1
|
Simoni A, Schwartz L, Junquera GY, Ching CB, Spencer JD. Current and emerging strategies to curb antibiotic-resistant urinary tract infections. Nat Rev Urol 2024; 21:707-722. [PMID: 38714857 PMCID: PMC11540872 DOI: 10.1038/s41585-024-00877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/23/2024]
Abstract
Rising rates of antibiotic resistance in uropathogenic bacteria compromise patient outcomes and prolong hospital stays. Consequently, new strategies are needed to prevent and control the spread of antibiotic resistance in uropathogenic bacteria. Over the past two decades, sizeable clinical efforts and research advances have changed urinary tract infection (UTI) treatment and prevention strategies to conserve antibiotic use. The emergence of antimicrobial stewardship, policies from national societies, and the development of new antimicrobials have shaped modern UTI practices. Future UTI management practices could be driven by the evolution of antimicrobial stewardship, improved and readily available diagnostics, and an improved understanding of how the microbiome affects UTI. Forthcoming UTI treatment and prevention strategies could employ novel bactericidal compounds, combinations of new and classic antimicrobials that enhance bacterial killing, medications that prevent bacterial attachment to uroepithelial cells, repurposing drugs, and vaccines to curtail the rising rates of antibiotic resistance in uropathogenic bacteria and improve outcomes in people with UTI.
Collapse
Affiliation(s)
- Aaron Simoni
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
| | - Laura Schwartz
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- Department of Pediatrics, Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Guillermo Yepes Junquera
- Department of Pediatrics, Division of Infectious Diseases, Nationwide Children's, Columbus, OH, USA
| | - Christina B Ching
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- Department of Urology, Nationwide Children's, Columbus, OH, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- Department of Pediatrics, Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
2
|
Hafeez S, Rasool Z, Hafeez S, Paracha RZ, Iqbal M, Khan D, Adnan F. Imidazolium, pyridinium and pyrazinium based ionic liquids with octyl side chains as potential antibacterial agents against multidrug resistant uropathogenic E. coli. Heliyon 2024; 10:e39829. [PMID: 39634437 PMCID: PMC11616562 DOI: 10.1016/j.heliyon.2024.e39829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
Urinary tract infections (UTIs) are the second most prevalent infectious disease with E. coli being the most common etiological agent behind these infections, affecting more than 150 million people globally each year. In recent decades, the emergence of multi-drug resistant (MDR) pathogens has rapidly escalated. To combat antimicrobial resistance (AMR), it is important to synthesize new biologically effective alternatives like ionic liquids (ILs) to control the bacterial infection and their spread. Ionic liquids are poorly coordinated organic salts characterized by melting points typically below 100 °C. The ability of ILs to form anionic and cationic interactions contributes to their versatile chemical, physical and biological attributes. In the present study, a total of 9 previously chemically synthesized and characterized ILs were used. For exploration of their antibacterial potential against the urinary tract infections (UTIs) caused by MDR Uropathogenic E. coli (UPEC) strains, in vitro and in vivo evaluation of ILs were performed. ILs showed pronounced zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 29.5 mm, 3.81 μM and 5.08 μM by agar disk diffusion and broth micro-dilution methods, respectively. Scanning electron microscopy results depicted substantial morphological changes in UPEC biofilm formation ascertaining antibiofilm potential of tested ILs. Moreover, ILs showed exceptional antioxidant potential depicted by DPPH assay along with low cytotoxic effect toward mammalian cell lines (NB4), red blood cells and whole blood. Furthermore, the gene expression analysis results justified the antibacterial potential of ILs showing down-regulation of fimH, uvrY and up-regulation of csrA gene in UPEC after ILs treatment. In vivo dermal sensitivity assessment also established their non-cytotoxic behavior. In silico analysis validated these results, with the majority of the compounds exhibiting moderate to good absorption.Due to remarkable antibacterial and antioxidant potential and negligible cytoxicity, it could be inferred that ILs could serve as novel antimicrobial alternative agents in the treatment of UTIs.
Collapse
Affiliation(s)
- Sidrah Hafeez
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Zamar Rasool
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Samia Hafeez
- Pakistan Institute of Medical Sciences (PIMS), Islamabad, 44000, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Science and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muddassir Iqbal
- School of Natural Sciences (SNS), National University of Science and Technology (NUST), Islamabad, 44000, Pakistan
| | - Dilawar Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Fazal Adnan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| |
Collapse
|
3
|
Chen YY, Liu ZS, Chen BY, Tam HMH, Shia WY, Yu HH, Chen PW. Effects of Heat-Killed Probiotic Strains on Biofilm Formation, Transcription of Virulence-Associated Genes, and Prevention of UTIs in Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10399-w. [PMID: 39579303 DOI: 10.1007/s12602-024-10399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Urinary tract infections (UTIs) pose a substantial healthcare challenge, exacerbated by the biofilm-forming abilities and antibiotic resistance of uropathogens. This study investigated the inhibition of biofilm formation (anti-biofilm) and dispersion of pre-established biofilm properties of 18 heat-killed probiotics and their supernatants against four antibiotic-resistant uropathogens: UPEC, Klebsiella pneumoniae (KP), Methicillin-resistant Escherichia coli (MREC), and Methicillin-resistant Staphylococcus pseudintermedius (MRSP). Supernatants from 14 probiotic strains significantly (P < 0.001) inhibited UPEC biofilm formation, reducing it by 20-80%, and also showed promise in removing existing biofilms by 10-60% (P < 0.001). Eight strains significantly (P < 0.05 to < 0.001) inhibited MREC biofilm formation, with four strains achieving 50-80% dispersion. Seventeen strains of heat-killed probiotics directly inhibited UPEC biofilm formation by 10-60% (P < 0.05 to < 0.001), but were less effective against MREC and MRSP (10-50% reduction; P < 0.05 to < 0.001) and had limited impact on KP (10% reduction; P < 0.05 to < 0.001). Notably, heat-killed probiotic like LGA, LGC, LGD, TP-8, and TP-4 showed the most significant inhibitory and dispersion of biofilm activity. RT-qPCR analysis further revealed these inactivated probiotics downregulated genes associated with pili and biofilm formation (fimA, csgA) and upregulated genes linked to quorum sensing (luxS, qseBC, sdiA). Therefore, these findings suggest that paraprobiotic treatment could inhibit the formation of pili and biofilms and promote biofilm dispersion. In an animal model, mice given paraprobiotic formulations I (16 strains) and II (a specific mixture) for 2 weeks showed reduced urinary bacterial load (P < 0.05). Paraprobiotic I notably reduced morbidity from bacteriuria (> 105 CFU/ml) by 5 to 30% within the first 5 days post-infection compared to placebo. These findings highlight the potential of specific heat-killed probiotics in combating biofilms and preventing UTIs.
Collapse
Affiliation(s)
- Yueh-Ying Chen
- Medical Department of Pathology and Laboratory, Yuanshan Branch, Taipei Veterans General Hospital, Yilan, Taiwan
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, 61363, Taiwan
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Bo-Yuan Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Hon-Man-Herman Tam
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Wei-Yau Shia
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Hsin-Hsuan Yu
- Medical Department of Pathology and Laboratory, Yuanshan Branch, Taipei Veterans General Hospital, Yilan, Taiwan
| | - Po-Wen Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung, 40227, Taiwan.
| |
Collapse
|
4
|
den Hoedt S, van Veen FEE, Scheepe JR, Blok BFM. Bladder irrigation with tap water to reduce antibiotic use for urinary tract infections in catheter users. BJU Int 2024. [PMID: 39414620 DOI: 10.1111/bju.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
OBJECTIVE To evaluate the safety and effectiveness of bladder irrigation (BI) with tap water to reduce antibiotic use for the treatment of urinary tract infections (UTIs) in patients with recurrent UTI symptoms and to assess the treatment satisfaction of BI. PATIENTS AND METHODS This prospective, observational study included patients with an indwelling catheter or performing clean intermittent catheterisation (CIC) who had recurrent UTI symptoms between July 2022 and March 2024. BI with tap water was used for the treatment of UTIs without systemic symptoms (e.g., fever, flank pain or delirium). Patients started daily irrigation at the onset of UTI symptoms and used a tapering schedule. The number of antibiotic treatments for UTIs, UTI incidence rate ratio (IRR), UTI-related hospitalisations, treatment satisfaction and quality of life (QoL) were compared between a 3-month period before and after BI with tap water. RESULTS A total of 60 patients were included with a median (interquartile range) age of 64.5 (50.4-72.6) years, 66.7% were male, and 83.3% were performing CIC. Antibiotic use was decreased on average by 38.1% (IRR = 0.62; P = 0.016) and catheter-associated UTIs by 37.9% (IRR = 0.62; P = 0.005). No increase was observed in the incidence of UTIs with systemic symptoms or UTI-related hospitalisations. In addition, no differences were observed in the health-related QoL. The majority of patients were positive about the subjective effectiveness (81%), ease of use (86%) and overall satisfaction (85%) of BI with tap water. CONCLUSION These findings emphasise the potential of BI with tap water as a promising and patient-friendly alternative for the treatment of UTIs in patients with urinary catheters. BI with tap water significantly reduces antibiotic use and UTI incidence in patients with recurrent UTIs and is a safe and patient-friendly alternative that can be easily implemented in the management of UTIs.
Collapse
Affiliation(s)
- Stefan den Hoedt
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Jeroen R Scheepe
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bertil F M Blok
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Golpasand T, Keshvari M, Behzadi P. Distribution of chaperone-usher fimbriae and curli fimbriae among uropathogenic Escherichia coli. BMC Microbiol 2024; 24:344. [PMID: 39271999 PMCID: PMC11401301 DOI: 10.1186/s12866-024-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND In the present study, we aimed to determine the frequency of the csgA, fimH, mrkD, foc, papaGI, papGII and papGIII genes, to provide and to design fimbrial adhesin gene (FAG) patterns and profiles for the isolated uropathogenic Escherichia coli (UPEC) strains. METHODS The enrollment of 108 positive urine samples was performed during seven months, between January 2022 and July 2022. The UPEC strains were confirmed through the standard microbiological and biochemical tests. The antimicrobial susceptibility test was performed through the Kirby-Bauer disc diffusion method. Molecular screening of FAGs was done through the polymerase chain reaction technology. The statistical analyses including chi square and Fisher's exact tests were performed to interpret the obtained results in the present study. RESULTS As the main results, the antimicrobial resistance (AMR) patterns, multi- (MDR) and extensively drug-resistance (XDR) patterns and FAG patterns were designed and provided. fimH (93.3%), csgA (90.4%) and papG (37.5%) (papGII (30.8%)) genes were recognized as the top three FAGs, respectively. Moreover, the frequency of csgA-fimH gene profile was identified as the top FAG pattern (46.2%) among the others. The isolates bearing csgA-fimH gene profile were armed with a versatile of phenotypic AMR patterns. In the current study, 27.8%, 69.4% and 1.9% of the UPEC isolates were detected as extended-spectrum ß-lactamases (ESBLs) producers, MDR and XDR strains, respectively. CONCLUSIONS In conclusion, detection, providing and designing of patterns and profiles in association with FAGs, AMR feature in UPEC strains give us an effective option to have a successful and influential prevention for both of UTIs initiation and AMR feature.
Collapse
Affiliation(s)
- Taha Golpasand
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran
| | - Mohammad Keshvari
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| |
Collapse
|
6
|
Amábile-Cuevas CF, Lund-Zaina S. Non-Canonical Aspects of Antibiotics and Antibiotic Resistance. Antibiotics (Basel) 2024; 13:565. [PMID: 38927231 PMCID: PMC11200725 DOI: 10.3390/antibiotics13060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The understanding of antibiotic resistance, one of the major health threats of our time, is mostly based on dated and incomplete notions, especially in clinical contexts. The "canonical" mechanisms of action and pharmacodynamics of antibiotics, as well as the methods used to assess their activity upon bacteria, have not changed in decades; the same applies to the definition, acquisition, selective pressures, and drivers of resistance. As a consequence, the strategies to improve antibiotic usage and overcome resistance have ultimately failed. This review gathers most of the "non-canonical" notions on antibiotics and resistance: from the alternative mechanisms of action of antibiotics and the limitations of susceptibility testing to the wide variety of selective pressures, lateral gene transfer mechanisms, ubiquity, and societal factors maintaining resistance. Only by having a "big picture" view of the problem can adequate strategies to harness resistance be devised. These strategies must be global, addressing the many aspects that drive the increasing prevalence of resistant bacteria aside from the clinical use of antibiotics.
Collapse
Affiliation(s)
| | - Sofia Lund-Zaina
- Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
7
|
Ruța F, Pribac M, Mardale E, Suciu S, Maior R, Bogdan S, Avram C. Associations between Gut Microbiota Dysbiosis and Other Risk Factors in Women with a History of Urinary Tract Infections. Nutrients 2024; 16:1753. [PMID: 38892685 PMCID: PMC11174854 DOI: 10.3390/nu16111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: Urinary tract infections (UTIs) are among otherwise healthy women represent a problem that requires additional understanding and approaches. Evidencing the link between dysbiosis and UTIs and the associated potential risk factors could lead to therapeutic approaches with increased efficiency under the conditions of reducing the risks associated with antibiotic treatments. The purpose of this study was to evaluate dysbiosis and other potential risk factors in women with a history of urinary tract infections; (2) Methods: Fecal dysbiosis tests were performed comparatively in two groups of women. The first group in-cluded women with recurrent urinary tract infections (rUTI) who had either two or more symp-tomatic episodes of UTI in the previous six months. The second group included women with spo-radic UTIs who did not have >1 UTI during a 12-month period and who did not have another UTI in the last 12 months; (3) Results: An association was shown between intestinal dysbiosis and recurrences of urinary tract infections. Increased body weight was associated with intestinal dysbiosis. Also, the lack of knowledge regarding the risk of using antibiotics and the benefits of probiotics was associated with both dysbiosis and recurrences of urinary tract infections; (4) Conclusions: Dysbiosis can have an impact on the recurrence of urinary tract infections. The risk factors for rUTI and dysbiosis in the sphere of lifestyle are potentially controllable, broadening the perspective for new approaches and changing the paradigm in the treatment of urinary tract infections.
Collapse
Affiliation(s)
- Florina Ruța
- George Emil Palade University of Medicine Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (F.R.); (S.S.)
| | - Mirela Pribac
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | | | - Sara Suciu
- George Emil Palade University of Medicine Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (F.R.); (S.S.)
| | - Raluca Maior
- Anti-Aging Nutrition Clinic, 540142 Targu Mures, Romania;
| | | | - Călin Avram
- George Emil Palade University of Medicine Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (F.R.); (S.S.)
| |
Collapse
|
8
|
Gupta V, Mastromarino P, Garg R. Effectiveness of Prophylactic Oral and/or Vaginal Probiotic Supplementation in the Prevention of Recurrent Urinary Tract Infections: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin Infect Dis 2024; 78:1154-1161. [PMID: 38084984 DOI: 10.1093/cid/ciad766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Widespread antibiotic resistance has sparked interest in the identification of nonantibiotic strategies, particularly probiotics for the prevention of recurrent urinary tract infections (UTIs). We evaluated the effectiveness of prophylactic probiotic supplementation through oral and intravaginal routes in the prevention of recurrent UTIs. METHODS This double-blind, placebo-controlled study enrolled 174 premenopausal women with a history of recurrent UTIs and randomized them to 1 of the 4 treatment groups: placebo (G1, oral placebo + vaginal placebo), oral probiotic (G2, oral lactic acid bacteria and bifidobacteria + vaginal placebo), vaginal probiotic (G3, oral placebo + vaginal lactobacilli), and probiotic combination (oral lactic acid bacteria and bifidobacteria + vaginal lactobacilli), for 4 months. Participants were followed up for symptomatic UTIs for 1 year. The primary end points were the number of symptomatic UTIs at 4 months, the proportion of participants with at least 1 symptomatic UTI, and the time to the first symptomatic UTI. RESULTS The incidence of UTI at 4 months in G1, G2, G3, and G4 was 70.4%, 61.3%, 40.9%, and 31.8%, respectively. The mean number of symptomatic UTI recurrences at 4 months was significantly lower (P < .05) in G3 (1.06) and G4 (1.07) compared with G1 (2.1) and G2 (1.63). Further, the time to first symptomatic UTI (days) was significantly longer (P < .05) in G3 (123.8) and G4 (141.8) compared with G1 (69.3) and G2 (71.9). Probiotic supplementations were well tolerated with no serious adverse events. CONCLUSIONS Prophylactic supplementation with either vaginal probiotics or in combination with oral probiotics demonstrated effectiveness in preventing recurrent symptomatic UTI episodes. CLINICAL TRIALS REGISTRATION Registered at Clinical Trials Registry India (CTRI): CTRI/2014/02/004425 (https://ctri.nic.in).
Collapse
Affiliation(s)
- Varsha Gupta
- Department of Microbiology, Government Medical College and Hospital, Sector-32, Chandigarh, India
| | - Paola Mastromarino
- Department of Public Health Sciences and Infectious Diseases, Section of Microbiology, Sapienza University, Rome, Italy
| | - Ritu Garg
- Department of Microbiology, Dr. B R Ambedkar State Institute of Medical Sciences, Sahibzada Ajit Singh Nagar, Mohali, Punjab, India
| |
Collapse
|
9
|
Lewis AJ, Richards AC, Mendez AA, Dhakal BK, Jones TA, Sundsbak JL, Eto DS, Rousek AA, Mulvey MA. Plant phenolics inhibit focal adhesion kinase and suppress host cell invasion by uropathogenic Escherichia coli. Infect Immun 2024; 92:e0008024. [PMID: 38534100 PMCID: PMC11075462 DOI: 10.1128/iai.00080-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.
Collapse
Affiliation(s)
- Adam J. Lewis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Alejandra A. Mendez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Bijaya K. Dhakal
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Tiffani A. Jones
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Jamie L. Sundsbak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Danelle S. Eto
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Alexis A. Rousek
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Marsh MC, Junquera GY, Stonebrook E, Spencer JD, Watson JR. Urinary Tract Infections in Children. Pediatr Rev 2024; 45:260-270. [PMID: 38689106 DOI: 10.1542/pir.2023-006017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Despite the American Academy of Pediatrics guidelines for the evaluation, treatment, and management of urinary tract infections (UTIs), UTI diagnosis and management remains challenging for clinicians. Challenges with acute UTI management stem from vague presenting signs and symptoms, diagnostic uncertainty, limitations in laboratory testing, and selecting appropriate antibiotic therapy in an era with increasing rates of antibiotic-resistant uropathogens. Recurrent UTI management remains difficult due to an incomplete understanding of the factors contributing to UTI, when to assess a child with repeated infections for kidney and urinary tract anomalies, and limited prevention strategies. To help reduce these uncertainties, this review provides a comprehensive overview of UTI epidemiology, risk factors, diagnosis, treatment, and prevention strategies that may help pediatricians overcome the challenges associated with acute and recurrent UTI management.
Collapse
Affiliation(s)
- Melanie C Marsh
- Division of Hospital Medicine, Department of Pediatrics, Advocate Aurora Atrium Health Systems, Chicago, IL
| | - Guillermo Yepes Junquera
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Infectious Diseases
| | - Emily Stonebrook
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Nephrology and Hypertension, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - John David Spencer
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Nephrology and Hypertension, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Joshua R Watson
- Center for Clinical Excellence, Nationwide Children's Hospital, Columbus, OH
- Division of Infectious Diseases
| |
Collapse
|
11
|
Nasrollahian S, Moradi F, Hadi N, Ranjbar S, Ranjbar R. An update on alternative therapy for Escherichia coli causing urinary tract infections; a narrative review. Photodiagnosis Photodyn Ther 2024; 46:104075. [PMID: 38574879 DOI: 10.1016/j.pdpdt.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Urinary tract infections (UTIs) are the most common type of nosocomial infection and severe health issues because of the difficulties and frequent recurrence. Today, alternative methods such as sonodynamic therapy (SDT), photodynamic therapy (PDT) and herbal materials use for treating infections like UTI in many countries. METHOD We conducted searches of the biomedical databases (Google Scholar, Scopus, PubMed, and Web of sciences) to identify related studies from 2008 to 2023. RESULT SDT aims to use ultrasound to activate a sonosensitizer, which causes a biological effect by raising reactive oxygen species (ROS). When bacteria are exposed to ROS, several important effects occur: oxidative damage, DNA damage, protein dysfunction etc. SDT with herbal medicine significantly reduced the number of colony-forming units and bactericidal activity for Klebsiella pneumonia and E. coli. PDT is a promising treatment for cancer and microbial infections, combining a photosensitiser, light and tissue molecular oxygen. It involves a photosensitizer, light source, and oxygen, with variations affecting microbial binding and bactericidal activity. Factors affecting antibacterial properties include plant type, growing conditions, harvesting, and processing. This review highlights the recent advancements in sonodynamic, photodynamic, herbal, and bio-material-based approaches in the treatment of E. coli infections. CONCLUSIONS These alternative therapies offer exciting prospects for addressing UTIs, especially in cases where traditional antibiotic treatments may be less effective. Further research and clinical studies are warranted to fully explore the potential of these innovative treatment modalities in combating UTIs and improving patient outcomes.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahal Hadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Ranjbar
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Shekari M, Hadi A, Daabo HMA, Allahyari ZH, Hjazi A, Rafie N, Heidari M. Propolis as an adjunctive therapy for treatment of uncomplicated cystitis in women: A randomized double-blind placebo-controlled trial. Phytother Res 2024; 38:520-526. [PMID: 37905787 DOI: 10.1002/ptr.8053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/29/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023]
Abstract
The current research is designed to investigate the effect of propolis supplementation on the clinical manifestations in women suffering from uncomplicated cystitis. In this randomized double-blind, placebo-controlled trial, 120 women with uncomplicated cystitis were selected and randomly assigned into two groups to receive two 500 mg capsules of propolis or placebo daily for 7 days along with ciprofloxacin (250 mg). Clinical symptoms including hematuria, urinary frequency, dysuria, suprapubic pain, and urgency, as well as bacteriuria, were assessed before and after the intervention. After supplementation, participants in the intervention group had significantly fewer days of urinary frequency (p < 0.001), dysuria (p = 0.005), and urgency (p = 0.03). However, there was no significant difference between the two groups regarding hematuria and suprapubic pain (p > 0.05). Furthermore, the severity of bacteriuria decreased significantly in both groups. In conclusion, it seems that propolis supplementation in women with uncomplicated cystitis could improve urinary frequency, dysuria, and urgency. However, further clinical trials should be conducted to fully understand the effects of propolis in women suffering from uncomplicated cystitis.
Collapse
Affiliation(s)
- Mahdi Shekari
- Department of Nutrition, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Amir Hadi
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | | | - Zahra Haj Allahyari
- Department of Nursing, Faculty of Nursing and Midwifery, Qom University of Medical Sciences, Qom, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nahid Rafie
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Heidari
- Department of Urology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
13
|
Van VTH, Liu ZS, Hsieh YJ, Shiu WC, Chen BY, Ku YW, Chen PW. Therapeutic effects of orally administration of viable and inactivated probiotic strains against murine urinary tract infection. J Food Drug Anal 2023; 31:583-598. [PMID: 38526818 PMCID: PMC10962665 DOI: 10.38212/2224-6614.3474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/15/2023] [Indexed: 03/27/2024] Open
Abstract
Urinary tract infections (UTIs) are highly prevalent bacterial infections that pose significant health risks. Specific probiotic strains have been recommended for UTI control and management of antibiotic resistance. Otherwise, para-probiotics, defined as inactivated probiotic cells, offer potential advantages by minimizing risks associated with live microorganisms. However, the effectiveness of heat-killed probiotic strains against UTIs remains uncertain. Additionally, lactoferrin (LF), an iron-binding glycoprotein, exhibits immunomodulatory, antimicrobial, and anti-inflammatory properties. Recently, we had developed recombinant LF-expression probiotics, which can display considerate antibacterial activities against select food-borne pathogens in vitro. Thus, the present study aimed to evaluate the antibacterial activities of heat-killed natural and recombinant LF-expressing probiotics against UTIs in vitro and in vivo. Firstly, using in vitro assays, we assessed the antibacterial activity of heat-killed natural and recombinant LF-expressing probiotics against uropathogenic Escherichia coli and Klebsiella pneumoniae. Among the tested probiotics, 10 heat-killed LF-expressing strains displayed superior antibacterial efficacy compared to 12 natural probiotics. Based on their potent in vitro activity, selected probiotics were formulated into three probiotic mixtures: viable probiotic mixture (LAB), heat-killed probiotic mixture (HK-LAB), and heat-killed LF-expressing probiotic mixture (HK-LAB/LF). To further evaluate the therapeutic potential of these probiotic mixtures in vivo, we established a murine model of UTIs by intraurethral administration of E. coli to 40 female C57BL/6JNarl mice on day 0. Subsequently, mice received oral gavage of placebo, LAB, HK-LAB, or HK-LAB/LF for 21 consecutive days (n = 8 per group). An additional control group (n = 8) received ampicillin treatment for 7 days. To assess protective effects against re-infection or UTI relapse, all mice were challenged with E. coli on day 22 and E. coli plus K. pneumoniae on day 25. Results from the murine UTI model demonstrated that placebo administration did not reduce bacteriuria throughout the experiment. Conversely, supplementation with ampicillin, HK-LAB/LF, HK-LAB, or LAB significantly (p < 0.05) reduced daily bacteriuria by 103 to 104-fold on days 1, 3, 5, and 14, respectively. Furthermore, all four therapeutic treatments improved the bacteriological cure rate (BCR) with varying levels of efficacy. For the 7-day treatment course, the BCR was 25% (placebo), 62.5% (ampicillin), 37.5% (LAB), 37.5% (HK-LAB), and 62.5% (HK-LAB/LF). For the 21-day treatment course, the BCR was 25% (placebo), 75% (ampicillin), 37.5% (LAB), 37.5% (HK-LAB), and 75% (HK-LAB/LF). Notably, HK-LAB and HK-LAB/LF demonstrated superior therapeutic efficacy compared to viable LAB in treating UTIs. Overall, regarding BCR, the three probiotic mixtures can provide benefits against UTI in mice, but ampicillin therapy remains the most efficient among the four treatments. Furthermore, there was no significant difference between pre- and post-challenge courses for the two instances of re-challenging uropathogens in all mice groups, as bacteriuria levels remained below 103 CFU/mL, implying that adaptive responses of mice may help reduce the risk of recurrent UTIs. In conclusion, our results provide new evidence that oral administration of heat-killed probiotic mixtures can confer significant therapeutic efficacy against UTIs in a murine model.
Collapse
Affiliation(s)
- Vo Thi Hong Van
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40249,
Taiwan
| | - Zhen-Shu Liu
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363,
Taiwan
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301,
Taiwan
| | - Yueh-Jen Hsieh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40249,
Taiwan
| | - Wei-Chen Shiu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40249,
Taiwan
| | - Bo-Yuan Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40249,
Taiwan
| | - Yu-We Ku
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40249,
Taiwan
- Animal and Plant Disease Control Center Yilan County, Wujie Township, Yilan County 268015,
Taiwan
| | - Po-Wen Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40249,
Taiwan
| |
Collapse
|
14
|
Adejumo SA, Oli AN, ROWAIYE AB, IGBOKWE NH, EZEJIEGU CK, YAHAYA ZS. Immunomodulatory Benefits of Probiotic Bacteria: A Review of Evidence. OBM GENETICS 2023; 07:1-73. [DOI: 10.21926/obm.genet.2304206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Over the past few decades, probiotics have emerged as a viable medical tool for preventing and/or treating diseases. This narrative review provides recent findings on Probiotics and their benefits on the host immune system. It also highlights the specific mechanisms through which probiotics mediate those benefits. The study also explores the topical or systemic probiotic administration method. Authors screened databases like Google Scholar, Web of Science, PubMed, Scopus, and China National Knowledge Infrastructure database, using various keyword combinations such as: “probiotic” AND “Immunomodulation” OR “probiotic” AND “Immunoregulation” OR “probiotic” AND “Immunostimulation”, for relevant literature written in English only. The review shows that probiotics can regulate the host immune system, including regulating T cells, dendritic cells, intestinal epithelial cells, and several signal pathways, and confer health benefits. Although several clinical trials also revealed the prospects and efficacy of probiotics as immunomodulators and treatment of diseases, there is a need for thorough future investigations on the effectiveness of specific strains of probiotics involved in immunomodulation.
Collapse
|
15
|
Lewis AJ, Richards AC, Mendez AA, Dhakal BK, Jones TA, Sundsbak JL, Eto DS, Mulvey MA. Plant Phenolics Inhibit Focal Adhesion Kinase and Suppress Host Cell Invasion by Uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568486. [PMID: 38045282 PMCID: PMC10690256 DOI: 10.1101/2023.11.23.568486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic and polyphenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here we tested a panel of four well-studied phenolic compounds - caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate - for effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses, and likely contribute to the development of chronic and recurrent infections. Using cell culture-based assays, we found that only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK, or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model, and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.
Collapse
Affiliation(s)
- Adam J. Lewis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| | - Alejandra A. Mendez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| | - Bijaya K. Dhakal
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tiffani A. Jones
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jamie L. Sundsbak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Danelle S. Eto
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
Schwartz L, de Dios Ruiz-Rosado J, Stonebrook E, Becknell B, Spencer JD. Uropathogen and host responses in pyelonephritis. Nat Rev Nephrol 2023; 19:658-671. [PMID: 37479904 PMCID: PMC10913074 DOI: 10.1038/s41581-023-00737-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections seen in clinical practice. The ascent of UTI-causing pathogens to the kidneys results in pyelonephritis, which can trigger kidney injury, scarring and ultimately impair kidney function. Despite sizable efforts to understand how infections develop or are cleared in the bladder, our appreciation of the mechanisms by which infections develop, progress or are eradicated in the kidney is limited. The identification of virulence factors that are produced by uropathogenic Escherichia coli to promote pyelonephritis have begun to fill this knowledge gap, as have insights into the mechanisms by which kidney tubular epithelial cells oppose uropathogenic E. coli infection to prevent or eradicate UTIs. Emerging data also illustrate how specific cellular immune responses eradicate infection whereas other immune cell populations promote kidney injury. Insights into the mechanisms by which uropathogenic E. coli circumvent host immune defences or antibiotic therapy to cause pyelonephritis is paramount to the development of new prevention and treatment strategies to mitigate pyelonephritis and its associated complications.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Juan de Dios Ruiz-Rosado
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily Stonebrook
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
17
|
Kostev K, Cai T. Cystitis and Utipro ® Plus: Real-World Evidence. Healthcare (Basel) 2023; 11:2564. [PMID: 37761761 PMCID: PMC10531070 DOI: 10.3390/healthcare11182564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The emergence of drug resistance in the etiological agents of uncomplicated urinary tract infections (UTIs) emphasizes the need to shift the paradigm towards alternative therapeutic strategies. The objective of the present study was to evaluate the use of a medical device containing xyloglucan, hibiscus, and propolis for reducing UTI symptomatic episodes, antibiotic prescription, and days of sick leave. MATERIALS AND METHODS It used retrospective, cross-sectional study data provided by office-based physicians from Germany (Disease Analyzer, IQVIA database), including those on 3586 patients with a diagnosis of UTI treated with Utipro® Plus (Noventure, Barcelona, Spain) from January 2015 to December 2020. RESULTS The majority of patients were women (94.2%) and had a mean age (standard deviation, SD) of 57.7 years (19.0). Within 12 months after the prescription and compared to the 12 months before, it was observed that there was a reduction in the proportion of patients with at least one UTI diagnosis (from 79.4% to 36.4%, p < 0.001), in antibiotic prescriptions (from 33.5% to 22.1%, p < 0.001), and in the proportion of patients with at least one day of sick leave (from 4.1% to 2.7%). CONCLUSIONS The use of Utipro® Plus is able to decrease UTI recurrence and can lead to the reduction of antibiotic prescriptions and disease burden in individuals affected by uncomplicated cystitis.
Collapse
Affiliation(s)
- Karel Kostev
- Epidemiology, IQVIA S.L., 60549 Frankfurt am Main, Germany
- Department of Gynecology and Obstetrics, University Hospital Marburg, Philipps-University Marburg, 35043 Marburg, Germany
| | - Tommaso Cai
- Department of Urology, Santa Chiara Hospital, 38122 Trento, Italy;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
18
|
Jo SJ, Kwon J, Kim SG, Lee SJ. The Biotechnological Application of Bacteriophages: What to Do and Where to Go in the Middle of the Post-Antibiotic Era. Microorganisms 2023; 11:2311. [PMID: 37764155 PMCID: PMC10534921 DOI: 10.3390/microorganisms11092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Amid the escalating challenges of antibiotic resistance, bacterial infections have emerged as a global threat. Bacteriophages (phages), viral entities capable of selectively infecting bacteria, are gaining momentum as promising alternatives to traditional antibiotics. Their distinctive attributes, including host specificity, inherent self-amplification, and potential synergy with antibiotics, render them compelling candidates. Phage engineering, a burgeoning discipline, involves the strategic modification of bacteriophages to enhance their therapeutic potential and broaden their applications. The integration of CRISPR-Cas systems facilitates precise genetic modifications, enabling phages to serve as carriers of functional genes/proteins, thereby enhancing diagnostics, drug delivery, and therapy. Phage engineering holds promise in transforming precision medicine, addressing antibiotic resistance, and advancing diverse applications. Emphasizing the profound therapeutic potential of phages, this review underscores their pivotal role in combatting bacterial diseases and highlights their significance in the post-antibiotic era.
Collapse
Affiliation(s)
- Su Jin Jo
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Kwon
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City 54596, Republic of Korea
| | - Sang Guen Kim
- Department of Biological Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Seung-Jun Lee
- Department of Pharmaceutical Science and Engineering, Seowon University, 377-3 Musimseoro, Seowon-gu, Cheong-ju City 28674, Republic of Korea
| |
Collapse
|
19
|
Fusco A, Savio V, Chiaromonte A, Alfano A, D’Ambrosio S, Cimini D, Donnarumma G. Evaluation of Different Activity of Lactobacillus spp. against Two Proteus mirabilis Isolated Clinical Strains in Different Anatomical Sites In Vitro: An Explorative Study to Improve the Therapeutic Approach. Microorganisms 2023; 11:2201. [PMID: 37764044 PMCID: PMC10534642 DOI: 10.3390/microorganisms11092201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) and catheter-associated UTIs (CAUTIs) are the principal hospital-acquired infections. Between these, bacterial prostatitis is believed to be the leading cause of recurrent UTIs in men under 50 years of age and is often unresponsive to antibiotic treatment. Proteus mirabilis is more commonly associated with UTIs in these abnormalities, especially in patients undergoing catheterization. Lactobacillus spp. are an important component of the human microbiota and occur in large quantities in foods. Probiotics are proposed as an alternative to antibiotic therapy in the treatment of urinary tract infections. In addition to their ability to produce antimicrobial metabolites, they have immunomodulatory activity and do not cause side effects. For this reason, the combination of probiotic microorganisms and conventional drugs was considered. The aim of this work was to select the most active Lactobacillus strains against two clinical isolates of P. mirabilis on bladder and prostatic epithelium, potentially exploitable to improve the clinical management of UTIs.
Collapse
Affiliation(s)
- Alessandra Fusco
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.S.); (A.C.); (A.A.); (D.C.)
| | | | | | | | | | | | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.S.); (A.C.); (A.A.); (D.C.)
| |
Collapse
|
20
|
Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023; 11:2169. [PMID: 37764013 PMCID: PMC10537683 DOI: 10.3390/microorganisms11092169] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections, especially among women and older adults, leading to a significant global healthcare cost burden. Uropathogenic Escherichia coli (UPEC) are the most common cause and accounts for the majority of community-acquired UTIs. Infection by UPEC can cause discomfort, polyuria, and fever. More serious clinical consequences can result in urosepsis, kidney damage, and death. UPEC is a highly adaptive pathogen which presents significant treatment challenges rooted in a complex interplay of molecular factors that allow UPEC to evade host defences, persist within the urinary tract, and resist antibiotic therapy. This review discusses these factors, which include the key genes responsible for adhesion, toxin production, and iron acquisition. Additionally, it addresses antibiotic resistance mechanisms, including chromosomal gene mutations, antibiotic deactivating enzymes, drug efflux, and the role of mobile genetic elements in their dissemination. Furthermore, we provide a forward-looking analysis of emerging alternative therapies, such as phage therapy, nano-formulations, and interventions based on nanomaterials, as well as vaccines and strategies for immunomodulation. This review underscores the continued need for research into the molecular basis of pathogenesis and antimicrobial resistance in the treatment of UPEC, as well as the need for clinically guided treatment of UTIs, particularly in light of the rapid spread of multidrug resistance.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland
| |
Collapse
|
21
|
Arafi V, Hasani A, Sadeghi J, Varshochi M, Poortahmasebi V, Hasani A, Hasani R. Uropathogenic Escherichia coli endeavors: an insight into the characteristic features, resistance mechanism, and treatment choice. Arch Microbiol 2023; 205:226. [PMID: 37156886 DOI: 10.1007/s00203-023-03553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are the strains diverted from the intestinal status and account mainly for uropathogenicity. This pathotype has gained specifications in structure and virulence to turn into a competent uropathogenic organism. Biofilm formation and antibiotic resistance play an important role in the organism's persistence in the urinary tract. Increased consumption of carbapenem prescribed for multidrug-resistant (MDR) and Extended-spectrum-beta lactamase (ESBL)-producing UPECs, has added to the expansion of resistance. The World Health Organization (WHO) and Centre for Disease Control (CDC) placed the Carbapenem-resistant Enterobacteriaceae (CRE) on their treatment priority lists. Understanding both patterns of pathogenicity, and multiple drug resistance may provide guidance for the rational use of anti-bacterial agents in the clinic. Developing an effective vaccine, adherence-inhibiting compounds, cranberry juice, and probiotics are non-antibiotical approaches proposed for the treatment of drug-resistant UTIs. We aimed to review the distinguishing characteristics, current therapeutic options and promising non-antibiotical approaches against ESBL-producing and CRE UPECs.
Collapse
Affiliation(s)
- Vahid Arafi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Varshochi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
22
|
Rezaei M, Esmaeili F, Reza Asadi Karam M, Ehsani P, Abbasnezhad Farsangi Z, Bouzari S. In silico design and in vivo evaluation of two multi-epitope vaccines containing build-in adjuvant with chitosan nanoparticles against uropathogenic Escherichia coli. Int Immunopharmacol 2023; 117:109999. [PMID: 37012877 DOI: 10.1016/j.intimp.2023.109999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Urinary pathogenic Escherichia coli (UPEC) is one of the most important bacterial causes of urinary tract infections (UTIs). Rising antimicrobial resistance and serious clinical challenges such as persistent and recurrent UTIs make it a serious public health concern. Therefore, preventative approaches such as vaccinations are required. METHODS In this study, we selected three conserve and protective antigens (FdeC, Hma and UpaB) and also subunit B of cholera toxin (as build-in adjuvant) to design two multi-epitope vaccines (construct B containing B cell epitopes and construct T containing T epitopes) using different bioinformatics methods. The expression of the recombinant protein was performed using the BL21(DE3)/pET28 expression system and purified through a Ni-NTA column. Vaccine proteins were encapsulated in chitosan nanoparticles (CNP) based on ionic gelation via a microfluidic system. Mice were immunized intranasally with different vaccine formulations. Antibody responses and also cytokine expression (IFN-γ and IL-4) were measured by ELISA and real-time PCR respectively. The effectiveness of immune responses was assessed by bladder challenge. RESULTS Based on the in silico study, construct B and construct T have high confidence value and stable structure in vivo. High yield expression of both constructs was confirmed by SDS-PAGE and western blot assay. Immunization of mice with construct B induced strong Th2 (IgG1 and IL4) responses and construct T shift immune responses to Th1 (IFNγ and IgG2a). Vaccine protein-encapsulated CNP elicited higher levels of antibodies and cell-mediated responses than the vaccine proteins alone. CONCLUSIONS The results of this study suggest that intranasal administration of the construct B has the potential to enhance humoral immunity and construct T has the potential to stimulate cellular immunity. In addition, the combination of CTB as a build-in adjuvant and CNP can be proposed as a potent adjuvant for the development of a novel vaccine against UTI.
Collapse
Affiliation(s)
- Maryam Rezaei
- Department of Molecular Biology, Pasteur institute of Iran, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur institute of Iran, Tehran, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur institute of Iran, Tehran, Iran.
| |
Collapse
|
23
|
Bai YB, Yang XR, Li B, Zhou XZ, Wang WW, Cheng FS, Zhang JY. Virtual Screening and In Vitro Experimental Verification of LuxS Inhibitors for Escherichia coli O157:H7. Microbiol Spectr 2023; 11:e0350222. [PMID: 36809060 PMCID: PMC10100900 DOI: 10.1128/spectrum.03502-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 is an important foodborne pathogen that forms biofilms. In this study, three quorum-sensing (QS) inhibitors (M414-3326, 3254-3286, and L413-0180) were obtained through virtual screening, and their in vitro antibiofilm activities were validated. Briefly, the three-dimensional structure model of LuxS was constructed and characterized using the SWISS-MODEL. High-affinity inhibitors were screened from the ChemDiv database (1,535,478 compounds) using LuxS as a ligand. Five compounds (L449-1159, L368-0079, M414-3326, 3254-3286, and L413-0180) with a good inhibitory effect (50% inhibitory concentration <10 μM) on type II QS signal molecule autoinducer-2 (AI-2) were obtained using a AI-2 bioluminescence assay. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties predicated that the five compounds had high intestinal absorption levels (high) and plasma protein binding (absorbent strong) and did not inhibit the metabolism of CYP2D6 metabolic enzymes. In addition, molecular dynamics simulation showed that compounds L449-1159 and L368-0079 could not stably bind with LuxS. Thus, these compounds were excluded. Furthermore, surface plasmon resonance results showed that the three compounds could specifically bind to LuxS. IN addition, the three compounds could effectively inhibit the biofilm formation without affecting the growth and metabolism of the bacteria. Finally, the reverse transcription-quantitative PCR results showed that the three compounds downregulated the expression of the LuxS gene. Overall, these results revealed that the three compounds obtained through virtual screening could inhibit biofilm formation of E. coli O157:H7 and are potential LuxS inhibitors that can be used to treat E. coli O157:H7 infections. IMPORTANCE E. coli O157:H7 is a foodborne pathogen of public health importance. Quorum sensing (QS) is a form of bacterial communication that can regulate various group behaviors, including biofilm formation. Here, we identified three QS AI-2 inhibitors (M414-3326, 3254-3286, and L413-0180) that can stably and specifically bind to LuxS protein. The three QS AI-2 inhibitors inhibited biofilm formation without affecting the growth and metabolic activity of E. coli O157:H7. The three QS AI-2 inhibitors are promising agents for treating E. coli O157:H7 infections. Further studies to identify the mechanism of the three QS AI-2 inhibitors are needed to develop new drugs to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Yu-Bin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu, People’s Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu, People’s Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Xiao-Rong Yang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu, People’s Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu, People’s Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu, People’s Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu, People’s Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Xu-Zheng Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu, People’s Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu, People’s Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Wei-Wei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu, People’s Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu, People’s Republic of China
| | - Fu-Sheng Cheng
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu, People’s Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu, People’s Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Ji-Yu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu, People’s Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu, People’s Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
24
|
Pothoven R. Management of urinary tract infections in the era of antimicrobial resistance. Drug Target Insights 2023; 17:126-137. [PMID: 38124759 PMCID: PMC10731245 DOI: 10.33393/dti.2023.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common infections globally, imposing a substantial personal and economic burden on individuals and health resources. Despite international health concerns and sustained public awareness campaigns about the emergence of resistant microorganisms through the inappropriate therapeutic use of antimicrobial agents, the problem of antimicrobial resistance (AMR) is worsening, and AMR in UTIs represents a critical global healthcare issue. This narrative review summarizes evidence-based scientific material, recommendations from the current medical literature, and the latest clinical guidelines on antibiotic and antibiotic-sparing strategies for managing urological infections, including practical approaches to improve the management of patients with acute and recurrent UTIs (rUTIs) in routine clinical practice. Novel emerging therapies and prophylaxis options are described as potential alternatives to overcome the abuse and overuse of antibiotics and the practical application of the guideline recommendations and issues relating to best practice in managing UTIs.
Collapse
Affiliation(s)
- Ria Pothoven
- Florence and Andros Gynos Klinieken, The Hague, The Netherlands
| |
Collapse
|
25
|
Miranda-Novales G, Flores-Moreno K, López-Vidal Y, Ponce de León-Rosales S. Limited Therapeutic Options in Mexico for the Treatment of Urinary Tract Infections. Antibiotics (Basel) 2022; 11:antibiotics11111656. [PMID: 36421299 PMCID: PMC9687036 DOI: 10.3390/antibiotics11111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
The rise in antimicrobial resistance (AMR) has complicated the management of urinary tract infections (UTIs). The objective of this study was to evaluate the antimicrobial susceptibility patterns of Escherichia coli and Klebsiella pneumoniae. Design: prospective observational study. Bacteria were classified as susceptible or resistant to ampicillin-sulbactam, amikacin, gentamicin, ciprofloxacin, norfloxacin, nitrofurantoin, trimethoprim-sulfamethoxazole (TMP/SMZ), ertapenem, meropenem, and fosfomycin. The sensitivity to fosfomycin and chloramphenicol was evaluated by the disk diffusion method. Statistical analysis: the chi-square test and Fisher’s exact test were used to compare differences between categories. A p value < 0.05 was considered statistically significant. Isolates were collected from January 2019 to November 2020 from 21 hospitals and laboratories. A total of 238 isolates were received: a total of 156 E. coli isolates and 82 K. pneumoniae isolates. The majority were community-acquired infections (64.1%). Resistance was >20% for beta-lactams, aminoglycosides, fluoroquinolones, and TMP/SMZ. For E. coli isolates, resistance was <20% for amikacin, fosfomycin, and nitrofurantoin; for K. pneumoniae, amikacin, fosfomycin, chloramphenicol, and norfloxacin. All were susceptible to carbapenems. K. pneumoniae isolates registered a higher proportion of extensively drug-resistant bacteria in comparison with E. coli (p = 0.0004). In total, multidrug-resistant bacteria represented 61% of all isolates. Isolates demonstrated high resistance to beta-lactams, fluoro-quinolones, and TMP/SMZ.
Collapse
Affiliation(s)
- Guadalupe Miranda-Novales
- Analysis and Synthesis of Evidence Research Unit, Mexican Institute of Social Security, Mexico City 06720, Mexico
- Microbiome Laboratory, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
- Correspondence: ; Tel.: +52-55-4026-7372
| | - Karen Flores-Moreno
- Microbiome Laboratory, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
| | - Yolanda López-Vidal
- Microbiology and Parasitology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
| | | | | |
Collapse
|
26
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
27
|
Bai YB, Shi MY, Wang WW, Wu LY, Bai YT, Li B, Zhou XZ, Zhang JY. Novel quorum sensing inhibitor Echinatin as an antibacterial synergist against Escherichia coli. Front Microbiol 2022; 13:1003692. [PMID: 36386683 PMCID: PMC9663819 DOI: 10.3389/fmicb.2022.1003692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/14/2022] [Indexed: 12/05/2022] Open
Abstract
A new antibacterial strategy based on inhibiting bacterial quorum sensing (QS) has emerged as a promising method of attenuating bacterial pathogenicity and preventing bacterial resistance to antibiotics. In this study, we screened Echinatin (Ech) with high-efficiency anti-QS from 13 flavonoids through the AI-2 bioluminescence assay. Additionally, crystal violet (CV) staining combined with confocal laser scanning microscopy (CLSM) was used to evaluate the effect of anti-biofilm against Escherichia coli (E. coli). Further, the antibacterial synergistic effect of Ech and marketed antibiotics were measured by broth dilution and Alamar Blue Assay. It was found that Ech interfered with the phenotype of QS, including biofilm formation, exopolysaccharide (EPS) production, and motility, without affecting bacterial growth and metabolic activity. Moreover, qRT-PCR exhibited that Ech significantly reduced the expression of QS-regulated genes (luxS, pfs, lsrB, lsrK, lsrR, flhC, flhD, fliC, csgD, and stx2). More important, Ech with currently marketed colistin antibiotics (including colistin B and colistin E) showed significantly synergistically increased antibacterial activity in overcoming antibiotic resistance of E. coli. In summary, these results suggested the potent anti-QS and novel antibacterial synergist candidate of Ech for treating E. coli infections.
Collapse
Affiliation(s)
- Yu-Bin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Meng-Yan Shi
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wei-Wei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ling-Yu Wu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu-Ting Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xu-Zheng Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ji-Yu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China,*Correspondence: Ji-Yu Zhang,
| |
Collapse
|
28
|
Molecular Factors and Mechanisms Driving Multidrug Resistance in Uropathogenic Escherichia coli-An Update. Genes (Basel) 2022; 13:genes13081397. [PMID: 36011308 PMCID: PMC9407594 DOI: 10.3390/genes13081397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
The rapid emergence of multidrug-resistant (MDR) bacteria indisputably constitutes a major global health problem. Pathogenic Escherichia coli are listed among the most critical group of bacteria that require fast development of new antibiotics and innovative treatment strategies. Among harmful extraintestinal Enterobacteriaceae strains, uropathogenic E. coli (UPEC) pose a significant health threat. UPEC are considered the major causative factor of urinary tract infection (UTI), the second-most commonly diagnosed infectious disease in humans worldwide. UTI treatment places a substantial financial burden on healthcare systems. Most importantly, the misuse of antibiotics during treatment has caused selection of strains with the ability to acquire MDR via miscellaneous mechanisms resulting in gaining resistance against many commonly prescribed antibiotics like ampicillin, gentamicin, cotrimoxazole and quinolones. Mobile genetic elements (MGEs) such as transposons, integrons and conjugative plasmids are the major drivers in spreading resistance genes in UPEC. The co-occurrence of various bacterial evasion strategies involving MGEs and the SOS stress response system requires further research and can potentially lead to the discovery of new, much-awaited therapeutic targets. Here, we analyzed and summarized recent discoveries regarding the role, mechanisms, and perspectives of MDR in the pathogenicity of UPEC.
Collapse
|
29
|
Urinary Tract Infections Caused by Uropathogenic Escherichia coli Strains—New Strategies for an Old Pathogen. Microorganisms 2022; 10:microorganisms10071425. [PMID: 35889146 PMCID: PMC9321218 DOI: 10.3390/microorganisms10071425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common infections worldwide. Uropathogenic Escherichia coli (UPECs) are the main causative agent of UTIs. UPECs initially colonize the human host adhering to the bladder epithelium. Adhesion is followed by the bacterial invasion of urothelial epithelial cells where they can replicate to form compact aggregates of intracellular bacteria with biofilm-like properties. UPEC strains may persist within epithelial urothelial cells, thus acting as quiescent intracellular bacterial reservoirs (QIRs). It has been proposed that host cell invasion may facilitate both the establishment and persistence of UPECs within the human urinary tract. UPEC strains express a variety of virulence factors including fimbrial and afimbrial adhesins, invasins, iron-acquisition systems, and toxins, which cooperate to the establishment of long lasting infections. An increasing resistance rate relative to the antibiotics recommended by current guidelines for the treatment of UTIs and an increasing number of multidrug resistant UPEC isolates were observed. In order to ameliorate the cure rate and improve the outcomes of patients, appropriate therapy founded on new strategies, as alternative to antibiotics, needs to be explored. Here, we take a snapshot of the current knowledge of coordinated efforts to develop innovative anti-infective strategies to control the diffusion of UPECs.
Collapse
|
30
|
Mat Rani NNI, Alzubaidi ZM, Butt AM, Mohammad Faizal NDF, Sekar M, Azhari H, Mohd Amin MCI. Outer membrane vesicles as biomimetic vaccine carriers against infections and cancers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1784. [PMID: 35194964 DOI: 10.1002/wnan.1784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
In the last decade, nanoparticle-based therapeutic modalities have emerged as promising treatment options for cancer and infectious diseases. To improve prognosis, chemotherapeutic and antimicrobial drugs must be delivered selectively to the target sites. Researchers have increasingly focused their efforts on improving drug delivery, with a particular emphasis on cancer and infectious diseases. When drugs are administered systemically, they become diluted and can diffuse to all tissues but only until the immune system intervenes and quickly removes them from circulation. To enhance and prolong the systemic circulation of drugs, nanocarriers have been explored and used; however, nanocarriers have a major drawback in that they can trigger immune responses. Numerous nanocarriers for optimal drug delivery have been developed using innovative and effective biointerface technologies. Autologous cell-derived drug carriers, such as outer membrane vesicles (OMVs), have demonstrated improved bioavailability and reduced toxicity. Thus, this study investigates the use of biomimetic OMVs as biomimetic vaccine carriers against infections and cancers to improve our understanding in the field of nanotechnology. In addition, discussion on the advantages, disadvantages, and future prospects of OMVs will also be explored. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Zahraa M Alzubaidi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Adeel Masood Butt
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nur Dini Fatini Mohammad Faizal
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
In Vitro and In Vivo Assessments of Two Newly Isolated Bacteriophages against an ST13 Urinary Tract Infection Klebsiella pneumoniae. Viruses 2022; 14:v14051079. [PMID: 35632820 PMCID: PMC9144312 DOI: 10.3390/v14051079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance represents a major public health concern requiring new alternatives including phage therapy. Klebsiella pneumoniae belongs to the ESKAPE bacteria and can cause urinary tract infections (UTIs). The aims of this study were to isolate and characterize new bacteriophages against a K. pneumoniae strain isolated from UTIs and to assess their efficacy in vitro and in vivo in a Galleria (G.) mellonella larvae model. For this purpose, two bacteriophages were newly isolated against an ST13 K. pneumoniae strain isolated from a UTI and identified as K3 capsular types by wzi gene PCR. Genomic analysis showed that these bacteriophages, named vB_KpnP_K3-ULINTkp1 and vB_KpnP_K3-ULINTkp2, belong to the Drulisvirus genus. Bacteriophage vB_KpnP_K3-ULINTkp1 had the narrowest host spectrum (targeting only K3), while vB_KpnP_K3-ULINTkp2 also infected other Klebsiella types. Short adsorption times and latent periods were observed for both bacteriophages. In vivo experiments showed their ability to replicate in G. mellonella larvae and to decrease host bacterial titers. Moreover, both bacteriophages improved the survival of the infected larvae. In conclusion, these two bacteriophages had different in vitro properties and showed in vivo efficacy in a G. mellonella model with a better efficiency for vB_KpnP_K3-ULINTkp2.
Collapse
|
32
|
Asare KK, Amoah S, Coomson CA, Banson C, Yaro D, Mbata J, Arthur RA, Mayeem PB, Afrifa J, Bentsi-Enchill F, Opoku YK. Antibiotic-resistant pathogenic bacterial isolates from patients attending the outpatient department of university of Cape Coast hospital, Ghana: A retrospective study between 2013-2015. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000417. [PMID: 36962199 PMCID: PMC10021532 DOI: 10.1371/journal.pgph.0000417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/08/2022] [Indexed: 11/18/2022]
Abstract
Uropathogenic Escherichia coli (E. coli) is an important urinary tract infection (UTI) that has been associated with both complicated and uncomplicated disease conditions. The global emergence of multiple drug-resistant (MDR) and extended-spectrum β-lactamase (ESBL) is of public health concern as the resistance limits the current treatment options. The objective of this study was to analyze the antibiotic-resistant patterns among the uropathogenic E. coli isolates at the University of Cape Coast (UCC) hospital between 2013 and 2015 as baseline data to understand the current antibiotic resistance situation within UCC and its environs. A retrospective cross-sectional study of bacteria isolates at UCC hospital from January 2013 to December 2015 were analyzed. A standard biochemical and antibiotic susceptibility tests were performed using Kirby-Bauer NCCLs modified disc diffusion technique. The network of interaction between pathogenic isolates and antibiotic resistance was performed using Cytoscape software. Statistical significance was tested using ANOVA and one-sample Wilcoxon test. The overall E. coli prevalence was 15.76% (32/203); females had the highest infection of 17.33% (26/150) compared to male subjects who had 11.32% (6/53) out of all the pathogenic infections. The E. coli prevalence among the age categories were 2/21 (9.52%), 27/154 (17.53%) and 4/21 (19.05%) among ≤20 years, 21-40 years and 41-60 years respectively. The isolated resistant pathogens exhibited different antibiotic resistance patterns. An interaction network of nodes connecting to other nodes indicating positive correlations between the pathogens and antibiotic resistance was established. Escherichia coli, Citrobacter spp, Klebsiella spp among other isolated pathogens formed higher centrality in the network of interaction with antibiotic resistance. The individual E. coli isolates showed a significant difference in the mean ± SD (95% CI) pattern of antibiotic resistance, 2.409±1.205 (1.828-2.990), χ2 = 36.68, p<0.0001. In conclusion, the study reports the interaction of E. coli isolates at UCC hospital and its antibiotic-resistant status between 2013 and 2015. This data forms the baseline information for assessing the current antibiotic status in UCC and its environs.
Collapse
Affiliation(s)
- Kwame Kumi Asare
- Dept. of Biomedical Science, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Amoah
- Laboratory Unit, University of Cape Coast Hospital, Cape Coast, Ghana
| | - Cornelius Agyeman Coomson
- Dept. of Biomedical Science, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Cecil Banson
- Laboratory Unit, University of Cape Coast Hospital, Cape Coast, Ghana
| | - Derrick Yaro
- Dept. of Biomedical Science, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jennifer Mbata
- Dept. of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | | | | | - Justice Afrifa
- Department of Medical Laboratory Science, University of Cape Coast, Cape Coast, Ghana
| | - Felicity Bentsi-Enchill
- Dept. of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Yeboah Kwaku Opoku
- Dept. of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| |
Collapse
|
33
|
Abstract
The bladder is a major component of the urinary tract, an organ system that expels metabolic waste and excess water, which necessitates proximity to the external environment and its pathogens. It also houses a commensal microbiome. Therefore, its tissue immunity must resist pathogen invasion while maintaining tolerance to commensals. Bacterial infection of the bladder is common, with half of women globally experiencing one or more episodes of cystitis in their lifetime. Despite this, our knowledge of bladder immunity, particularly in humans, is incomplete. Here we consider the current view of tissue immunity in the bladder, with a focus on defense against infection. The urothelium has robust immune functionality, and its defensive capabilities are supported by resident immune cells, including macrophages, dendritic cells, natural killer cells, and γδ T cells. We discuss each in turn and consider why adaptive immune responses are often ineffective in preventing recurrent infection, as well as areas of priority for future research.
Collapse
Affiliation(s)
- Georgina S Bowyer
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Kevin W Loudon
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
34
|
Ala-Jaakkola R, Laitila A, Ouwehand AC, Lehtoranta L. Role of D-mannose in urinary tract infections - a narrative review. Nutr J 2022; 21:18. [PMID: 35313893 PMCID: PMC8939087 DOI: 10.1186/s12937-022-00769-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/04/2022] [Indexed: 12/27/2022] Open
Abstract
Urinary tract infections (UTIs) are one of the most prevalent bacterial diseases worldwide. Despite the efficacy of antibiotics targeted against UTI, the recurrence rates remain significant among the patients. Furthermore, the development of antibiotic resistance is a major concern and creates a demand for alternative treatment options. D-mannose, a monosaccharide naturally found in fruits, is commonly marketed as a dietary supplement for reducing the risk for UTIs. Research suggests that supplemented D-mannose could be a promising alternative or complementary remedy especially as a prophylaxis for recurrent UTIs. When excreted in urine, D-mannose potentially inhibits Escherichia coli, the main causative organism of UTIs, from attaching to urothelium and causing infection. In this review, we provide an overview of UTIs, E. coli pathogenesis and D-mannose and outline the existing clinical evidence of D-mannose in reducing the risk of UTI and its recurrence. Furthermore, we discuss the potential effect mechanisms of D-mannose against uropathogenic E.coli.
Collapse
Affiliation(s)
- Reeta Ala-Jaakkola
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460, Kantvik, Finland
| | - Arja Laitila
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460, Kantvik, Finland
| | - Arthur C Ouwehand
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460, Kantvik, Finland.
| | - Liisa Lehtoranta
- Health & Biosciences, International Flavors & Fragrances, Sokeritehtaantie 20, FIN-02460, Kantvik, Finland
| |
Collapse
|
35
|
Bhukta S, Samal SK, Vasudevan S, Sarveswari HB, Shanmugam K, Princy SA, Dandela R. A Prospective Diversity of Antibacterial Small Peptidomimetic and Quorum Sensing Mediated Drug: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Swadhapriya Bhukta
- Institute of Chemical Technology-Indian Oil Odisha Campus Department of Industrial and Engineering Chemistry Bhubaneswar 751013 Odisha India
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies Indian Council of Medical Research-Regional Medical Research Center Bhubaneswar 751013 Odisha India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - S. Adline Princy
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - Rambabu Dandela
- Institute of Chemical Technology-Indian Oil Odisha Campus Department of Industrial and Engineering Chemistry Bhubaneswar 751013 Odisha India
| |
Collapse
|
36
|
Ghani R, Mullish BH, Roberts LA, Davies FJ, Marchesi JR. The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases. Gut Microbes 2022; 14:2038856. [PMID: 35230889 PMCID: PMC8890388 DOI: 10.1080/19490976.2022.2038856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal microbiota is recognized to play a role in the defense against infection, but conversely also acts as a reservoir for potentially pathogenic organisms. Disruption to the microbiome can increase the risk of invasive infection from these organisms; therefore, strategies to restore the composition of the gut microbiota are a potential strategy of key interest to mitigate this risk. Fecal (or Intestinal) Microbiota Transplantation (FMT/IMT), is the administration of minimally manipulated screened healthy donor stool to an affected recipient, and remains the major 'whole microbiome' therapeutic approach at present. Driven by the marked success of using FMT in the treatment of recurrent Clostridioides difficile infection, the potential use of FMT in treating other infectious diseases is an area of active research. In this review, we discuss key examples of this treatment based on recent findings relating to the interplay between microbiota and infection, and potential further exploitations of FMT/IMT.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lauren A. Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Frances J. Davies
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
37
|
De Seta F, Johnson Z, Stabile G, Martin A, Larsen B. Rational development and evaluation of novel formulations for urinary health. Eur J Obstet Gynecol Reprod Biol 2021; 269:90-97. [PMID: 34979364 DOI: 10.1016/j.ejogrb.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/23/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Urinary tract infections (UTI) among women form a substantial part of medical practice and both patients and medical professionals have an interest in non-antibiotic treatments and preventative measures. This research provides preliminary data on a multi-functional composition, DAPAD, which explored several biologic activities of relevance to UTI. STUDY DESIGN This formulation included D-mannose, citric acid, three prebiotic compounds, and extracts of dandelion and astragalus. Studies performed employed 4 bacterial strains that have relevance to UTI including E. coli, Proteus mirabilis, Streptococcus agalactiae and Enterococcus faecalis. RESULTS Key findings from in vitro studies included: DAPAD at full- and half-strength inhibited growth of all UTI bacteria. Evidence for D-mannose agglutination of E. coli was demonstrated. D-mannose also showed unexpected effects on bacterial membrane integrity with vital staining and modest growth restriction. We did not demonstrate growth inhibition by dandelion or astragalus extracts but the latter showed diminished cytokine elaboration by bladder epithelial cells. CONCLUSION DAPAD is a multifunctional composition that may warrant further development as a UTI treatment or preventive if supported by clinical evaluation.
Collapse
Affiliation(s)
- Francesco De Seta
- Department of Medical Sciences, University of Trieste, Institute for Maternal and Child Health- IRCCS, Burlo Garofolo, Trieste, Italy
| | - Zoe Johnson
- OB/GYN PGY1, Metro Health Hospital, Wyoming, MI, USA
| | - Guglielmo Stabile
- Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy.
| | | | - Bryan Larsen
- Marian University College of Osteopathic Medicine (Retired), Indianapolis, IN, USA
| |
Collapse
|
38
|
Hyun M, Lee JY, Kim HA. Differences of virulence factors, and antimicrobial susceptibility according to phylogenetic group in uropathogenic Escherichia coli strains isolated from Korean patients. Ann Clin Microbiol Antimicrob 2021; 20:77. [PMID: 34758824 PMCID: PMC8579644 DOI: 10.1186/s12941-021-00481-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Escherichia coli is among the most common uropathogens. Increased antibiotic resistance in Gram negative bacilli is global concern. Alternative therapeutic options including vaccines against uropathogenic E. coli (UPEC) have been developed. In this study, we compared the genotypic characteristics and antimicrobial susceptibility of UPEC according to phylogenetic groups. Methods We retrospectively reviewed the medical records of pyelonephritis patients with UPEC between February 2015 and June 2018. The study was conducted at a medical center in Korea. We compared the clinical and genotypic characteristics of UPEC according to phylogenetic groups. The phylogenetic groups and 29 virulence factors were identified using multiplex polymerase chain reaction. Results Phylogenetic group analysis revealed that most uropathogenic E. coli belonged to groups B2 and D: B2 (276, 77.7%), D (62, 17.5%), B1 (12, 3.4%), and A (5, 1.4%). Among the virulence factors, fyuA, fimH, traT, iutA, papG allele II, and papC were the most frequently observed. Phylogenetic group B2 was more closely related to virulence factors, including fimH, sfa/focED, focG, hlyA, cnf1, fyuA, and PAI, than group D. Groups B2 and D showed similar clinical presentations and complications. Group B2 had mostly healthcare-associated infections and antimicrobial resistance. Group D mostly had community-acquired infections. The K1 serotype was prevalent in group B2, and K5 was the most prevalent in group D. Conclusions Phylogenetic group B2 had more proportions and types of virulence factors than group D. Group B2 showed a high presentation of virulence factors related to adhesions and toxins. An increased presentation of antimicrobial resistance and healthcare-associated infections was also noted. Considering the genetic characteristics of UPEC, alternative therapeutic options targeting frequent virulence factors might be considered in addition to antibiotics.
Collapse
Affiliation(s)
- Miri Hyun
- Department of Infectious Diseases, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea.,Institute for Medical Science, Keimyung University, Daegu, Korea
| | - Ji Yeon Lee
- Department of Infectious Diseases, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea.,Institute for Medical Science, Keimyung University, Daegu, Korea
| | - Hyun Ah Kim
- Department of Infectious Diseases, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea. .,Institute for Medical Science, Keimyung University, Daegu, Korea.
| |
Collapse
|
39
|
Virulence Genes Profile and Antimicrobial Susceptibility of Community-Acquired Bacterial Urinary Tract Infections in a Brazilian Hospital. Curr Microbiol 2021; 78:3913-3923. [PMID: 34522976 DOI: 10.1007/s00284-021-02650-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Urinary tract infections (UTI) are one of the most common diseases worldwide and Escherichia coli is the most common causative bacteria. Empirical treatment is challenging due to antimicrobial or multidrug-resistance. The aims of this study were to determine the uropathogens and their antimicrobial susceptibility profile, as well as to identify the phylogroups and virulence genes of E. coli strains, associated with community-acquired UTI in outpatients admitted at a Brazilian Hospital in southeast Brazil. In total, 47 bacterial strains were isolated from 47 patients, 44 women and 2 men (no gender record from one patient). The age of the patients whose urine culture were positive varied from 0 (less than one month) to 104 years. Most of the isolates were E. coli (41/47), followed by Klebsiella pneumoniae (2/47), Klebsiella variicola/Klebsiella aerogenes (1/47), Pseudomonas aeruginosa (1/47), Proteus mirabilis (1/47), and Citrobacter koseri (1/47). Most E. coli strains were classified as phylogroup B2 (15/41 = 36.59%) and B1 (12/41 = 29.27%) and the most common virulence genes among E. coli strains were fimH (31/41 = 75.61%), iutA (21/41 = 51.22%), and tratT (16/41 = 39.02%). Among the E. coli strains, 59% were multidrug-resistance and strains that were ampicillin, sulfamethoxazole/trimethoprim, or tetracycline-resistant exhibited more chance to be multidrug-resistance, with an odds ratio of 100.00 [95% confidence interval (CI) 9.44-1059.26], 22.50 (95% CI 3.95-128.30), and 12.83 (95% CI 2.68-61.45), respectively. Our results showed that E. coli was the main etiological agent identified and demonstrated high frequency of multidrug-resistance and virulence factors in bacterial strains isolated from UTIs.
Collapse
|
40
|
Gupta S, Kumar P, Rathi B, Verma V, Dhanda RS, Devi P, Yadav M. Targeting of Uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC. Sci Rep 2021; 11:17801. [PMID: 34493749 PMCID: PMC8423837 DOI: 10.1038/s41598-021-97224-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Urinary tract infections (UTI) are the most common infectious diseases in the world. It is becoming increasingly tough to treat because of emergence of antibiotic resistance. So, there is an exigency to develop novel anti-virulence therapeutics to combat multi-drug resistance pathogenic strains. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) discovery has revolutionized the gene editing technology for targeted approach. The greatest obstacle for CRISPR/Cas9 is cargo delivery systems and both viral and plasmid methods have disadvantages. Here, we report a highly efficient novel CRISPR based gene editing strategy, CRISPR-dots for targeting virulence factor Fimbrial Adhesion (papG gene), the bacterial adhesion molecule. Carbon quantum dots (CQD) were used as a delivery vehicle for Cas9 and gRNA into CFT073, a UPEC strain. CQDs were covalently conjugated to cas9 and papG-targeted guide RNA (gRNA) forming a nanocomplex CRISPR-dots (Cri-dots) as confirmed by DLS and transmission electron microscopy. Cri-dots-papG significantly targeted papG as demonstrated by decrease in the expression of papG.Further papG deficient UPEC had significantly reduced adherence ability and biofilm forming ability as demonstrated by fluorescence microscopy and scanning electron microscopy. Also, papG deficient UPEC had reduced virulence as shown by significantly increased survival of Caenorhabditis elegans (C. elegans) worms compared to UPEC. Our findings suggest that targeting of papG gene using Cri-dots nanocomplexes significantly reduced the pathogenicity of UPEC. Thus, Cri-dots nanocomplex offer a novel anti-bacterial strategy against multi-drug resistant UPEC.
Collapse
Affiliation(s)
- Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Parveen Kumar
- Department of Urology, University of Alabama at Birmingham, Hugh Kaul Genetics Building, Birmingham, AL, USA
| | - Bhawna Rathi
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | | | - Pooja Devi
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, India
| | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India.
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| |
Collapse
|
41
|
Antonelli G, Cappelli L, Cinelli P, Cuffaro R, Manca B, Nicchi S, Tondi S, Vezzani G, Viviani V, Delany I, Scarselli M, Schiavetti F. Strategies to Tackle Antimicrobial Resistance: The Example of Escherichia coli and Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:4943. [PMID: 34066555 PMCID: PMC8125385 DOI: 10.3390/ijms22094943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon called antimicrobial resistance (AMR). Nowadays, AMR represents a critical health threat, for which new medical interventions are urgently needed. By 2050, it is estimated that the leading cause of death will be through untreatable AMR pathogens. Although antibiotics remain a first-line treatment, non-antibiotic therapies such as prophylactic vaccines and therapeutic monoclonal antibodies (mAbs) are increasingly interesting alternatives to limit the spread of such antibiotic resistant microorganisms. For the discovery of new vaccines and mAbs, the search for effective antigens that are able to raise protective immune responses is a challenging undertaking. In this context, outer membrane vesicles (OMV) represent a promising approach, as they recapitulate the complete antigen repertoire that occurs on the surface of Gram-negative bacteria. In this review, we present Escherichia coli and Pseudomonas aeruginosa as specific examples of key AMR threats caused by Gram-negative bacteria and we discuss the current status of mAbs and vaccine approaches under development as well as how knowledge on OMV could benefit antigen discovery strategies.
Collapse
Affiliation(s)
- Giada Antonelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Luigia Cappelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Paolo Cinelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Cuffaro
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Benedetta Manca
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Sonia Nicchi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Serena Tondi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Viola Viviani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Isabel Delany
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Maria Scarselli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Francesca Schiavetti
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| |
Collapse
|
42
|
Scaglione F, Musazzi UM, Minghetti P. Considerations on D-mannose Mechanism of Action and Consequent Classification of Marketed Healthcare Products. Front Pharmacol 2021; 12:636377. [PMID: 33762956 PMCID: PMC7982833 DOI: 10.3389/fphar.2021.636377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Abstract
Urinary tract infections (UTIs) are very common disorders that affect adult women. Indeed, 50% of all women suffer from UTIs at least one time in their lifetime; 20-40% of them experience recurrent episodes. The majority of UTIs seems to be due to uropathogenic Escherichia coli that invades urothelial cells and forms quiescent bacterial reservoirs. Recurrences of UTIs are often treated with non-prescribed antibiotics by the patients, with increased issues connected to antibiotics resistance. D-mannose, a monosaccharide that is absorbed but not metabolized by the human body, has been proposed as an alternative approach for managing UTIs since it can inhibit the bacterial adhesion to the urothelium. This manuscript discusses the mechanisms through which D-mannose acts to highlight the regulatory aspects relevant for determining the administrative category of healthcare products placed on the market. The existing literature permits to conclude that the anti-adhesive effect of D-mannose cannot be considered as a pharmacological effect and, therefore, D-mannose-based products should be classified as medical devices composed of substances.
Collapse
Affiliation(s)
- Francesco Scaglione
- Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, Milan, Italy
- Clinical Pharmacology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Umberto M. Musazzi
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
43
|
Qindeel M, Barani M, Rahdar A, Arshad R, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Urinary Tract Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:546. [PMID: 33671511 PMCID: PMC7926703 DOI: 10.3390/nano11020546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
The diagnosis and treatment of urinary tract infections (UTIs) remain challenging due to the lack of convenient assessment techniques and to the resistance to conventional antimicrobial therapy, showing the need for novel approaches to address such problems. In this regard, nanotechnology has a strong potential for both the diagnosis and therapy of UTIs via controlled delivery of antimicrobials upon stable, effective and sustained drug release. On one side, nanoscience allowed the production of various nanomaterial-based evaluation tools as precise, effective, and rapid procedures for the identification of UTIs. On the other side, nanotechnology brought tremendous breakthroughs for the treatment of UTIs based on the use of metallic nanoparticles (NPs) for instance, owing to the antimicrobial properties of metals, or of surface-tailored nanocarriers, allowing to overcome multidrug-resistance and prevent biofilm formation via targeted drug delivery to desired sites of action and preventing the development of cytotoxic processes in healthy cells. The goal of the current study is therefore to present the newest developments for the diagnosis and treatment of UTIs based on nanotechnology procedures in relation to the currently available techniques.
Collapse
Affiliation(s)
- Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg. 37, D-66421 Homburg, Germany
| |
Collapse
|
44
|
Martin-Cruz L, Sevilla-Ortega C, Benito-Villalvilla C, Diez‐Rivero CM, Sanchez-Ramón S, Subiza JL, Palomares O. A Combination of Polybacterial MV140 and Candida albicans V132 as a Potential Novel Trained Immunity-Based Vaccine for Genitourinary Tract Infections. Front Immunol 2021; 11:612269. [PMID: 33552074 PMCID: PMC7858650 DOI: 10.3389/fimmu.2020.612269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Recurrent urinary tract infections (RUTIs) and recurrent vulvovaginal candidiasis (RVVCs) represent major healthcare problems with high socio-economic impact worldwide. Antibiotic and antifungal prophylaxis remain the gold standard treatments for RUTIs and RVVCs, contributing to the massive rise of antimicrobial resistance, microbiota alterations and co-infections. Therefore, the development of novel vaccine strategies for these infections are sorely needed. The sublingual heat-inactivated polyvalent bacterial vaccine MV140 shows clinical efficacy for the prevention of RUTIs and promotes Th1/Th17 and IL-10 immune responses. V132 is a sublingual preparation of heat-inactivated Candida albicans developed against RVVCs. A vaccine formulation combining both MV140 and V132 might well represent a suitable approach for concomitant genitourinary tract infections (GUTIs), but detailed mechanistic preclinical studies are still needed. Herein, we showed that the combination of MV140 and V132 imprints human dendritic cells (DCs) with the capacity to polarize potent IFN-γ- and IL-17A-producing T cells and FOXP3+ regulatory T (Treg) cells. MV140/V132 activates mitogen-activated protein kinases (MAPK)-, nuclear factor-κB (NF-κB)- and mammalian target of rapamycin (mTOR)-mediated signaling pathways in human DCs. MV140/V132 also promotes metabolic and epigenetic reprogramming in human DCs, which are key molecular mechanisms involved in the induction of innate trained immunity. Splenocytes from mice sublingually immunized with MV140/V132 display enhanced proliferative responses of CD4+ T cells not only upon in vitro stimulation with the related antigens contained in the vaccine formulation but also upon stimulation with phytohaemagglutinin. Additionally, in vivo sublingual immunization with MV140/V132 induces the generation of IgG and IgA antibodies against all the components contained in the vaccine formulation. We uncover immunological mechanisms underlying the potential mode of action of a combination of MV140 and V132 as a novel promising trained immunity-based vaccine (TIbV) for GUTIs.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/immunology
- Antigens, Fungal/administration & dosage
- Antigens, Fungal/immunology
- Bacterial Infections/immunology
- Bacterial Infections/metabolism
- Bacterial Infections/microbiology
- Bacterial Infections/prevention & control
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Candidiasis, Vulvovaginal/immunology
- Candidiasis, Vulvovaginal/metabolism
- Candidiasis, Vulvovaginal/microbiology
- Candidiasis, Vulvovaginal/therapy
- Cells, Cultured
- Coculture Techniques
- Cytokines/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Female
- Fungal Vaccines/administration & dosage
- Fungal Vaccines/immunology
- Humans
- Lymphocyte Activation/drug effects
- Mice, Inbred BALB C
- Phenotype
- Urinary Tract Infections/immunology
- Urinary Tract Infections/metabolism
- Urinary Tract Infections/microbiology
- Urinary Tract Infections/prevention & control
- Vaccination
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/immunology
- Mice
Collapse
Affiliation(s)
- Leticia Martin-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Carmen Sevilla-Ortega
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | | | - Silvia Sanchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, ENT and Ophthalmology, School of Medicine, Complutense University, Madrid, Spain
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| |
Collapse
|
45
|
Fazly Bazzaz BS, Darvishi Fork S, Ahmadi R, Khameneh B. Deep insights into urinary tract infections and effective natural remedies. AFRICAN JOURNAL OF UROLOGY 2021. [DOI: 10.1186/s12301-020-00111-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Urinary tract infection (UTI) is a common occurrence in females, during pregnancy, and in peri- and postmenopausal women.
UTIs are associated with significant morbidity and mortality, and they affect the quality of life of the affected patients. Antibiotic therapy is an effective approach and reduces the duration of symptoms. Development of resistance, adverse effects of antibiotics, and other associated problems lead to establishing the research framework to find out the alternative approaches in controlling UTIs. Natural approaches have been extensively used for the management of various diseases to improve symptoms and also improve general health.
Main body
Different databases were employed to identify studies reporting on natural options including herbal medicines, vitamins, trace elementals, sugars, and probiotics without time limitations.
Conclusion
Herbal medicines can be effective at the first sign of the infection and also for short-term prophylaxis. Using vitamins, trace elementals, and/or sugars is an effective approach in preventing UTIs, and a combination of them with other antibacterial agents shows positive results. Probiotics have great potential for the threat of antibiotic over-usage and the prevalence of antibiotic-resistant microorganisms. This study may be of use in developing the efficient formulation of treatment of UTI.
Collapse
|
46
|
The Role of Gut, Vaginal, and Urinary Microbiome in Urinary Tract Infections: From Bench to Bedside. Diagnostics (Basel) 2020; 11:diagnostics11010007. [PMID: 33375202 PMCID: PMC7822161 DOI: 10.3390/diagnostics11010007] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
The current paradigm of urinary tract infection (UTI) pathogenesis takes into account the contamination of the periurethral space by specific uropathogens residing in the gut, which is followed by urethral colonization and pathogen ascension to the urinary bladder. Consequently, studying the relationship between gut microbiota and the subsequent development of bacteriuria and UTI represents an important field of research. However, the well-established diagnostic and therapeutic paradigm for urinary tract infections (UTIs) has come into question with the discovery of a multifaceted, symbiotic microbiome in the healthy urogenital tract. More specifically, emerging data suggest that vaginal dysbiosis may result in Escherichia coli colonization and prompt recurrent UTIs, while urinary microbiome perturbations may precede the development of UTIs and other pathologic conditions of the urinary system. The question is whether these findings can be exploited for risk reduction and treatment purposes. This review aimed to appraise the three aforementioned specific microbiomes regarding their potential influence on UTI development by focusing on the recent studies in the field and assessing the potential linkages between these different niches, as well as evaluating the state of translational research for novel therapeutic and preventative approaches.
Collapse
|
47
|
Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Górski A. Phage Prevalence in the Human Urinary Tract-Current Knowledge and Therapeutic Implications. Microorganisms 2020; 8:microorganisms8111802. [PMID: 33212807 PMCID: PMC7696197 DOI: 10.3390/microorganisms8111802] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Recent metagenomic analyses imply an immense abundance of phages in the human body. Samples collected from different sites (lungs, skin, oral cavity, intestines, ascitic fluid, and urine) reveal a generally greater number of phage particles than that of eukaryotic viruses. The presence of phages in those tissues and fluids reflects the paths they must overcome in the human body, but may also relate to the health statuses of individuals. Besides shaping bacterial metabolism and community structure, the role of phages circulating in body fluids has not been fully understood yet. The lack of relevant reports is especially visible with regard to the human urobiome. Certainly, phage presence and the role they have to fulfill in the human urinary tract raises questions on potential therapeutic connotations. Urinary tract infections (UTIs) are among the most common bacterial infections in humans and their treatment poses a difficult therapeutic dilemma. Despite effective antibiotic therapy, these infections tend to recur. In this review, we summarized the recent data on phage presence in the human urinary tract and its possible implications for health and disease.
Collapse
Affiliation(s)
- Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ż.); (B.W.-D.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, Medical University of Warsaw, 02-005 Warsaw, Poland
- Correspondence:
| |
Collapse
|
48
|
Lavigne JP, Ranfaing J, Dunyach-Rémy C, Sotto A. Synergistic Effect of Propolis and Antibiotics on Uropathogenic Escherichia coli. Antibiotics (Basel) 2020; 9:antibiotics9110739. [PMID: 33120958 PMCID: PMC7692270 DOI: 10.3390/antibiotics9110739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Urinary tract infections (UTIs) are the most common bacterial infections around the world. Uropathogenic Escherichia coli (UPEC) is among the main pathogens isolated in UTIs. The rate of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically and conduct to the difficulty to treat UTIs. Due to the rarefaction of new antibiotics molecules, new alternative strategies must be evaluated. Since many years, propolis has demonstrated an interesting antibacterial activity against E. coli. Here, we evaluated its activity added to antibiotics on a panel of UPEC with different resistance mechanisms. Minimal inhibitory concentrations (MICs) and time-kill curves of fosfomycin, ceftriaxone, ertapenem and ofloxacin, with and without propolis, were determined. Significant diminution of the MICs was observed using ceftriaxone or ofloxacin + propolis. Propolis alone had a bacteriostatic activity with time-dependent effect against UPEC. The addition of this nutraceutical improved the effect of all the antibiotics evaluated (except fosfomycin) and showed a synergistic bactericidal effect (fractional inhibitory concentrations index ≤ 0.5 and a decrease ≥ 2 log CFU/mL for the combination of propolis plus antibiotics compared with the antibiotic alone). Propolis is able to restore in vitro antibiotic susceptibility when added to antibiotics against UPEC. This study showed that propolis could enhance the efficiency of antibiotics used in UTIs and could represent an alternative solution.
Collapse
Affiliation(s)
- Jean-Philippe Lavigne
- Virulence Bactérienne et Maladies Infectieuses, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30029 Nîmes, France;
- Correspondence: ; Tel.: +33-46-668-3202; Fax: +33-46-668-4254
| | - Jérémy Ranfaing
- Virulence Bactérienne et Maladies Infectieuses, INSERM U1047, Université de Montpellier, 30908 Nîmes, France;
| | - Catherine Dunyach-Rémy
- Virulence Bactérienne et Maladies Infectieuses, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30029 Nîmes, France;
| | - Albert Sotto
- Virulence Bactérienne et Maladies Infectieuses, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, 30029 Nîmes, France;
| |
Collapse
|