1
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Ou S, Tian X, Zhang Z, Zhu L, Wang R, Cao G, Fu J, Zhang P. Characterization of a Novel Tn7-like Transposon Carrying blaDHA-1 in Providencia stuartii MF1 Isolated from Swine Wastewater. Curr Microbiol 2024; 82:6. [PMID: 39580610 DOI: 10.1007/s00284-024-03952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/14/2024] [Indexed: 11/25/2024]
Abstract
Providencia stuartii is an emerging pathogen that causes nosocomial infections. In this study, a multidrug-resistant strain P. stuartii MF1 was isolated from swine wastewater. Comprehensive analysis of whole genome sequencing revealed that dozens of antibiotic resistance genes were found in MF1. A novel transposon Tn6450M which has high sequence identity to Tn6450 and the plasmid-borne Tn6765 from Proteus mirabilis was identified in the genome of MF1. Tn6450M was determined to be stably inserted into a new attTn7 site in the P. stuartii MF1 genome and contains the third-generation cephalosporins resistance-associated genes blaDHA-1. Intergeneric transmission of Tn6450 variants poses risks for the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Shijie Ou
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyi Tian
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhen Zhang
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | | | - Rong Wang
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Guangxiang Cao
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jiafang Fu
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Peipei Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
3
|
Abbas W, Bi R, Hussain MD, Tajdar A, Guo F, Guo Y, Wang Z. Antibiotic Cocktail Effects on Intestinal Microbial Community, Barrier Function, and Immune Function in Early Broiler Chickens. Antibiotics (Basel) 2024; 13:413. [PMID: 38786141 PMCID: PMC11117290 DOI: 10.3390/antibiotics13050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
This study investigated the effects of an antibiotic cocktail on intestinal microbial composition, mechanical barrier structure, and immune functions in early broilers. One-day-old healthy male broiler chicks were treated with a broad-spectrum antibiotic cocktail (ABX; neomycin, ampicillin, metronidazole, vancomycin, and kanamycin, 0.5 g/L each) or not in drinking water for 7 and 14 days, respectively. Sequencing of 16S rRNA revealed that ABX treatment significantly reduced relative Firmicutes, unclassified Lachnospiraceae, unclassified Oscillospiraceae, Ruminococcus torques, and unclassified Ruminococcaceae abundance in the cecum and relative Firmicutes, Lactobacillus and Baccillus abundance in the ileum, but significantly increased richness (Chao and ACE indices) and relative Enterococcus abundance in the ileum and cecum along with relatively enriched Bacteroidetes, Proteobacteria, Cyanobacteria, and Enterococcus levels in the ileum following ABX treatment for 14 days. ABX treatment for 14 days also significantly decreased intestinal weight and length, along with villus height (VH) and crypt depth (CD) of the small intestine, and remarkably increased serum LPS, TNF-α, IFN-γ, and IgG levels, as well as intestinal mucosa DAO and MPO activity. Moreover, prolonged use of ABX significantly downregulated occludin, ZO-1, and mucin 2 gene expression, along with goblet cell numbers in the ileum. Additionally, chickens given ABX for 14 days had lower acetic acid, butyric acid, and isobutyric acid content in the cecum than the chickens treated with ABX for 7 days and untreated chickens. Spearman correlation analysis found that those decreased potential beneficial bacteria were positively correlated with gut health-related indices, while those increased potential pathogenic strains were positively correlated with gut inflammation and gut injury-related parameters. Taken together, prolonged ABX application increased antibiotic-resistant species abundance, induced gut microbiota dysbiosis, delayed intestinal morphological development, disrupted intestinal barrier function, and perturbed immune response in early chickens. This study provides a reliable lower-bacteria chicken model for further investigation of the function of certain beneficial bacteria in the gut by fecal microbiota transplantation into germ-free or antibiotic-treated chickens.
Collapse
Affiliation(s)
- Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China; (W.A.); (R.B.); (F.G.); (Y.G.)
| | - Ruichen Bi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China; (W.A.); (R.B.); (F.G.); (Y.G.)
| | - Muhammad Dilshad Hussain
- MARA-Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China;
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Alia Tajdar
- Key Laboratory of Insect Behavior and Harmless Management, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China; (W.A.); (R.B.); (F.G.); (Y.G.)
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China; (W.A.); (R.B.); (F.G.); (Y.G.)
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China; (W.A.); (R.B.); (F.G.); (Y.G.)
| |
Collapse
|
4
|
Wang Q, Han YY, Zhang TJ, Chen X, Lin H, Wang HN, Lei CW. Whole-genome sequencing of Escherichia coli from retail meat in China reveals the dissemination of clinically important antimicrobial resistance genes. Int J Food Microbiol 2024; 415:110634. [PMID: 38401379 DOI: 10.1016/j.ijfoodmicro.2024.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Escherichia coli is one of the important reservoirs of antimicrobial resistance genes (ARG), which often causes food-borne diseases and clinical infections. Contamination with E. coli carrying clinically important antimicrobial resistance genes in retail meat products can be transmitted to humans through the food chain, posing a serious threat to public health. In this study, a total of 330 E. coli strains were isolated from 464 fresh meat samples from 17 food markets in China, two of which were identified as enterotoxigenic and enteropathogenic E. coli. Whole genome sequencing revealed the presence of 146 different sequence types (STs) including 20 new STs, and 315 different clones based on the phylogenetic analysis, indicating the high genetic diversity of E. coli from retail meat products. Antimicrobial resistance profiles showed that 82.42 % E. coli were multidrug-resistant strains. A total of 89 antimicrobial resistance genes were detected and 12 E. coli strains carried clinically important antimicrobial resistance genes blaNDM-1, blaNDM-5, mcr-1, mcr-10 and tet(X4), respectively. Nanopore sequencing revealed that these resistance genes are located on different plasmids with the ability of horizontal transfer, and their genetic structure and environment are closely related to plasmids isolated from humans. Importantly, we reported for the first time the presence of plasmid-mediated mcr-10 in E. coli from retail meat. This study revealed the high genetic diversity of food-borne E. coli in retail meat and emphasized their risk of spreading clinically important antimicrobial resistance genes.
Collapse
Affiliation(s)
- Qin Wang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Ying-Yue Han
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Tie-Jun Zhang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Xuan Chen
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Heng Lin
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Hong-Ning Wang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China.
| | - Chang-Wei Lei
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China.
| |
Collapse
|
5
|
Kyung SM, Lee JH, Lee ES, Xiang XR, Yoo HS. Emergence and genomic chion of Proteus mirabilis harboring bla NDM-1 in Korean companion dogs. Vet Res 2024; 55:50. [PMID: 38594755 PMCID: PMC11005143 DOI: 10.1186/s13567-024-01306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Proteus mirabilis is a commensal bacterium dwelling in the gastrointestinal (GI) tract of humans and animals. Although New Delhi metallo-β-lactamase 1 (NDM-1) producing P. mirabilis is emerging as a threat, its epidemiology in our society remains largely unknown. LHPm1, the first P. mirabilis isolate harboring NDM-1, was detected from a companion dog that resides with a human owner. The whole-genome study revealed 20 different antimicrobial resistance (AMR) genes against various classes of antimicrobial agents, which corresponded to the MIC results. Genomic regions, including MDR genes, were identified with multiple variations and visualized in a comparative manner. In the whole-genome epidemiological analysis, multiple phylogroups were identified, revealing the genetic relationship of LHPm1 with other P. mirabilis strains carrying various AMR genes. These genetic findings offer comprehensive insights into NDM-1-producing P. mirabilis, underscoring the need for urgent control measures and surveillance programs using a "one health approach".
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Seo Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Xi-Rui Xiang
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Gao J, Liu S, Bano S, Xia X, Baloch Z. First Report of Complete Genome Analysis of Multiple Drug Resistance Proteus mirabilis KUST‐1312 Isolate From Migratory Birds in China: A Public Health Threat. Transbound Emerg Dis 2024; 2024. [DOI: 10.1155/2024/8102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/23/2024] [Indexed: 01/11/2025]
Abstract
Proteus mirabilis, a gram‐negative bacterium, poses a significant public health threat due to its multidrug‐resistant (MDR) characteristics. Here, for the first time, we report the isolation and comprehensive genome analysis of an MDR strain, P. mirabilis KUST‐1312, obtained from migratory birds in Yunnan Province, China. A total of 65 samples, including migratory bird feces, soil, and water from Dianchi Lake, were collected. Standard microbiological techniques were employed to isolate the P. mirabilis KUST‐1312 strain from these samples. Genomic sequencing was conducted using a hybrid assembly strategy, combining Illumina and Oxford nanopore sequencing technologies. Phenotypic testing revealed the MDR nature of P. mirabilis KUST‐1312, displaying resistance to various antibiotics except gentamicin and Cefotaxime. Notably, 15 antimicrobial resistance genes (ARGs), including aph(3′)‐Ia, cat, tet(J), bleO, dfrA12, aadA2, AAC(3)‐IId, bla-TEM-1B, erm(42),aph(6)‐Id, blaPER-1, sul2, aph(3′’)‐Ib(2copies), and aph(3′)‐VIb, were identified on a single chromosome. These 15 ARGs were dispersed along three MDR regions, and the boundaries of these regions were consistently flanked by copies of insertion sequences and also contained other genetic elements. Phylogenetic analysis revealed the close relation of P. mirabilis KUST‐1312 with environmental and clinical isolates reported from other continents rather than with Asian isolates. In conclusion, this study reports the first‐ever isolation of an MDR P. mirabilis KUST‐1312 strain from migratory birds globally, particularly in China. There is a need to explore further its prevalence in detail in various ecological niches, including migratory birds.
Collapse
|
7
|
Haenni M, Du Fraysseix L, François P, Drapeau A, Bralet T, Madec JY, Boulinier T, Duriez O. Occurrence of ESBL- and AmpC-Producing E. coli in French Griffon Vultures Feeding on Extensive Livestock Carcasses. Antibiotics (Basel) 2023; 12:1160. [PMID: 37508256 PMCID: PMC10376662 DOI: 10.3390/antibiotics12071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the fact that the selective pressure of antibiotics on wild birds is supposed to be very weak, they are considered potential vectors of antimicrobial resistance (AMR). Obligate scavengers such as vultures can present high proportions of resistance to extended-spectrum cephalosporins (ESC) and multi-drug-resistant (MDR) bacteria, partially due to feeding stations that are provisioned with livestock carcasses from intensive farming. Here we investigated whether griffon vultures (Gyps fulvus) from two populations located in the French Alps, which feed on livestock carcasses from extensive farms, may carry such resistant bacteria. Phenotypic and genotypic characterization showed an 11.8% proportion of ESC-resistant bacteria, including five extended-spectrum beta-lactamase (ESBL)-producing and one AmpC-producing E. coli. The five ESBL-positive E. coli were clonal and all came from the same vulture population, proving their spread between animals. The ESBL phenotype was due to a blaCTX-M-15 gene located on the chromosome. Both ESBL- and AmpC-positive E. coli belonged to minor STs (ST212 and ST3274, respectively); interestingly, ST212 has already been identified in wild birds around the world, including vultures. These results suggest that actions are needed to mitigate the spread of MDR bacteria through wild birds, particularly in commensal species.
Collapse
Affiliation(s)
- Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de Lyon, 69007 Lyon, France
| | - Laetitia Du Fraysseix
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de Lyon, 69007 Lyon, France
| | - Pauline François
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de Lyon, 69007 Lyon, France
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de Lyon, 69007 Lyon, France
| | - Tristan Bralet
- CEFE, Montpellier University, CNRS, EPHE, IRD, 34090 Montpellier, France
- ANSES-Bacterial Zoonoses Unit, 94700 Maisons-Alfort, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de Lyon, 69007 Lyon, France
| | - Thierry Boulinier
- CEFE, Montpellier University, CNRS, EPHE, IRD, 34090 Montpellier, France
| | - Olivier Duriez
- CEFE, Montpellier University, CNRS, EPHE, IRD, 34090 Montpellier, France
| |
Collapse
|
8
|
Min J, Kim P, Yun S, Hong M, Park W. Zoo animal manure as an overlooked reservoir of antibiotic resistance genes and multidrug-resistant bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:710-726. [PMID: 35906519 DOI: 10.1007/s11356-022-22279-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Animal fecal samples collected in the summer and winter from 11 herbivorous animals, including sable antelope (SA), long-tailed goral (LTG), and common eland (CE), at a public zoo were examined for the presence of antibiotic resistance genes (ARGs). Seven antibiotics, including meropenem and azithromycin, were used to isolate culturable multidrug-resistant (MDR) strains. The manures from three animals (SA, LTG, and CE) contained 104-fold higher culturable MDR bacteria, including Chryseobacterium, Sphingobacterium, and Stenotrophomonas species, while fewer MDR bacteria were isolated from manure from water buffalo, rhinoceros, and elephant against all tested antibiotics. Three MDR bacteria-rich samples along with composite samples were further analyzed using nanopore-based technology. ARGs including lnu(C), tet(Q), and mef(A) were common and often associated with transposons in all tested samples, suggesting that transposons carrying ARGs may play an important role for the dissemination of ARGs in our tested animals. Although several copies of ARGs such as aph(3')-IIc, blaL1, blaIND-3, and tet(42) were found in the sequenced genomes of the nine MDR bacteria, the numbers and types of ARGs appeared to be less than expected in zoo animal manure, suggesting that MDR bacteria in the gut of the tested animals had intrinsic resistant phenotypes in the absence of ARGs.
Collapse
Affiliation(s)
- Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Pureun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sohyeon Yun
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minyoung Hong
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Selvarajan R, Obize C, Sibanda T, Abia ALK, Long H. Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance. Antibiotics (Basel) 2022; 12:28. [PMID: 36671228 PMCID: PMC9855083 DOI: 10.3390/antibiotics12010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed the emergence and spread of antibiotic resistance (ABR) in different pathogenic microorganisms worldwide. Therefore, this narrative review examined the history of antibiotics and the ecological roles of antibiotics, and their resistance. The evolution of bacterial antibiotic resistance in different environments, including aquatic and terrestrial ecosystems, and modern tools used for the identification were addressed. Finally, the review addressed the ecotoxicological impact of antibiotic-resistant bacteria and public health concerns and concluded with possible strategies for addressing the ABR challenge. The information provided in this review will enhance our understanding of ABR and its implications for human, animal, and environmental health. Understanding the environmental dimension will also strengthen the need to prevent pollution as the factors influencing ABR in this setting are more than just antibiotics but involve others like heavy metals and biocides, usually not considered when studying ABR.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Chinedu Obize
- Centre d’étude de la Forêt, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Timothy Sibanda
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Akebe Luther King Abia
- Department of Microbiology, Venda University, Thohoyando 1950, South Africa
- Environmental Research Foundation, Westville 3630, South Africa
| | - Haijun Long
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
10
|
Altayb HN, Elbadawi HS, Alzahrani FA, Baothman O, Kazmi I, Nadeem MS, Hosawi S, Chaieb K. Co-Occurrence of β-Lactam and Aminoglycoside Resistance Determinants among Clinical and Environmental Isolates of Klebsiella pneumoniae and Escherichia coli: A Genomic Approach. Pharmaceuticals (Basel) 2022; 15:1011. [PMID: 36015159 PMCID: PMC9416466 DOI: 10.3390/ph15081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
The presence of antimicrobial-resistance genes (ARGs) in mobile genetic elements (MGEs) facilitates the rapid development and dissemination of multidrug-resistant bacteria, which represents a serious problem for human health. This is a One Health study which aims to investigate the co-occurrence of antimicrobial resistance determinants among clinical and environmental isolates of K. pneumoniae and E. coli. Various bioinformatics tools were used to elucidate the bacterial strains' ID, resistome, virulome, MGEs, and phylogeny for 42 isolates obtained from hospitalized patients (n = 20) and environmental sites (including fresh vegetables, fruits, and drinking water) (n = 22). The multilocus sequence typing (MLST) showed that K. pneumoniae belonged to ten sequence types (STs) while the E. coli belonged to seventeen STs. Multidrug-resistant isolates harbored β-lactam, aminoglycoside resistance determinants, and MGE were detected circulating in the environment (drinking water, fresh vegetables, and fruits) and in patients hospitalized with postoperative infections, neonatal sepsis, and urinary tract infection. Four K. pneumoniae environmental isolates (7E, 16EE, 1KE, and 19KE) were multidrug-resistant and were positive for different beta-lactam and aminoglycoside resistance determinants. blaCTX-M-15 in brackets of ISEc 9 and Tn 3 transposases was detected in isolates circulating in the pediatrics unit of Soba hospital and the environment. This study documented the presence of bacterial isolates harboring a similar pattern of antimicrobial resistance determinants circulating in hospitals and environments. A rapid response is needed from stakeholders to initiate a program for infection prevention and control measures to detect such clones disseminated in the communities and hospitals.
Collapse
Affiliation(s)
- Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hana S. Elbadawi
- Microbiology and Parasitology Department, Soba University Hospital, University of Khartoum, Khartoum 11115, Sudan
| | - Faisal A. Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
11
|
Tang B, Chang J, Luo Y, Jiang H, Liu C, Xiao X, Ji X, Yang H. Prevalence and characteristics of the mcr-1 gene in retail meat samples in Zhejiang Province, China. JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:610-619. [PMID: 35362896 DOI: 10.1007/s12275-022-1597-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 01/03/2023]
Abstract
Considering the serious threat to food safety and public health posed by pathogens with colistin resistance, colistin was banned as a growth promoter in 2017 in China. In recent years, the resistance rate of Escherichia coli isolated from animal intestines or feces to colistin has decreased. However, the prevalence and characteristics of the mcr-1 gene in retail meat have not been well explored. Herein, 106 mcr-1-negative and 16 mcr-1-positive E. coli isolates were randomly recovered from 120 retail meat samples and screened using colistin. The 106 E. coli isolates showed maximum resistance to sulfafurazole (73.58%) and tetracycline (62.26%) but susceptibility to colistin (0.00%). All 16 mcr-1-positive E. coli isolates showed resistance to colistin, were extended spectrum beta-lactamase (ESBL)-positive and exhibited complex multidrug resistance (MDR). For these 16 isolates, 17 plasmid replicons and 42 antibiotic resistance genes were identified, and at least 7 antibiotic resistance genes were found in each isolate. Acquired disinfectant resistance genes were identified in 75.00% (12/16) of the isolates. Furthermore, comparative genomic and phylogenetic analysis results indicated that these 16 mcr-1-positive E. coli isolates and the most prevalent mcr-1-harboring IncI2 plasmid in this study were closely related to other previously reported mcr-1-positive E. coli isolates and the IncI2 plasmid, respectively, showing their wide distribution. Taken together, our findings showed that retail meat products were a crucial reservoir of mcr-1 during the colistin ban period and should be continuously monitored.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China.
| | - Jiang Chang
- School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, P. R. China
| | - Yi Luo
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Canying Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528225, P. R. China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310004, P. R. China.
| |
Collapse
|
12
|
Zhang C, Yang M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics (Basel) 2022; 11:antibiotics11030349. [PMID: 35326812 PMCID: PMC8944448 DOI: 10.3390/antibiotics11030349] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Infection of multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE), and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, brings public health issues and causes economic burden. Pathogenic bacteria develop several methods to resist antibiotic killing or inhibition, such as mutation of antibiotic function sites, activation of drug efflux pumps, and enzyme-mediated drug degradation. Antibiotic resistance components can be transferred between bacteria by mobile genetic elements including plasmids, transposons, and integrons, as well as bacteriophages. The development of antibiotic resistance limits the treatment options for bacterial infection, especially for MDR bacteria. Therefore, novel or alternative antibacterial agents are urgently needed. Antimicrobial peptides (AMPs) display multiple killing mechanisms against bacterial infections, including directly bactericidal activity and immunomodulatory function, as potential alternatives to antibiotics. In this review, the development of antibiotic resistance, the killing mechanisms of AMPs, and especially, the design, optimization, and delivery of AMPs are reviewed. Strategies such as structural change, amino acid substitution, conjugation with cell-penetration peptide, terminal acetylation and amidation, and encapsulation with nanoparticles will improve the antimicrobial efficacy, reduce toxicity, and accomplish local delivery of AMPs. In addition, clinical trials in AMP studies or applications of AMPs within the last five years were summarized. Overall, AMPs display diverse mechanisms of action against infection of pathogenic bacteria, and future research studies and clinical investigations will accelerate AMP application.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
13
|
Kairmi SH, Taha-Abdelaziz K, Yitbarek A, Sargolzaei M, Spahany H, Astill J, Shojadoost B, Alizadeh M, Kulkarni RR, Parkinson J, Sharif S. Effects of therapeutic levels of dietary antibiotics on the cecal microbiome composition of broiler chickens. Poult Sci 2022; 101:101864. [PMID: 35477134 PMCID: PMC9061639 DOI: 10.1016/j.psj.2022.101864] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Dietary antibiotics, including antibiotic growth promoters (AGPs), have been commonly used to improve health and growth of poultry. The present study investigated the effects of therapeutic doses of dietary antibiotics, including bacitracin methylene disalicylate (BMD), penicillin G potassium (PP) and an ionophore (salinomycin, SA), on the cecal microbiome of chickens. BMD and SA treatments were given as dietary supplements from d 1 to 35 of age. The SAPP (salinomycin+ penicillin G potassium) group was given SA as a dietary supplement from d 1 to 35 of age and PP was added to drinking water from d 19 to 24 of age to simulate common practices for control of necrotic enteritis in broilers. The cecal contents were collected from all treatment groups on d 10, 24, and 35 of age and DNA was extracted for metagenomic analysis of the cecal microbiome. The results revealed that dietary or water supplementation of therapeutic levels of antibiotics and ionophores to chickens significantly altered the cecal microbial homeostasis during different stages of the chicken life. The alpha diversity analysis showed that BMD, SA, and SAPP treatments decreased diversity and evenness of the cecal microbiome of treated chickens on d 10 of age. Species richness was also reduced on d 35 following treatment with BMD. Beta diversity analyses revealed that SAPP and BMD induced significant changes in the relative abundance of Gram-positive and -negative bacteria on d 10, while no significant differences were observed on d 24. On d 35, the non-treated control group had higher relative abundance of unclassified Gram-positive and -negative bacteria compared to SA, SAPP, and BMD treatment groups. Overall, despite their beneficial role in controlling necrotic enteritis outbreaks, the findings of this study highlight the potential negative effects of dietary supplementation of therapeutic levels of antibiotics on the gut microbiome and suggest that adjusting gut bacteria may be required to restore microbial richness and diversity of the gut microbiome following treatment with these antibiotics.
Collapse
|
14
|
Chen X, Lei CW, Liu SY, Li TY, Chen Y, Wang YT, Li C, Wang Q, Yang X, Huang ZR, Gao YF, Wang HN. Characterization of novel Tn7-derivatives and Tn7-like transposon found in Proteus mirabilis of food-producing animal origin in China. J Glob Antimicrob Resist 2022; 28:233-237. [DOI: 10.1016/j.jgar.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022] Open
|