 DOI: 10.1007/s11011-023-01248-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
The Gut-brain axis is a bidirectional neural and humoral signaling that plays an important role in mental disorders and intestinal health and connects them as well. Over the past decades, the gut microbiota has been explored as an important part of the gastrointestinal tract that plays a crucial role in the regulation of most functions of various human organs. The evidence shows several mediators such as short-chain fatty acids, peptides, and neurotransmitters that are produced by the gut may affect the brain's function directly or indirectly. Thus, dysregulation in this microbiome community can give rise to several diseases such as Parkinson's disease, depression, irritable bowel syndrome, and Alzheimer's disease. So, the interactions between the gut and the brain are significantly considered, and also it provides a prominent subject to investigate the causes of some diseases. In this article, we reviewed and focused on the role of the largest and most repetitive bacterial community and their relevance with some diseases that they have mentioned previously.
Collapse
Affiliation(s)
- Kimia Basiji
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Aghamohammadi Sendani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ahire JJ, Rohilla A, Kumar V, Tiwari A. Quality Management of Probiotics: Ensuring Safety and Maximizing Health Benefits. Curr Microbiol 2023; 81:1. [PMID: 37935938 DOI: 10.1007/s00284-023-03526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Consumption of probiotics, which are beneficial live microorganisms, has received a lot of attention because of their potential to improve health and wellness. Robust quality control measures are necessary to ensure the safety of probiotics and maximize their health effects. This review delves into the topic of quality management in probiotics, highlighting the significance of sticking to strict guidelines from manufacture to storage to distribution. Probiotic quality standards, Good Manufacturing Practices (GMP) implementation, quality control and testing techniques, and documentation and traceability systems are all discussed in detail. The importance of taking precautions to avoid microbial contamination, meeting all applicable regulations, and clearly marking and packaging probiotic products is also emphasized. In addition, it reviews the clinical evidence supporting the possible health advantages of probiotics and investigates the processes through which probiotics enhance health. The review continues by stressing the significance of educating and informing consumers about probiotics and their proper use in order to maximize health benefits. Probiotics' potential health benefits can be maximized and consumer faith in these helpful microbes can be bolstered by adopting thorough quality management measures to ensure their safety, efficacy, and consistency.
Collapse
Affiliation(s)
- Jayesh J Ahire
- Dr. Reddy's Laboratories Limited, Ameerpet, Hyderabad, 500016, India.
| | - Alka Rohilla
- Faculty of Science, Institute of Biology Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Vikram Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, 131028, India
| | - Amit Tiwari
- Advanced Enzyme Technologies Limited, Sun Magnetica, LIC Service Road, Louiswadi, Thane West, Maharashtra, 400 604, India
| |
Collapse
|
8
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
9
|
Törős G, El-Ramady H, Prokisch J, Velasco F, Llanaj X, Nguyen DHH, Peles F. Modulation of the Gut Microbiota with Prebiotics and Antimicrobial Agents from Pleurotus ostreatus Mushroom. Foods 2023; 12:foods12102010. [PMID: 37238827 DOI: 10.3390/foods12102010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm mushroom contains bioactive compounds with both antimicrobial and prebiotic properties, which are distributed in the mushroom mycelium, fruiting body, and spent substrate. The mushroom is rich in nondigestible carbohydrates like chitin and glucan, which act as prebiotics and support the growth and activity of beneficial gut bacteria, thereby maintaining a healthy balance of gut microbiota and reducing the risk of antibiotic resistance. The bioactive compounds in P. ostreatus mushrooms, including polysaccharides (glucans, chitin) and secondary metabolites (phenolic compounds, terpenoids, and lectins), exhibit antibacterial, antiviral, and antifungal activities. When mushrooms are consumed, these compounds can help preventing the growth and spread of harmful bacteria in the gut, reducing the risk of infections and the development of antibiotic resistance. Nonetheless, further research is necessary to determine the efficacy of P. ostreatus against different pathogens and to fully comprehend its prebiotic and antimicrobial properties. Overall, consuming a diet rich in mushroom-based foods can have a positive impact on human digestion health. A mushroom-based diet can support a healthy gut microbiome and reduce the need for antibiotics.
Collapse
Affiliation(s)
- Gréta Törős
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Animal Husbandry, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Fernando Velasco
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Xhensila Llanaj
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Food Science, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Duyen H H Nguyen
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Food Science, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Dalat 70072, Vietnam
| | - Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| |
Collapse
|
10
|
Pramanik S, Venkatraman S, Karthik P, Vaidyanathan VK. A systematic review on selection characterization and implementation of probiotics in human health. Food Sci Biotechnol 2023; 32:423-440. [PMID: 36911328 PMCID: PMC9992678 DOI: 10.1007/s10068-022-01210-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 01/12/2023] Open
Abstract
Probiotics are live bacteria found in food that assist the body's defence mechanisms against pathogens by reconciling the gut microbiota. Probiotics are believed to aid with gut health, the immune system, and brain function, among other factors. They've furthermore been shown to help with constipation, high blood pressure, and skin issues. The global probiotics market has been incrementally growing in recent years, as consumers' demand for healthy diets and wellness has continued to increase. This has prompted the food industry to develop new probiotic-containing food products, as well as researchers to explore their specific characteristics and impacts on human health. Although most probiotics are fastidious microorganisms that are nutritionally demanding and sensitive to environmental conditions, they become less viable as they are processed and stored. In this review we studied the current literature on the fundamental idea of probiotic bacteria, their medical benefits, and their selection, characterization, and implementations. Graphical Abstract
Collapse
Affiliation(s)
- Shreyasi Pramanik
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| | - Swethaa Venkatraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| | - Pothiyappan Karthik
- Department of Food Biotechnology, Karpagam Academic of Higher Education, Coimbatore, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| |
Collapse
|
11
|
Wu M, Zuo S, Maiorano G, Kosobucki P, Stadnicka K. How to employ metabolomic analysis to research on functions of prebiotics and probiotics in poultry gut health? Front Microbiol 2022; 13:1040434. [PMID: 36452931 PMCID: PMC9701725 DOI: 10.3389/fmicb.2022.1040434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 10/21/2023] Open
Abstract
Gut health can be considered one of the major, manageable constituents of the animal immunity and performance. The fast spread of intestinal diseases, and increase of antimicrobial resistance have been observed, therefore the intestinal health has become not only economically relevant, but also highly important subject addressing the interest of public health. It is expected, that the strategies to control infections should be based on development of natural immunity in animals and producing resilient flocks using natural solutions, whilst eliminating antibiotics and veterinary medicinal products from action. Probiotics and prebiotics have been favored, because they have potential to directly or indirectly optimize intestinal health by manipulating the metabolism of the intestinal tract, including the microbiota. Studying the metabolome of probiotics and gut environment, both in vivo, or using the in vitro models, is required to attain the scientific understanding about the functions of bioactive compounds in development of gut health and life lasting immunity. There is a practical need to identify new metabolites being the key bioactive agents regulating biochemical pathways of systems associated with gut (gut-associated axes). Technological advancement in metabolomics studies, and increasing access to the powerful analytical platforms have paved a way to implement metabolomics in exploration of the effects of prebiotics and probiotics on the intestinal health of poultry. In this article, the basic principles of metabolomics in research involving probiotics and probiotics are introduced, together with the overview of existing strategies and suggestions of their use to study metabolome in poultry.
Collapse
Affiliation(s)
- Mengjun Wu
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Sanling Zuo
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Przemysław Kosobucki
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Katarzyna Stadnicka
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
12
|
Richa, Choudhury AR. Encapsulated probiotic spores as a fortification strategy for development of novel functional beverages. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Prebiotics and the Human Gut Microbiota: From Breakdown Mechanisms to the Impact on Metabolic Health. Nutrients 2022; 14:nu14102096. [PMID: 35631237 PMCID: PMC9147914 DOI: 10.3390/nu14102096] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 12/13/2022] Open
Abstract
The colon harbours a dynamic and complex community of microorganisms, collectively known as the gut microbiota, which constitutes the densest microbial ecosystem in the human body. These commensal gut microbes play a key role in human health and diseases, revealing the strong potential of fine-tuning the gut microbiota to confer health benefits. In this context, dietary strategies targeting gut microbes to modulate the composition and metabolic function of microbial communities are of increasing interest. One such dietary strategy is the use of prebiotics, which are defined as substrates that are selectively utilised by host microorganisms to confer a health benefit. A better understanding of the metabolic pathways involved in the breakdown of prebiotics is essential to improve these nutritional strategies. In this review, we will present the concept of prebiotics, and focus on the main sources and nature of these components, which are mainly non-digestible polysaccharides. We will review the breakdown mechanisms of complex carbohydrates by the intestinal microbiota and present short-chain fatty acids (SCFAs) as key molecules mediating the dialogue between the intestinal microbiota and the host. Finally, we will review human studies exploring the potential of prebiotics in metabolic diseases, revealing the personalised responses to prebiotic ingestion. In conclusion, we hope that this review will be of interest to identify mechanistic factors for the optimization of prebiotic-based strategies.
Collapse
|
14
|
Food biotechnology: Innovations and challenges. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Kumar R, Sood U, Kaur J, Anand S, Gupta V, Patil KS, Lal R. The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 2022; 15:110-128. [PMID: 34713975 PMCID: PMC8719816 DOI: 10.1111/1751-7915.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
What microbiology beholds after a decade and a half in the future requires a vision based on the facts and ongoing trends in research and technological advancements. While the latter, assisted by microbial dark matter, presents a greater potential of creating an upsurge in in-situ and ex-situ rapid microbial detection techniques, this anticipated change will also set forth a revolution in microbial cultivation and diversity analyses. The availability of a microbial genetic toolbox at the expanse will help complement the current understanding of the microbiome and assist in real-time monitoring of the dynamics for detecting the health status of the host with utmost precision. Alongside, in light of the emerging infectious diseases, antimicrobial resistance (AMR) and social demands for safer and better health care alternatives, microbiology laboratories are prospected to drift in terms of the volume and nature of research and outcomes. With today's microbiological lens, one can predict with certainty that in the years to come, microbes will play a significant role in therapeutic treatment and the designing of novel diagnostic techniques. Another area where the scope of microbial application seems to be promising is the use of novel probiotics as a method to offer health benefits whilst promoting metabolic outputs specific for microbiome replenishment. Nonetheless, the evolution of extraterrestrial microbes or the adaptation of earth microbes as extraterrestrial residents are also yet another prominent microbial event one may witness in the upcoming years. But like the two sides of the coin, there is also an urgent need to dampen the bloom of urbanization, overpopulation and global trade and adopting sustainable approaches to control the recurrence of epidemics and pandemics.
Collapse
Affiliation(s)
- Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBihar824234India
| | - Utkarsh Sood
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| | - Jasvinder Kaur
- Department of ZoologyGargi CollegeUniversity of DelhiSiri Fort RoadNew Delhi110049India
| | - Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya CollegeUniversity of DelhiDwarkaNew Delhi110078India
| | - Vipin Gupta
- Indira Paryavaran BhawanMinistry of Environment, Forest and Climate ChangeLodi ColonyNew Delhi110003India
| | - Kishor Sureshbhai Patil
- Department of Biological SciencesP. D. Patel Institute of Applied SciencesCharotar University of Science and Technology (CHARUSAT)ChangaGujarat388421India
| | - Rup Lal
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| |
Collapse
|
16
|
Potential of Inulin-Fructooligosaccharides Extract Produced from Red Onion (Allium cepa var. viviparum (Metz) Mansf.) as an Alternative Prebiotic Product. PLANTS 2021; 10:plants10112401. [PMID: 34834764 PMCID: PMC8624415 DOI: 10.3390/plants10112401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022]
Abstract
Red onion is a popular ingredient in many Thai dishes and has recently been promoted for commercial cultivation. In this study, inulin-fructooligosaccharides (inulin-FOSs) were extracted from red onions in a simplified extraction method. The extract contained 24.00 ± 0.38 g/L free glucose, fructose and sucrose, while the level of FOSs was recorded at 74.0 ± 2.80 g/L with a degree of polymerization of 4.1. The extract was resistant to simulated gastrointestinal conditions, while selectively promoting probiotic lactobacilli. These outcomes resulted in inhibitory effects against various pathogenic bacteria. The in vitro batch culture fermentation of the extract by natural mixed culture indicated that an unknown sugar identified as neokestose was more rapidly fermented than 1-kestose and other longer-chain inulin-FOSs. Notably, neokestose selectively encouraged a bifidogenic effect, specifically in terms of the growth of Bifidobacteirum breve, which is an infant-type probiotic bacterium. This is the first report to state that neokestose could selectively enhance the bifidogenic effect. In summary, inulin-FOSs extract should be recognized as a multifunctional ingredient that can offer benefits in food and pharmaceutical applications.
Collapse
|
17
|
Şenöztop E, Dokuzlu T, Güngörmüşler M. A comprehensive review on the development of probiotic supplemented confectioneries. Z NATURFORSCH C 2021; 77:71-84. [PMID: 34653326 DOI: 10.1515/znc-2021-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/25/2021] [Indexed: 11/15/2022]
Abstract
Probiotics are living organisms that have beneficial effects on host by regulating the microbial balance of the intestinal system. While probiotics are naturally found in yogurt and other fermented foods, they can also be added to many products. Although mostly in dairy products, it is possible to see examples of food products supplemented by probiotics in bakeries, chocolates and confectioneries. Nowadays, the COVID-19 pandemic that the world suffers increased the demand for such functional food products including probiotics. Due to probiotics having potential effects on strengthening the immune system, confectioneries supplemented by probiotics were comprehensively discussed in this review together with the suggestion of a novel gelly composition. The suggested formulation of the product is a gel-like snack contains natural ingredients such as carrot, lemon juice and sugar provided from apples. This research review article provided a guide together with the recommendations for potential probiotic research in candy and confectionery industry.
Collapse
Affiliation(s)
- Eylül Şenöztop
- Department of Food Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| | - Tuğçe Dokuzlu
- Department of Food Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| | - Mine Güngörmüşler
- Department of Genetics and Bioengineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| |
Collapse
|
18
|
Gurram S, Jha DK, Shah DS, Kshirsagar MM, Amin PD. Insights on the Critical Parameters Affecting the Probiotic Viability During Stabilization Process and Formulation Development. AAPS PharmSciTech 2021; 22:156. [PMID: 34008083 DOI: 10.1208/s12249-021-02024-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/27/2021] [Indexed: 12/31/2022] Open
Abstract
Probiotics have gained a lot of interest in recent years as an alternative as well as adjuvant therapy for several conditions owing to their health benefits. These live microorganisms have proven efficacy for treating gut disorders, inflammation, bacterial vaginosis, hepatic and depressive disorders, and many more. There are conventional as well as non-conventional formulations available for the delivery of probiotics with the latter having fewer regulatory guidelines. The conventional formulations include the pharmaceutical formulations specifically designed to deliver an efficacious number of viable microorganisms. Studies have indicated 108-109 CFU/g as an ideal dose of probiotics for achieving health benefits, and hence, all the formulations must at least contain the said number of viable bacteria to show a therapeutic effect. The most crucial feature of probiotic formulations is that the bacteria are prone to several environmental and processing factors which all together reduce the viability of the bacteria in the final formulation. These factors include processing parameters like temperature, humidity, pressure, and storage conditions. Thus, the present review primarily focuses on the critical process parameters affecting the probiotic viability during stabilization process and formulation development. Understanding these factors prior to processing helps in delivering probiotics in the required therapeutic numbers at the target site.
Collapse
|
19
|
De Boeck I, Spacova I, Vanderveken OM, Lebeer S. Lactic acid bacteria as probiotics for the nose? Microb Biotechnol 2021; 14:859-869. [PMID: 33507624 PMCID: PMC8085937 DOI: 10.1111/1751-7915.13759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Several studies have recently pointed towards an increased occurrence and prevalence of several taxa of the lactic acid bacteria (LAB) in the microbiota of the upper respiratory tract (URT) under healthy conditions versus disease. These include several species of the Lactobacillales such as Lacticaseibacillus casei, Lactococcus lactis and Dolosigranulum pigrum. In addition to physiological studies on their potential beneficial functions and their long history of safe use as probiotics in other human body sites, LAB are thus increasingly to be explored as alternative or complementary treatment for URT diseases. This review highlights the importance of lactic acid bacteria in the respiratory tract and their potential as topical probiotics for this body site. We focus on the potential probiotic properties and adaptation factors that are needed for a bacterial strain to optimally exert its beneficial activity in the respiratory tract. Furthermore, we discuss a range of in silico, in vitro and in vivo models needed to obtain better insights into the efficacy and adaptation factors specifically for URT probiotics. Such knowledge will facilitate optimal strain selection in order to conduct rigorous clinical studies with the most suitable probiotic strains. Despite convincing evidence from microbiome association and in vitro studies, the clinical evidence for oral or topical probiotics for common URT diseases such as chronic rhinosinusitis (CRS) needs further substantiation.
Collapse
Affiliation(s)
- Ilke De Boeck
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171AntwerpB‐2020Belgium
| | - Irina Spacova
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171AntwerpB‐2020Belgium
| | - Olivier M. Vanderveken
- ENT, Head and Neck Surgery and Communication DisordersAntwerp University HospitalEdegemBelgium
- Faculty of Medicine and Health SciencesTranslational NeurosciencesUniversity of AntwerpAntwerpBelgium
| | - Sarah Lebeer
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171AntwerpB‐2020Belgium
| |
Collapse
|
20
|
Zepeda-Hernández A, Garcia-Amezquita LE, Requena T, García-Cayuela T. Probiotics, prebiotics, and synbiotics added to dairy products: Uses and applications to manage type 2 diabetes. Food Res Int 2021; 142:110208. [PMID: 33773683 DOI: 10.1016/j.foodres.2021.110208] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus type 2 (T2DM) is associated with hyperglycemia, insulin resistance, and gut dysbiosis. Probiotics and prebiotics can ameliorate T2DM through different mechanisms of action, such as reducing oxidative stress, or the inhibition of pro-inflammatory markers, among others. Multiple studies in vitro and in vivo have demonstrated the reduction of hyperglycemia, depressive behaviors, obesity, oxidative stress, and insulin resistance in diabetic patients through the consumption of dairy products, such as yogurt, fermented milk, and cheese, enriched with potential probiotic strains, prebiotic ingredients, and synbiotics (understood as a combination of both). Therefore, this review aims to provide an updated overview about the impact of dairy foods with probiotics, prebiotics, or synbiotics to prevent and manage T2DM, the mechanism of action related to the host health, and the future tendencies for developing new dairy foods. Despite the addition of probiotics, prebiotics, and synbiotics to dairy products could be highly beneficial, more evidence, especially from clinical trials, is needed to develop evidence-based T2DM prevention guidelines.
Collapse
Affiliation(s)
- Andrea Zepeda-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Luis Eduardo Garcia-Amezquita
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Teresa Requena
- Department of Food Biotechnology and Microbiology. Institute of Food Science Research, CIAL (CSIC), Madrid, Spain
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
21
|
Mithul Aravind S, Wichienchot S, Tsao R, Ramakrishnan S, Chakkaravarthi S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res Int 2021; 142:110189. [PMID: 33773665 DOI: 10.1016/j.foodres.2021.110189] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The beneficial health roles of dietary polyphenols in preventing oxidative stress related chronic diseases have been subjected to intense investigation over the last two decades. As our understanding of the role of gut microbiota advances our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review focused onthe role of different types and sources of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis were discussed with reference to different types and sources of dietary polyphenols. Similarly, the mechanisms behind the health benefits by various polyphenolic metabolites bio-transformed by gut microbiota were also explained. However, further research should focus on the importance of human trials and profound links of polyphenols-gut microbiota-nerve-brain as they provide the key to unlock the mechanisms behind the observed benefits of dietary polyphenols found in vitro and in vivo studies.
Collapse
Affiliation(s)
- S Mithul Aravind
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India
| | - Santad Wichienchot
- Center of Excellence in Functional Food and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Korhong, Hat Yai, Songkhla 90110, Thailand
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| | - S Ramakrishnan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - S Chakkaravarthi
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India.
| |
Collapse
|
22
|
Prete R, Garcia-Gonzalez N, Di Mattia CD, Corsetti A, Battista N. Food-borne Lactiplantibacillus plantarum protect normal intestinal cells against inflammation by modulating reactive oxygen species and IL-23/IL-17 axis. Sci Rep 2020; 10:16340. [PMID: 33004903 PMCID: PMC7529774 DOI: 10.1038/s41598-020-73201-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2020] [Indexed: 01/14/2023] Open
Abstract
Food-associated Lactiplantibacillus plantarum (Lpb. plantarum) strains, previously classified as Lactobacillus plantarum, are a promising strategy to face intestinal inflammatory diseases. Our study was aimed at clarifying the protective role of food-borne Lpb. plantarum against inflammatory damage by testing the scavenging microbial ability both in selected strains and in co-incubation with normal mucosa intestinal cells (NCM460). Here, we show that Lpb. plantarum endure high levels of induced oxidative stress through partially neutralizing reactive oxygen species (ROS), whereas they elicit their production when co-cultured with NCM460. Moreover, pre-treatment with food-borne Lpb. plantarum significantly reduce pro-inflammatory cytokines IL-17F and IL-23 levels in inflamed NCM460 cells. Our results suggest that food-vehicled Lpb. plantarum strains might reduce inflammatory response in intestinal cells by directly modulating local ROS production and by triggering the IL-23/IL-17 axis with future perspectives on health benefits in the gut derived by the consumption of functional foods enriched with selected strains.
Collapse
Affiliation(s)
- Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Natalia Garcia-Gonzalez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Carla D Di Mattia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|