1
|
Seregin IV, Kozhevnikova AD. The Role of Low-Molecular-Weight Organic Acids in Metal Homeostasis in Plants. Int J Mol Sci 2024; 25:9542. [PMID: 39273488 PMCID: PMC11394999 DOI: 10.3390/ijms25179542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Low-molecular-weight organic acids (LMWOAs) are essential O-containing metal-binding ligands involved in maintaining metal homeostasis, various metabolic processes, and plant responses to biotic and abiotic stress. Malate, citrate, and oxalate play a crucial role in metal detoxification and transport throughout the plant. This review provides a comparative analysis of the accumulation of LMWOAs in excluders, which store metals mainly in roots, and hyperaccumulators, which accumulate metals mainly in shoots. Modern concepts of the mechanisms of LMWOA secretion by the roots of excluders and hyperaccumulators are summarized, and the formation of various metal complexes with LMWOAs in the vacuole and conducting tissues, playing an important role in the mechanisms of metal detoxification and transport, is discussed. Molecular mechanisms of transport of LMWOAs and their complexes with metals across cell membranes are reviewed. It is discussed whether different endogenous levels of LMWOAs in plants determine their metal tolerance. While playing an important role in maintaining metal homeostasis, LMWOAs apparently make a minor contribution to the mechanisms of metal hyperaccumulation, which is associated mainly with root exudates increasing metal bioavailability and enhanced xylem loading of LMWOAs. The studies of metal-binding compounds may also contribute to the development of approaches used in biofortification, phytoremediation, and phytomining.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| |
Collapse
|
2
|
Berruto CA, Demirer GS. Engineering agricultural soil microbiomes and predicting plant phenotypes. Trends Microbiol 2024; 32:858-873. [PMID: 38429182 DOI: 10.1016/j.tim.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can improve crop yields, nutrient use efficiency, plant tolerance to stressors, and confer benefits to future generations of crops grown in the same soil. Unlocking the potential of microbial communities in the rhizosphere and endosphere is therefore of great interest for sustainable agriculture advancements. Before plant microbiomes can be engineered to confer desirable phenotypic effects on their plant hosts, a deeper understanding of the interacting factors influencing rhizosphere community structure and function is needed. Dealing with this complexity is becoming more feasible using computational approaches. In this review, we discuss recent advances at the intersection of experimental and computational strategies for the investigation of plant-microbiome interactions and the engineering of desirable soil microbiomes.
Collapse
Affiliation(s)
- Chiara A Berruto
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Hathurusinghe SHK, Azizoglu U, Shin JH. Holistic Approaches to Plant Stress Alleviation: A Comprehensive Review of the Role of Organic Compounds and Beneficial Bacteria in Promoting Growth and Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:695. [PMID: 38475541 DOI: 10.3390/plants13050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Plants select microorganisms from the surrounding bulk soil, which act as a reservoir of microbial diversity and enrich a rhizosphere microbiome that helps in growth and stress alleviation. Plants use organic compounds that are released through root exudates to shape the rhizosphere microbiome. These organic compounds are of various spectrums and technically gear the interplay between plants and the microbial world. Although plants naturally produce organic compounds that influence the microbial world, numerous efforts have been made to boost the efficiency of the microbiome through the addition of organic compounds. Despite further crucial investigations, synergistic effects from organic compounds and beneficial bacteria combinations have been reported. In this review, we examine the relationship between organic compounds and beneficial bacteria in determining plant growth and biotic and abiotic stress alleviation. We investigate the molecular mechanism and biochemical responses of bacteria to organic compounds, and we discuss the plant growth modifications and stress alleviation done with the help of beneficial bacteria. We then exhibit the synergistic effects of both components to highlight future research directions to dwell on how microbial engineering and metagenomic approaches could be utilized to enhance the use of beneficial microbes and organic compounds.
Collapse
Affiliation(s)
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri 38039, Turkey
- Genome and Stem Cell Research Center, Erciyes University, Kayseri 38039, Turkey
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Li Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167774. [PMID: 37848152 DOI: 10.1016/j.scitotenv.2023.167774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Biofilm formation represents a pivotal and adaptable trait among microorganisms within natural environments. This attribute plays a multifaceted role across diverse contexts, including environmental, aquatic, industrial, and medical systems. While previous research has primarily focused on the adverse impacts of biofilms, harnessing their potential effectively could confer substantial advantages to humanity. In the face of escalating environmental pressures (e.g., drought, salinity, extreme temperatures, and heavy metal pollution), which jeopardize global crop yields, enhancing crop stress tolerance becomes a paramount endeavor for restoring sufficient food production. Recently, biofilm-forming plant growth-promoting bacteria (PGPB) have emerged as promising candidates for agricultural application. These biofilms are evidence of microorganism colonization on plant roots. Their remarkable stress resilience empowers crops to thrive and yield even in harsh conditions. This is accomplished through increased root colonization, improved soil properties, and the synthesis of valuable secondary metabolites (e.g., ACC deaminase, acetin, 2,3-butanediol, proline, etc.). This article elucidates the mechanisms underpinning the role of biofilm-forming PGPB in bolstering plant growth amidst environmental challenges. Furthermore, it explores the tangible applications of these biofilms in agriculture and delves into strategies for manipulating biofilm formation to extract maximal benefits in practical crop production scenarios.
Collapse
Affiliation(s)
- Yujia Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai 602105, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
5
|
Hildebrand GA, Honeker LK, Freire-Zapata V, Ayala-Ortiz C, Rajakaruna S, Fudyma J, Daber LE, AminiTabrizi R, Chu RL, Toyoda J, Flowers SE, Hoyt DW, Hamdan R, Gil-Loaiza J, Shi L, Dippold MA, Ladd SN, Werner C, Meredith LK, Tfaily MM. Uncovering the dominant role of root metabolism in shaping rhizosphere metabolome under drought in tropical rainforest plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165689. [PMID: 37481084 DOI: 10.1016/j.scitotenv.2023.165689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Plant-soil-microbe interactions are crucial for driving rhizosphere processes that contribute to metabolite turnover and nutrient cycling. With the increasing frequency and severity of water scarcity due to climate warming, understanding how plant-mediated processes, such as root exudation, influence soil organic matter turnover in the rhizosphere is essential. In this study, we used 16S rRNA gene amplicon sequencing, rhizosphere metabolomics, and position-specific 13C-pyruvate labeling to examine the effects of three different plant species (Piper auritum, Hibiscus rosa sinensis, and Clitoria fairchildiana) and their associated microbial communities on soil organic carbon turnover in the rhizosphere. Our findings indicate that in these tropical plants, the rhizosphere metabolome is primarily shaped by the response of roots to drought rather than direct shifts in the rhizosphere bacterial community composition. Specifically, the reduced exudation of plant roots had a notable effect on the metabolome of the rhizosphere of P. auritum, with less reliance on neighboring microbes. Contrary to P. auritum, H. rosa sinensis and C. fairchildiana experienced changes in their exudate composition during drought, causing alterations to the bacterial communities in the rhizosphere. This, in turn, had a collective impact on the rhizosphere's metabolome. Furthermore, the exclusion of phylogenetically distant microbes from the rhizosphere led to shifts in its metabolome. Additionally, C. fairchildiana appeared to be associated with only a subset of symbiotic bacteria under drought conditions. These results indicate that plant species-specific microbial interactions systematically change with the root metabolome. As roots respond to drought, their associated microbial communities adapt, potentially reinforcing the drought tolerance strategies of plant roots. These findings have significant implications for maintaining plant health and preference during drought stress and improving plant performance under climate change.
Collapse
Affiliation(s)
- Gina A Hildebrand
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Linnea K Honeker
- BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA
| | - Viviana Freire-Zapata
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Christian Ayala-Ortiz
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Sumudu Rajakaruna
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Jane Fudyma
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA; Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95816, USA
| | - L Erik Daber
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Roya AminiTabrizi
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA
| | - Rosalie L Chu
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Jason Toyoda
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sarah E Flowers
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - David W Hoyt
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Rasha Hamdan
- Department of Chemistry and Biochemistry, Lebanese University, Beirut, Lebanon
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA
| | - Lingling Shi
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Schnarrenbergstrasse 94-96, 72076 Tuebingen, Germany
| | - Michaela A Dippold
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Schnarrenbergstrasse 94-96, 72076 Tuebingen, Germany
| | - S Nemiah Ladd
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany; Department of Environmental Science, University of Basel, Bernoullistrasse 30/32, 4056 Basel, Switzerland
| | - Christiane Werner
- Georges-Köhler-Allee 53/54, University of Freiburg, 79110 Freiburg, Germany
| | - Laura K Meredith
- BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St., Tucson, AZ 85721, USA; Biosphere 2, University of Arizona, 32540 S Biosphere Rd, Oracle, AZ 85739, USA
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, 1177 E 4th St., AZ 85721, USA; BIO5 Institute, The University of Arizona, 1657 E Helen St., Tucson, AZ 85719, USA; Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA.
| |
Collapse
|
6
|
Bhattacharyya A, Mavrodi O, Bhowmik N, Weller D, Thomashow L, Mavrodi D. Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. METHODS IN MICROBIOLOGY 2023; 53:3-48. [PMID: 38415193 PMCID: PMC10898258 DOI: 10.1016/bs.mim.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Niladri Bhowmik
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
7
|
Jiao L, Cao X, Wang C, Chen F, Zou H, Yue L, Wang Z. Crosstalk between in situ root exudates and rhizobacteria to promote rice growth by selenium nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163175. [PMID: 37003329 DOI: 10.1016/j.scitotenv.2023.163175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Maximizing the potential of plant-microbe systems offers great opportunities to confront sustainability issues in agroecosystems. However, the dialog between root exudates and rhizobacteria remains largely unknown. As a novel nanofertilizer, nanomaterials (NMs) have significant potential to improve agricultural productivity due to their unique properties. Here, soil amendment with 0.1 mg·kg-1 selenium (Se) NMs (30-50 nm) significantly promoted rice seedling growth. Differences in root exudates and rhizobacteria were evident. At an earlier time point (3rd week), Se NMs increased the relative content of malic and citric acid by 15.4- and 8.1-fold, respectively. Meanwhile, the relative abundances of Streptomyces and Sphingomonas were increased by 164.6 % and 38.3 %, respectively. As the exposure time increased, succinic acid (40.5-fold) at the 4th week and salicylic acid (4.7-fold) and indole-3-acetic (7.0-fold) at the 5th week were enhanced, while Pseudomonas and Bacillus increased at the 4th (112.3 % and 50.2 %) and 5th weeks (190.8 % and 53.1 %), respectively. Further analysis indicated that (1) Se NMs directly enhanced the synthesis and secretion of malic and citric acids by upregulating their biosynthesis and transporter genes and then recruited Bacillus and Pseudomonas; (2) Se NMs upregulated the chemotaxis and flagellar genes of Sphingomonas for more interaction with rice plants, thereby promoting rice growth and stimulating root exudate secretion. This crosstalk of root exudates and rhizobacteria enhanced nutrient uptake, resulting in promoted rice growth. Our study offers insights into the crosstalk between root exudates and rhizobacteria by NMs and provides new insights into rhizosphere regulation in nano-enabled agriculture.
Collapse
Affiliation(s)
- Liya Jiao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
8
|
Elsharkawy MM, Khedr AA, Mehiar F, El-Kady EM, Alwutayd KM, Behiry SI. Rhizobacterial Colonization and Management of Bacterial Speck Pathogen in Tomato by Pseudomonas spp. Microorganisms 2023; 11:1103. [PMID: 37317077 DOI: 10.3390/microorganisms11051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 06/16/2023] Open
Abstract
Plants and soil microorganisms interact at every stage of growth. Pseudomonas spp. are highly regarded for their ability to increase crop production and protection from diseases. The aim of this study is to understand the mechanisms of the rhizobacterial colonization of tomato roots via chemotaxis assay and the activation of tomato resistance against the pathogenic bacterium, Pseudomonas syringae pv. tomato DC3000 (Pst). The capillary assay was used to evaluate the chemotaxis response of PGPRs (plant growth-promoting rhizobacteria). The activities of defense enzymes and the expressions of PR (pathogenesis-related) genes were measured using real-time qPCR. Chemotactic responses to malic and citric acids (the most important root exudates found in different plant species) at low concentrations varied substantially among the rhizobacterial isolates (63 species). Beneficial isolates including Pseudomonas resinovorans A5, P. vranovensis A30, P. resinovorans A28, P. umsongensis O26, P. stutzeri N42, and P. putida T15 reacted well to different concentrations of root exudates. P. putida T15 demonstrated the most potent anti-Pst activity. At three and six days after inoculation, the greatest levels of polyphenol oxidase and peroxidase activity were reported in the A5 and T15 groups. In tomato, transcript levels of four PR (pathogenesis-related) genes were elevated by rhizobacterial treatments. PGPR isolates alone or in combination with BABA (β-amino butyric acid) up-regulated the transcriptions of PR1, PR2, LOX, and PAL genes. Treatments with N42 and T15 resulted in the greatest improvements in tomato growth and yield traits. In conclusion, the results explain the mechanisms of rhizobacterial colonization for the improved management of Pst. Rhizobacterial isolates play a role in tomato's resistance to Pst via salicylic acid and jasmonic acid pathways.
Collapse
Affiliation(s)
- Mohsen M Elsharkawy
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| | - Amr A Khedr
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| | - Farid Mehiar
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| | - Elsayed M El-Kady
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
9
|
Wang P, Ma L, Ge J, Feng F, Wan Q, Zeng D, Yu X. Colonization Mechanism of Endophytic Enterobacter cloacae TMX-6 on Rice Seedlings Mediated by Organic Acids Exudated from Roots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4802-4809. [PMID: 36921065 DOI: 10.1021/acs.jafc.2c08647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Small molecular organic acids (SMOAs) in root exudates are critical for plant-microbe interaction, especially under environmental stresses. However, the dominant organic acids driving the process and promoting the colonization are unclear. Here, using a target metabolomics, 20 main SMOAs of rice root exudates were identified and analyzed in control and 10 mg/L thiamethoxam-treated groups. The composition of these SMOAs differed significantly between the two treatments. Among which, malic acid, citric acid, succinic acid, and proline induced a chemotactic response, swimming ability, and biofilm formation of Enterobacter cloacae TMX-6 in a dose-dependent manner. The maximal chemotactic response of TMX-6 was induced by proline at 10 mg/L, and a strong chemotactic response was even observed at 0.01 mg/L. The recruitment assay confirmed that the addition of these four compounds promoted the colonization of TMX-6. The results provide insight for directional regulation of plant-microbe interactions for beneficial outcomes.
Collapse
Affiliation(s)
- Pei Wang
- Guangxi Key Laboratory of Agrio-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, People's Republic of China
| | - Liya Ma
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, People's Republic of China
| | - Jing Ge
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, People's Republic of China
| | - Fayun Feng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, People's Republic of China
| | - Qun Wan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, People's Republic of China
| | - Dongqiang Zeng
- Guangxi Key Laboratory of Agrio-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xiangyang Yu
- Guangxi Key Laboratory of Agrio-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, People's Republic of China
| |
Collapse
|
10
|
Sharma M, Jabaji S. Transcriptional landscape of Brachypodium distachyon roots during interaction with Bacillus velezensis strain B26. Genomics 2023; 115:110583. [PMID: 36804269 DOI: 10.1016/j.ygeno.2023.110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) communicate with plants through roots. The molecular mechanism by which plants and PGPR respond to each other is not very well known. In the current study, we did RNA sequence analysis of Brachypodium distachyon Bd21-3 roots inoculated with PGPR, Bacillus velezensis strain B26. From our list of differentially expressed genes, we concentrated on transcripts that have a high possibility of participating in plant-PGPR interaction. Transcripts associated to the hormone signalling pathway were differentially expressed. We identified the upregulation of various transcripts linked to ion transporters. Reduction in expression of defense signalling genes indicated that B26 suppresses the plant defense mechanisms to begin successful interaction with roots. Transcripts associated with lignin branch of the phenylpropanoid pathway were upregulated as well, leading to more accumulation of lignin in the cell wall which enhances mechanical strength of plants. Overall, this study is an excellent resource for investigating associations between plant-PGPR interactions.
Collapse
Affiliation(s)
- Meha Sharma
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd., Ste-Anne de Bellevue, H9X 3V9 Quebec, Canada.
| | - Suha Jabaji
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd., Ste-Anne de Bellevue, H9X 3V9 Quebec, Canada.
| |
Collapse
|
11
|
Gao T, Wang X, Qin Y, Ren Z, Zhao X. Watermelon Root Exudates Enhance Root Colonization of Bacillus amyloliquefaciens TR2. Curr Microbiol 2023; 80:110. [PMID: 36802037 DOI: 10.1007/s00284-023-03206-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/30/2023] [Indexed: 02/21/2023]
Abstract
Bacillus amyloliquefaciens TR2, one of plant growth-promoting rhizobacteria (PGPR), is capable of colonizing plant roots in a large population size. However, the interaction of watermelon root exudates and colonization of the strain TR2 has not yet been clearly elucidated. In this investigation, we demonstrated that B. amyloliquefaciens TR2 promoted watermelon plants growth and exhibited biocontrol efficacy against watermelon Fusarium wilt under greenhouse conditions. Collected watermelon root exudates significantly induced chemotaxis, swarming motility, and biofilm formation of the strain TR2. We also tested the components of root exudates (organic acids: malic acid, citric acid, succinic acid, and fumaric acid; amino acids: methionine, glutamic acid, alanine, and aspartic acid; phenolic acid: benzoic acid) and the results showed that a majority of these compounds could promote chemotactic response, swarming motility, and biofilm formation in a different degree. Benzoic acid induced the strongest chemotactic response; however, the swarming motility and biofilm formation of the strain TR2 were maximumly enhanced by supplement of fumaric acid and glutamic acid, respectively. In addition, the root colonization examination indicated that the population of B. amyloliquefaciens TR2 colonized on watermelon root surfaces was dramatically increased by adding concentrated watermelon root exudates. In summary, our studies provide evidence suggesting that root exudates are important for colonization of B. amyloliquefaciens TR2 on plant roots and help us to understand the interaction between plants and beneficial bacteria.
Collapse
Affiliation(s)
- Tantan Gao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, No.7 Beinong Road, Huilongguan District, Beijing, 102206, China
| | - Xudong Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, No.7 Beinong Road, Huilongguan District, Beijing, 102206, China
| | - Yanqiu Qin
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, No.7 Beinong Road, Huilongguan District, Beijing, 102206, China
| | - Zhengguang Ren
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, No.7 Beinong Road, Huilongguan District, Beijing, 102206, China
| | - Xiaoyan Zhao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, No.7 Beinong Road, Huilongguan District, Beijing, 102206, China.
| |
Collapse
|
12
|
Jiao H, Xu W, Hu Y, Tian R, Wang Z. Citric Acid in Rice Root Exudates Enhanced the Colonization and Plant Growth-Promoting Ability of Bacillus altitudinis LZP02. Microbiol Spectr 2022; 10:e0100222. [PMID: 36264248 PMCID: PMC9769925 DOI: 10.1128/spectrum.01002-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/24/2022] [Indexed: 01/05/2023] Open
Abstract
Exploration of the underlying mechanisms of plant-microbe interactions is very important. In the present study, citric acid in the root exudates of rice significantly enhanced the colonization of Bacillus altitudinis LZP02 in the rhizosphere. According to the results of transcriptome and reverse transcription-quantitative PCR or analyses, citric acid increased the expression of several genes involved in bacterial chemotaxis and biofilm formation in B. altitudinis LZP02. In addition, citric acid also increased the expression of several genes associated with S-adenosylmethionine biosynthesis and metabolism. Interestingly, the secretion of citric acid by rice roots could be increased by inoculation with B. altitudinis LZP02. The result indicated that citric acid might be a vital signal in the interaction between rice and B. altitudinis LZP02. Further verification showed that citric acid enhanced the plant growth-promoting ability of B. altitudinis LZP02. IMPORTANCE In a previous study, the mechanism by which citric acid in rice root exudates enhanced the colonization of Bacillus altitudinis LZP02 was discovered. The present study verified that citric acid increased the recruitment and rice growth-promoting ability of B. altitudinis LZP02. These findings serve as an interesting case for explaining the underlying mechanisms of plant-microbe interactions. Henceforth, citric acid and B. altitudinis LZP02 could be exploited for the development of sustainable agronomy.
Collapse
Affiliation(s)
- Huiwen Jiao
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Weihui Xu
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Yunlong Hu
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Renmao Tian
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Zhigang Wang
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| |
Collapse
|
13
|
Genetic Determinants of Antagonistic Interactions and the Response of New Endophytic Strain Serratia quinivorans KP32 to Fungal Phytopathogens. Int J Mol Sci 2022; 23:ijms232415561. [PMID: 36555201 PMCID: PMC9779691 DOI: 10.3390/ijms232415561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Fungal phytopathogens are challenging to control due to their penetration into plant tissues. Therefore, plant-colonizing bacteria could serve as an excellent weapon in fighting fungal infections. In this study, we aim to determine the biocontrol potential of the new endophytic strain Serratia quinivorans KP32, isolated from the roots of Petroselinum crispum L.; identify the related mechanisms; and understand the basis of its antagonistic interaction with taxonomically diverse fungi at the molecular level. The KP32 strain presented biological activity against Rhizoctonia solani, Colletotrichum dematium, Fusarium avenaceum, and Sclerotinia sclerotiorum, and its ability to inhibit the growth of the phytopathogens was found to be mediated by a broad spectrum of biocontrol features, such as the production of a number of lytic enzymes (amylases, chitinases, and proteases), siderophores, volatile organic and inorganic compounds, salicylic acid, and N-acyl-homoserine lactones. The higher expression of chitinase (chiA) and genes involved in the biosynthesis of hydrogen cyanide (hcnC), enterobactin (entB), and acetoin (budA) in bacteria exposed to fungal filtrates confirmed that these factors could act in combination, leading to a synergistic inhibitory effect of the strain against phytopathogens. We also confirm the active movement, self-aggregation, exopolysaccharide production, and biofilm formation abilities of the KP32 strain, which are essential for effective plant colonization. Its biological activity and colonization potential indicate that KP32 holds tremendous potential for use as an active biopesticide and plant growth promoter.
Collapse
|
14
|
Prasad JK, Dey R, Raghuwanshi R. Exopolysaccharide-Producing Rhizospheric Bacteria Enhance Yield via Promoting Wheat (Triticum aestivum L.) Growth at Early Stages. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261721102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Zadel U, Cruzeiro C, Raj Durai AC, Nesme J, May R, Balázs H, Michalke B, Płaza G, Schröder P, Schloter M, Radl V. Exudates from Miscanthus x giganteus change the response of a root-associated Pseudomonas putida strain towards heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:119989. [PMID: 36028079 DOI: 10.1016/j.envpol.2022.119989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The composition of root exudates is modulated by several environmental factors, and it remains unclear how that affects beneficial rhizosphere or inoculated microorganisms under heavy metal (HM) contamination. Therefore, we evaluated the transcriptional response of Pseudomonas putida E36 (a Miscanthus x giganteus isolate with plant growth promotion-related properties) to Cd, Pb and Zn in an in vitro study implementing root exudates from M. x giganteus. To collect root exudates and analyse their composition plants were grown in a pot experiment under HM and control conditions. Our results indicated higher exudation rate for plants challenged with HM. Further, out of 29 organic acids identified and quantified in the root exudates, 8 of them were significantly influenced by HM (e.g., salicylic and terephthalic acid). The transcriptional response of P. putida E36 was significantly affected by the HM addition to the growth medium, increasing the expression of several efflux pumps and stress response-related functional units. The additional supplementation of the growth medium with root exudates from HM-challenged plants resulted in a downregulation of 29% of the functional units upregulated in P. putida E36 as a result of HM addition to the growth medium. Surprisingly, root exudates + HM downregulated the expression of P. putida E36 functional units related to plant colonization (e.g., chemotaxis, motility, biofilm formation) but upregulated its antibiotic and biocide resistance compared to the control treatment without HM. Our findings suggest that HM-induced changes in root exudation pattern may attract beneficial bacteria that are in turn awarded with organic nutrients, helping them cope with HM stress. However, it might affect the ability of these bacteria to colonize plants growing in HM polluted areas. Those findings may offer an insight for future in vivo studies contributing to improvements in phytoremediation measures.
Collapse
Affiliation(s)
- Urška Zadel
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Ingolstädter Street 1, 85764, Neuherberg, Germany.
| | - Catarina Cruzeiro
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Ingolstädter Street 1, 85764, Neuherberg, Germany.
| | - Abilash Chakravarthy Raj Durai
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Ingolstädter Street 1, 85764, Neuherberg, Germany.
| | - Joseph Nesme
- University of Copenhagen, Department of Biology, Section for Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | - Robert May
- Labor Dr. Spranger & Partner, Lindberghstraße 9-13, 85051, Ingolstadt, Germany.
| | - Helga Balázs
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Ingolstädter Street 1, 85764, Neuherberg, Germany.
| | - Bernhard Michalke
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstädter Street 1, 85764, Neuherberg, Germany.
| | - Grażyna Płaza
- Silesian University of Technology, Faculty of Organization and Management, 26 Roosevelt street, 41-800 Zabrze, Poland.
| | - Peter Schröder
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Ingolstädter Street 1, 85764, Neuherberg, Germany.
| | - Michael Schloter
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Ingolstädter Street 1, 85764, Neuherberg, Germany.
| | - Viviane Radl
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Ingolstädter Street 1, 85764, Neuherberg, Germany.
| |
Collapse
|
16
|
Sun Y, Wang X, Liu Y, Duan K, Xia Y, Cai Q, Lou L. Long term application of plant growth-promoting bacterium improved grain weight and reduced arsenic accumulation in rice grain: A comparison of 10 bacteria. CHEMOSPHERE 2022; 303:135016. [PMID: 35598785 DOI: 10.1016/j.chemosphere.2022.135016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Rice (Oryza sativa L.) is one of the main food crops, it plays an important role in the human diet. Arsenic (As) contamination in paddy soil inhibits rice growth and reduces rice yield seriously. In addition, As accumulated in rice grains was harmful to human health through the food chain. Using the exogenous method to alleviate As stress and reduce As accumulation in rice grain is one of the potential ways to achieve food safety in polluted farmland. In the present study, 10 bacteria was applied to evaluate the effects of plant growth-promoting bacteria (PGPBs) on rice growth and As accumulation in rice grain. The results showed higher levels of As inhibited PGPB growth, the most tolerant and sensitive bacteria were Bj05 and Ls09, with the growth reduction of 16.9% and 96.7% under 50 mM As, respectively. Most of 10 PGPBs enhanced rice growth and improved rice grain weight under As exposure, among them, Ts06 showed the most effective one. Six of 10 PGPBs reduced rice grain As levels significantly, the highest reduction of grain As was observed in Ts06 inoculated rice, with grain As deceasing to 46.3% of the control. Bj05 was the only one which caused the increase in grain As of Yangdao 6. The Pearson correlation analysis showed grain As concentration negatively correlated with leave As concentration, while did not correlated with total As accumulated in shoot, and soil available As and P. The present results indicated that some PGPBs inhibited As translocation from leave to grain, thus reduced As accumulation in rice grain. Ts06 was suggested to be a candidate as microbial amendments for As-contaminated paddy fields.
Collapse
Affiliation(s)
- Yu Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuejing Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaping Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laiqing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Sharma M, Charron JB, Rani M, Jabaji S. Bacillus velezensis strain B26 modulates the inflorescence and root architecture of Brachypodium distachyon via hormone homeostasis. Sci Rep 2022; 12:7951. [PMID: 35562386 PMCID: PMC9106653 DOI: 10.1038/s41598-022-12026-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) influence plant health. However, the genotypic variations in host organisms affect their response to PGPR. To understand the genotypic effect, we screened four diverse B. distachyon genotypes at varying growth stages for their ability to be colonized by B. velezensis strain B26. We reasoned that B26 may have an impact on the phenological growth stages of B. distachyon genotypes. Phenotypic data suggested the role of B26 in increasing the number of awns and root weight in wild type genotypes and overexpressing transgenic lines. Thus, we characterized the expression patterns of flowering pathway genes in inoculated plants and found that strain B26 modulates the transcript abundance of flowering genes. An increased root volume of inoculated plants was estimated by CT-scanning which suggests the role of B26 in altering the root architecture. B26 also modulated plant hormone homeostasis. A differential response was observed in the transcript abundance of auxin and gibberellins biosynthesis genes in inoculated roots. Our results reveal that B. distachyon plant genotype is an essential determinant of whether a PGPR provides benefit or harm to the host and shed new insight into the involvement of B. velezensis in the expression of flowering genes.
Collapse
Affiliation(s)
- Meha Sharma
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd., Ste-Anne de Bellevue, QC, H9X 3V9, Canada
| | - Jean-Benoit Charron
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd., Ste-Anne de Bellevue, QC, H9X 3V9, Canada
| | - Mamta Rani
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd., Ste-Anne de Bellevue, QC, H9X 3V9, Canada
| | - Suha Jabaji
- Department of Plant Science, Macdonald Campus of McGill University, 21,111 Lakeshore Rd., Ste-Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
18
|
Noman M, Ahmed T, Ijaz U, Shahid M, Azizullah, Li D, Manzoor I, Song F. Plant-Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants. Int J Mol Sci 2021; 22:6852. [PMID: 34202205 PMCID: PMC8269294 DOI: 10.3390/ijms22136852] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Plants host diverse but taxonomically structured communities of microorganisms, called microbiome, which colonize various parts of host plants. Plant-associated microbial communities have been shown to confer multiple beneficial advantages to their host plants, such as nutrient acquisition, growth promotion, pathogen resistance, and environmental stress tolerance. Systematic studies have provided new insights into the economically and ecologically important microbial communities as hubs of core microbiota and revealed their beneficial impacts on the host plants. Microbiome engineering, which can improve the functional capabilities of native microbial species under challenging agricultural ambiance, is an emerging biotechnological strategy to improve crop yield and resilience against variety of environmental constraints of both biotic and abiotic nature. This review highlights the importance of indigenous microbial communities in improving plant health under pathogen-induced stress. Moreover, the potential solutions leading towards commercialization of proficient bioformulations for sustainable and improved crop production are also described.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Azizullah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| | - Irfan Manzoor
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; or
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.N.); (T.A.); (U.I.); (A.); (D.L.)
| |
Collapse
|