1
|
Rodrigues DCS, Silveira MC, Pribul BR, Karam BRS, Picão RC, Kraychete GB, Pereira FM, de Lima RM, de Souza AKG, Leão RS, Marques EA, Rocha-de-Souza CM, Carvalho-Assef APD. Genomic study of Acinetobacter baumannii strains co-harboring bla OXA-58 and bla NDM-1 reveals a large multidrug-resistant plasmid encoding these carbapenemases in Brazil. Front Microbiol 2024; 15:1439373. [PMID: 39086650 PMCID: PMC11288812 DOI: 10.3389/fmicb.2024.1439373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Acinetobacter baumannii contributes significantly to the global issue of multidrug-resistant (MDR) nosocomial infections. Often, these strains demonstrate resistance to carbapenems (MDR-CRAB), the first-line treatment for infections instigated by MDR A. baumannii. Our study focused on the antimicrobial susceptibility and genomic sequences related to plasmids from 12 clinical isolates of A. baumannii that carry both the blaOXA-58 and bla NDM-1 carbapenemase genes. Methods Whole-genome sequencing with long-read technology was employed for the characterization of an A. baumannii plasmid that harbors the bla OXA-58 and blaNDM-1 genes. The location of the bla OXA-58 and bla NDM-1 genes was confirmed through Southern blot hybridization assays. Antimicrobial susceptibility tests were conducted, and molecular characterization was performed using PCR and PFGE. Results Multilocus Sequence Typing analysis revealed considerable genetic diversity among bla OXA-58 and bla NDM-1 positive strains in Brazil. It was confirmed that these genes were located on a plasmid larger than 300 kb in isolates from the same hospital, which also carry other antimicrobial resistance genes. Different genetic contexts were observed for the co-occurrence of these carbapenemase-encoding genes in Brazilian strains. Discussion The propagation of bla OXA-58 and bla NDM-1 genes on the same plasmid, which also carries other resistance determinants, could potentially lead to the emergence of bacterial strains resistant to multiple classes of antimicrobials. Therefore, the characterization of these strains is of paramount importance for monitoring resistance evolution, curbing their rapid global dissemination, averting outbreaks, and optimizing therapy.
Collapse
Affiliation(s)
- Daiana Cristina Silva Rodrigues
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Melise Chaves Silveira
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Bruno Rocha Pribul
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Bruna Ribeiro Sued Karam
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Renata Cristina Picão
- Laboratório de Investigação em Microbiologia Médica (LIMM), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gabriela Bergiante Kraychete
- Laboratório de Investigação em Microbiologia Médica (LIMM), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Rildo Mendes de Lima
- Laboratório Central de Saúde Pública da Fundação de Vigilância em Saúde do Amazonas (LACEN-AM/FVS-RCP), Amazonas, Brazil
| | | | - Robson Souza Leão
- Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Elizabeth Andrade Marques
- Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Sotomayor N, Villacis JE, Burneo N, Reyes J, Zapata S, Bayas-Rea RDLÁ. Carbapenemase genes in clinical and environmental isolates of Acinetobacter spp. from Quito, Ecuador. PeerJ 2024; 12:e17199. [PMID: 38680892 PMCID: PMC11056107 DOI: 10.7717/peerj.17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/14/2024] [Indexed: 05/01/2024] Open
Abstract
Carbapenem-resistant Acinetobacter spp. is associated with nosocomial infections in intensive care unit patients, resulting in high mortality. Although Acinetobacter spp. represent a serious public health problem worldwide, there are a few studies related to the presence of carbapenemases in health care facilities and other environmental settings in Ecuador. The main aim of this study was to characterize the carbapenem-resistant Acinetobacter spp. isolates obtained from four hospitals (52) and from five rivers (27) close to Quito. We used the disc diffusion and EDTA sinergy tests to determine the antimicrobial susceptibility and the production of metallo β-lactamases, respectively. We carried out a multiplex PCR of gyrB gene and the sequencing of partial rpoB gene to bacterial species identification. We performed molecular screening of nine carbapenem-resistant genes (blaSPM, blaSIM, blaGIM, blaGES, blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, and blaOXA-143) by multiplex PCR, followed by identification using sequencing of blaOXA genes. Our findings showed that carbapenem-resistant A. baumannii were the main species found in health care facilities and rivers. Most of the clinical isolates came from respiratory tract samples and harbored blaOXA-23, blaOXA-366, blaOXA-72, blaOXA-65, blaOXA-70, and blaOXA-143-like genes. The river isolates harbored only the blaOXA-51 and probably blaOXA-259 genes. We concluded that the most predominant type of carbapenem genes among isolates were both blaOXA-23 and blaOXA-65 among A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Nicole Sotomayor
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - José Eduardo Villacis
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos, Instituto Nacional de Investigación en Salud Pública-INSPI Dr. Leopoldo Izquieta Pérez, Quito, Ecuador
- Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Noela Burneo
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jorge Reyes
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Sonia Zapata
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Rosa de los Ángeles Bayas-Rea
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
3
|
Castillo-Ramírez S. Genomic epidemiology of Acinetobacter baumannii goes global. mBio 2023; 14:e0252023. [PMID: 37909743 PMCID: PMC10746248 DOI: 10.1128/mbio.02520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Acinetobacter baumannii is a major public health concern, for which many genomic epidemiology studies have been conducted in the last decade. However, the vast majority of these are local studies focusing on hospitals from one or a few countries. Proper global genomic epidemiology studies are needed if we are to understand the worldwide dissemination of A. baumannii clones. In this regard, a recent study published in mBio is a good step forward. Müller et al. (mBio e2260-23, 2023, https://doi.org/10.1128/mbio.02260-23) sequenced the genomes of 313 carbapenem-resistant A. baumannii isolates from over 100 hospitals in almost 50 countries from Africa, Asia, Europe, and The Americas. With this data set the authors provide an updated view of the global distribution of the major international clones and their carbapenemase genes. Future global genomic epidemiology studies can be enhanced by considering not only human but also non-human isolates, and by considering isolates despite their antibiotic resistance profile.
Collapse
Affiliation(s)
- Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
4
|
Fernández-Vázquez JL, Hernández-González IL, Castillo-Ramírez S, Jarillo-Quijada MD, Gayosso-Vázquez C, Mateo-Estrada VE, Morfín-Otero R, Rodríguez-Noriega E, Santos-Preciado JI, Alcántar-Curiel MD. Pandrug-resistant Acinetobacter baumannii from different clones and regions in Mexico have a similar plasmid carrying the blaOXA-72 gene. Front Cell Infect Microbiol 2023; 13:1278819. [PMID: 38192399 PMCID: PMC10773864 DOI: 10.3389/fcimb.2023.1278819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Background Multidrug-resistant Acinetobacter baumannii is a common hospital-acquired pathogen. The increase in antibiotic resistance is commonly due to the acquisition of mobile genetic elements carrying antibiotic resistance genes. To comprehend this, we analyzed the resistome and virulome of Mexican A. baumannii multidrug-resistant isolates. Methods Six clinical strains of A. baumannii from three Mexican hospitals were sequenced using the Illumina platform, the genomes were assembled with SPAdes and annotated with Prokka. Plasmid SPAdes and MobRecon were used to identify the potential plasmid sequences. Sequence Type (ST) assignation under the MLST Oxford scheme was performed using the PubMLST database. Homologous gene search for known virulent factors was performed using the virulence factor database VFDB and an in silico prediction of the resistome was conducted via the ResFinder databases. Results The six strains studied belong to different STs and clonal complexes (CC): two strains were ST208 and one was ST369; these two STs belong to the same lineage CC92, which is part of the international clone (IC) 2. Another two strains were ST758 and one was ST1054, both STs belonging to the same lineage CC636, which is within IC5. The resistome analysis of the six strains identified between 7 to 14 antibiotic resistance genes to different families of drugs, including beta-lactams, aminoglycosides, fluoroquinolones and carbapenems. We detected between 1 to 4 plasmids per strain with sizes from 1,800 bp to 111,044 bp. Two strains from hospitals in Mexico City and Guadalajara had a plasmid each of 10,012 bp pAba78r and pAba79f, respectively, which contained the bla OXA-72 gene. The structure of this plasmid showed the same 13 genes in both strains, but 4 of them were inverted in one of the strains. Finally, the six strains contain 49 identical virulence genes related to immune response evasion, quorum-sensing, and secretion systems, among others. Conclusion Resistance to carbapenems due to pAba78r and pAba79f plasmids in Aba pandrug-resistant strains from different geographic areas of Mexico and different clones was detected. Our results provide further evidence that plasmids are highly relevant for the horizontal transfer of antibiotic resistance genes between different clones of A. baumannii.
Collapse
Affiliation(s)
- José Luis Fernández-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ismael Luis Hernández-González
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ma Dolores Jarillo-Quijada
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Catalina Gayosso-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Eréndira Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara “Fray Antonio Alcalde” e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara “Fray Antonio Alcalde” e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - José Ignacio Santos-Preciado
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María Dolores Alcántar-Curiel
- Laboratorio de Infectología, Microbiología e Inmunología Clínica, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
5
|
Fonseca ÉL, Morgado SM, Freitas F, Oliveira PPC, Monteiro PM, Lima LS, Santos BP, Sousa MAR, Assunção AO, Mascarenhas LA, Vicente ACP. Persistence of a carbapenem-resistant Acinetobacter baumannii (CRAB) International Clone II (ST2/IC2) sub-lineage involved with outbreaks in two Brazilian clinical settings. J Infect Public Health 2023; 16:1690-1695. [PMID: 37639945 DOI: 10.1016/j.jiph.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii international clone II (IC2) is a widespread pandemic clone, however, it is rarely described in South America. The present study reported an outbreak caused by XDR IC2 strains in a clinical setting in Rio de Janeiro in 2022. METHODS Molecular epidemiology analysis was conducted with MLST to determine the clonal relationship and to assign a sequence type. The antimicrobial resistance profile of A. baumannii strains was assessed by the disk-diffusion method and MIC determination, and the presence of antibiotic resistance genes was determined by PCR and Sanger sequencing. The whole genome of one representative strain (AB91) was sequenced to prospect its resistome and virulome. RESULTS The MLST revealed that all strains belonged to the ST2 (Pasteur scheme) that corresponded to the pandemic IC2 lineage. They presented the XDR phenotype, which was compatible with their resistome composed of several acquired resistance genes and altered housekeeping genes. Additionally, an expressive virulome was revealed in AB91 genome. Genomic comparison with the unique other available IC2 genome from Brazil revealed that outbreaks occurring during (São Paulo - 2020/2021) and after (Rio de Janeiro - 2022) COVID-19 pandemics were caused by the same IC2 lineage. CONCLUSIONS This study suggests that the presence of a huge arsenal of resistance and virulence genes may have contributed to the persistence and the successful establishment of IC2 in Brazilian clinical settings during and after the COVID-19 pandemics in response to a series of events, such as the antibiotic overused during that period.
Collapse
Affiliation(s)
- Érica Lourenço Fonseca
- Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Sérgio Mascarenhas Morgado
- Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda Freitas
- Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, FIOCRUZ, Rio de Janeiro, Brazil
| | - Priscila P C Oliveira
- Hospital Infection Control Committee, Hospital São Francisco na Providência de Deus, Rio de Janeiro, Brazil
| | - Priscila M Monteiro
- Hospital Infection Control Committee, Hospital São Francisco na Providência de Deus, Rio de Janeiro, Brazil
| | - Lorena S Lima
- Hospital Infection Control Committee, Hospital São Francisco na Providência de Deus, Rio de Janeiro, Brazil
| | - Bianca P Santos
- Hospital Infection Control Committee, Hospital São Francisco na Providência de Deus, Rio de Janeiro, Brazil
| | - Maria Aparecida R Sousa
- Hospital Infection Control Committee, Hospital São Francisco na Providência de Deus, Rio de Janeiro, Brazil
| | - Adriana O Assunção
- Hospital Infection Control Committee, Hospital São Francisco na Providência de Deus, Rio de Janeiro, Brazil
| | - Luís Affonso Mascarenhas
- Hospital Infection Control Committee, Hospital São Francisco na Providência de Deus, Rio de Janeiro, Brazil
| | - Ana Carolina Paulo Vicente
- Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Morgado SM, Fonseca ÉL, Freitas FS, Bighi NS, Oliveira PPC, Monteiro PM, Lima LS, Santos BP, Sousa MAR, Assumpção AO, Mascarenhas LA, Vicente ACP. Outbreak of high-risk XDR CRAB of international clone 2 (IC2) in Rio Janeiro, Brazil. J Glob Antimicrob Resist 2023; 34:91-98. [PMID: 37419183 DOI: 10.1016/j.jgar.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023] Open
Abstract
OBJECTIVES Among the high-risk clones of Acinetobacter baumannii, called international clones (ICs), IC2 represents the main lineage causing outbreaks worldwide. Despite the successful global spread of IC2, the occurrence of IC2 is rarely reported in Latin America. Here, we aimed to evaluate the susceptibility and genetic relatedness of isolates from a nosocomial outbreak in Rio de Janeiro/Brazil (2022) and perform genomic epidemiology analyses of the available genomes of A. baumannii. METHODS Sixteen strains of A. baumannii were subjected to antimicrobial susceptibility tests and genome sequencing. These genomes were compared phylogenetically with other IC2 genomes from the NCBI database, and virulence and antibiotic resistance genes were searched. RESULTS The 16 strains represented carbapenem-resistant A. baumannii (CRAB) with an extensively drug-resistant profile. In silico analysis established the relationship between the Brazilian CRAB genomes and IC2/ST2 genomes in the world. The Brazilian strains belonged to three sub-lineages, associated with genomes from countries in Europe, North America, and Asia. These sub-lineages presented three distinct capsules, KL7, KL9, and KL56. The Brazilian strains were characterised by the co-presence of blaOXA-23 and blaOXA-66, in addition to the genes APH(6), APH(3"), ANT(3"), AAC(6'), armA, and the efflux pumps adeABC and adeIJK. A large set of virulence genes was also identified: adeFGH/efflux pump; the siderophores barAB, basABCDFGHIJ, and bauBCDEF; lpxABCDLM/capsule; tssABCDEFGIKLM/T6SS; and pgaABCD/biofilm. CONCLUSION Widespread extensively drug-resistant CRAB IC2/ST2 is currently causing outbreaks in clinical settings in southeastern Brazil. This is due to at least three sub-lineages characterised by an enormous apparatus of virulence and resistance to antibiotics, both intrinsic and mobile.
Collapse
Affiliation(s)
- Sérgio M Morgado
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Érica L Fonseca
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernanda S Freitas
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Nathalia S Bighi
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Priscila P C Oliveira
- Hospital Infection Control Committee, São Francisco na Providência de Deus Hospital, Rio de Janeiro, Brazil
| | - Priscilla M Monteiro
- Hospital Infection Control Committee, São Francisco na Providência de Deus Hospital, Rio de Janeiro, Brazil
| | - Lorena S Lima
- Hospital Infection Control Committee, São Francisco na Providência de Deus Hospital, Rio de Janeiro, Brazil
| | - Bianca P Santos
- Hospital Infection Control Committee, São Francisco na Providência de Deus Hospital, Rio de Janeiro, Brazil
| | - Maria A R Sousa
- Hospital Infection Control Committee, São Francisco na Providência de Deus Hospital, Rio de Janeiro, Brazil
| | - Adriana O Assumpção
- Hospital Infection Control Committee, São Francisco na Providência de Deus Hospital, Rio de Janeiro, Brazil
| | - Luiz A Mascarenhas
- Hospital Infection Control Committee, São Francisco na Providência de Deus Hospital, Rio de Janeiro, Brazil
| | - Ana Carolina P Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Shelenkov A, Akimkin V, Mikhaylova Y. International Clones of High Risk of Acinetobacter Baumannii-Definitions, History, Properties and Perspectives. Microorganisms 2023; 11:2115. [PMID: 37630675 PMCID: PMC10459012 DOI: 10.3390/microorganisms11082115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative coccobacillus with exceptional survival skills in an unfavorable environment and the ability to rapidly acquire antibiotic resistance, making it one of the most successful hospital pathogens worldwide, representing a serious threat to public health. The global dissemination of A. baumannii is driven by several lineages named 'international clones of high risk' (ICs), two of which were first revealed in the 1970s. Epidemiological surveillance is a crucial tool for controlling the spread of this pathogen, which currently increasingly involves whole genome sequencing. However, the assignment of a particular A. baumannii isolate to some IC based on its genomic sequence is not always straightforward and requires some computational skills from researchers, while the definitions found in the literature are sometimes controversial. In this review, we will focus on A. baumannii typing tools suitable for IC determination, provide data to easily determine IC assignment based on MLST sequence type (ST) and intrinsic blaOXA-51-like gene variants, discuss the history and current spread data of nine known ICs, IC1-IC9, and investigate the representation of ICs in public databases. MLST and cgMLST profiles, as well as OXA-51-like presence data are provided for all isolates available in GenBank. The possible emergence of a novel A. baumannii international clone, IC10, will be discussed.
Collapse
Affiliation(s)
- Andrey Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | | | | |
Collapse
|
8
|
Colistin Resistance in Acinetobacter baumannii: Molecular Mechanisms and Epidemiology. Antibiotics (Basel) 2023; 12:antibiotics12030516. [PMID: 36978383 PMCID: PMC10044110 DOI: 10.3390/antibiotics12030516] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Acinetobacter baumannii is recognized as a clinically significant pathogen causing a wide spectrum of nosocomial infections. Colistin was considered a last-resort antibiotic for the treatment of infections caused by multidrug-resistant A. baumannii. Since the reintroduction of colistin, a number of mechanisms of colistin resistance in A. baumannii have been reported, including complete loss of LPS by inactivation of the biosynthetic pathway, modifications of target LPS driven by the addition of phosphoethanolamine (PEtN) moieties to lipid A mediated by the chromosomal pmrCAB operon and eptA gene-encoded enzymes or plasmid-encoded mcr genes and efflux of colistin from the cell. In addition to resistance to colistin, widespread heteroresistance is another feature of A. baumannii that leads to colistin treatment failure. This review aims to present a critical assessment of relevant published (>50 experimental papers) up-to-date knowledge on the molecular mechanisms of colistin resistance in A. baumannii with a detailed review of implicated mutations and the global distribution of colistin-resistant strains.
Collapse
|
9
|
Novović K, Kuzmanović Nedeljković S, Poledica M, Nikolić G, Grujić B, Jovčić B, Kojić M, Filipić B. Virulence potential of multidrug-resistant Acinetobacter baumannii isolates from COVID-19 patients on mechanical ventilation: The first report from Serbia. Front Microbiol 2023; 14:1094184. [PMID: 36825087 PMCID: PMC9941878 DOI: 10.3389/fmicb.2023.1094184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Since the WHO declared the COVID-19 pandemic in March 2020, the disease has spread rapidly leading to overload of the health system and many of the patients infected with SARS-CoV-2 needed to be admitted to the intensive care unit (ICU). Around 10% of patients with the severe manifestation of COVID-19 need noninvasive or invasive mechanical ventilation, which represent a risk factor for Acinetobacter baumannii superinfection. The 64 A. baumannii isolates were recovered from COVID-19 patients admitted to ICU at General Hospital "Dr Laza K. Lazarević" Šabac, Serbia, during the period from December 2020 to February 2021. All patients required mechanical ventilation and mortality rate was 100%. The goal of this study was to evaluate antibiotic resistance profiles and virulence potential of A. baumannii isolates recovered from patients with severe form of COVID-19 who had a need for mechanical ventilation. All tested A. baumannii isolates (n = 64) were sensitive to colistin, while resistant to meropenem, imipenem, gentamicin, tobramycin, and levofloxacin according to the broth microdilution method and MDR phenotype was confirmed. In all tested isolates, representatives of international clone 2 (IC2) classified by multiplex PCR for clonal lineage identification, bla AmpC, bla OXA-51, and bla OXA-23 genes were present, as well as ISAba1 insertion sequence upstream of bla OXA-23. Clonal distribution of one dominant strain was found, but individual strains showed phenotypic differences in the level of antibiotic resistance, biofilm formation, and binding to mucin and motility. According to PFGE, four isolates were sequenced and antibiotic resistance genes as well as virulence factors genes were analyzed in these genomes. The results of this study represent the first report on virulence potential of MDR A. baumannii from hospital in Serbia.
Collapse
Affiliation(s)
- Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | - Gordana Nikolić
- General Hospital “Dr Laza K. Lazarević” Šabac, Šabac, Serbia
| | - Bojana Grujić
- General Hospital “Dr Laza K. Lazarević” Šabac, Šabac, Serbia
| | - Branko Jovčić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia,Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Brankica Filipić
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia,*Correspondence: Brankica Filipić,
| |
Collapse
|
10
|
Gupta N, Angadi K, Jadhav S. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii with Special Reference to Carbapenemases: A Systematic Review. Infect Drug Resist 2022; 15:7631-7650. [PMID: 36579124 PMCID: PMC9791997 DOI: 10.2147/idr.s386641] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenemases are β-lactamase enzymes that hydrolyze a variety of β-lactams including carbapenem and belong to different Ambler classes (A, B, D). These enzymes can be encoded by plasmid or chromosomal-mediated genes. The major issues associated with carbapenemases-producing organisms are compromising the activity and increasing the resistance to carbapenems which are the last resort antibiotics used in treating serious infections. The global increase of pathogen, carbapenem-resistant A. baumannii has significantly threatened public health. Thus, there is a pressing need for a better understanding of this pathogen, to know the various carbapenem resistance encoding genes and dissemination of resistance genes from A. baumannii which help in developing strategies to overcome this problem. The horizontal transfer of resistant determinants through mobile genetic elements increases the incidence of multidrug, extensive drug, and Pan-drug resistant A. baumannii. Therefore, the current review aims to know the various mechanisms of carbapenem resistance, categorize and discuss carbapenemases encoding genes and various mobile genetic elements, and the prevalence of carbapenemase genes in recent years in A. baumannii from various geographical regions.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Kalpana Angadi
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Savita Jadhav
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India,Correspondence: Savita Jadhav, Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India, Tel +919284434364, Email
| |
Collapse
|
11
|
Brito BP, Koong J, Wozniak A, Opazo-Capurro A, To J, Garcia P, Hamidian M. Genomic Analysis of Carbapenem-Resistant Acinetobacter baumannii Strains Recovered from Chilean Hospitals Reveals Lineages Specific to South America and Multiple Routes for Acquisition of Antibiotic Resistance Genes. Microbiol Spectr 2022; 10:e0246322. [PMID: 36154439 PMCID: PMC9602995 DOI: 10.1128/spectrum.02463-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAb) is a public health threat accounting for a significant number of hospital-acquired infections. Despite the importance of this pathogen, there is scarce literature on A. baumannii molecular epidemiology and evolutionary pathways relevant to resistance emergence in South American strains. We analyzed the genomic context of 34 CRAb isolates recovered from clinical samples between 2010 and 2013 from two hospitals in Santiago, Chile, using whole-genome sequencing. Several Institut Pasteur scheme sequence types (STs) were identified among the 34 genomes studied here, including ST1, ST15, ST79, ST162, and ST109. No ST2 (the most widespread sequence type) strain was detected. Chilean isolates were phylogenetically closely related, forming lineages specific to South America (e.g., ST1, ST79, and ST15). The genomic contexts of the resistance genes were diverse: while genes were present in a plasmid in ST15 strains, all genes were chromosomal in ST79 strains. Different variants of a small Rep_3 plasmid played a central role in the acquisition of the oxa58 carbapenem and aacC2 aminoglycoside resistance genes in ST1, ST15, and ST79 strains. The aacC2 gene along with blaTEM were found in a novel transposon named Tn6925 here. Variants of Tn7 were also found to play an important role in the acquisition of the aadA1 and dfrA1 genes. This work draws a detailed picture of the genetic context of antibiotic resistance genes in a set of carbapenem-resistant A. baumannii strains recovered from two Chilean hospitals and reveals a complex evolutionary picture of antibiotic resistance gene acquisition events via multiple routes involving several mobile genetic elements. IMPORTANCE Treating infections caused by carbapenem-resistant A. baumannii (CRAb) has become a global challenge given that CRAb strains are also often resistant to a wide range of antibiotics. Analysis of whole-genome sequence data is now a standard approach for studying the genomic context of antibiotic resistance genes; however, genome sequence data from South American countries are scarce. Here, phylogenetic and genomic analyses of 34 CRAb strains recovered from 2010 to 2013 from two Chilean hospitals revealed a complex picture leading to the generation of resistant lineages specific to South America. From these isolates, we characterized several mobile genetic elements, some of which are described for the first time. The genome sequences and analyses presented here further our understanding of the mechanisms leading to multiple-drug resistance, extensive drug resistance, and pandrug resistance phenotypes in South America. Therefore, this is a significant contribution to elucidating the global molecular epidemiology of CRAb.
Collapse
Affiliation(s)
- Barbara P. Brito
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Jonathan Koong
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Aniela Wozniak
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Andres Opazo-Capurro
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Joyce To
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Patricia Garcia
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Mehrad Hamidian
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
12
|
Segatore B, Piccirilli A, Cherubini S, Principe L, Alloggia G, Mezzatesta ML, Salmeri M, Di Bella S, Migliavacca R, Piazza A, Meroni E, Fazii P, Visaggio D, Visca P, Cortazzo V, De Angelis G, Pompilio A, Perilli M. In Vitro Activity of Sulbactam-Durlobactam against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Multicentre Report from Italy. Antibiotics (Basel) 2022; 11:antibiotics11081136. [PMID: 36010006 PMCID: PMC9404735 DOI: 10.3390/antibiotics11081136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, the in vitro activity of the sulbactam-durlobactam (SUL-DUR) combination was evaluated against 141 carbapenem-resistant A. baumannii (CRAb) clinical strains collected from six Italian laboratories. Over half (54.6%) of these isolates were resistant to colistin. The SUL-DUR combination was active against these CRAb isolates with MIC50 and MIC90 values of 0.5 mg/L and 4 mg/L, respectively. Only eleven isolates were resistant to SUL-DUR with MIC values ranging from 8 to 128 mg/L. The SUL-DUR resistant A. baumannii exhibited several antimicrobial resistance genes (ARGs) such as blaOXA-20, blaOXA-58, blaOXA-66, blaADC-25, aac(6')-Ib3 and aac(6')-Ib-cr and mutations in gyrA (S81L) and parC (V104I, D105E). However, in these isolates, mutations Q488K and Y528H were found in PBP3. Different determinants were also identified in these CRAb isolates, including adeABC, adeFGH, adeIJK, abeS, abaQ and abaR, which encode multidrug efflux pumps associated with resistance to multiple antibacterial agents. This is the first report on the antimicrobial activity of SUL-DUR against carbapenem-resistant A. baumannii isolates selected from multiple regions in Italy.
Collapse
Affiliation(s)
- Bernardetta Segatore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Sabrina Cherubini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, “S. Giovanni di Dio” Hospital, 88900 Crotone, Italy
- Correspondence:
| | - Giovanni Alloggia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Maria Lina Mezzatesta
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95131 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95131 Catania, Italy
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Roberta Migliavacca
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Aurora Piazza
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elisa Meroni
- Clinical Microbiology and Virology Unit, “A. Manzoni” Hospital, 23900 Lecco, Italy
| | - Paolo Fazii
- Clinical Microbiology and Virology Unit, Spirito Santo Hospital, 65122 Pescara, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Venere Cortazzo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center of Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
13
|
Whole-Genome Sequencing of ST2 A. baumannii Causing Bloodstream Infections in COVID-19 Patients. Antibiotics (Basel) 2022; 11:antibiotics11070955. [PMID: 35884209 PMCID: PMC9311945 DOI: 10.3390/antibiotics11070955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
A total of 43 A. baumannii strains, isolated from 43 patients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and by bacterial sepsis, were analyzed by antimicrobial susceptibility testing. All strains were resistant to almost three different classes of antibiotics, including carbapenems and colistin. The whole-genome sequencing (WGS) of eight selected A. baumannii isolates showed the presence of different insertion sequences (ISs), such as ISAba13, ISAba26, IS26, ISVsa3, ISEc29, IS6100 and IS17, giving to A. baumannii a high ability to capture and mobilize antibiotic resistance genes. Resistance to carbapenems is mainly mediated by the presence of OXA-23, OXA-66 and OXA-82 oxacillinases belonging to OXA-51-like enzymes. The presence of AmpC cephalosporinase, ADC-25, was identified in all A. baumannii. The pathogenicity of A. baumannii was exacerbated by the presence of several virulence factors. The multi-locus sequence typing (MLST) analysis showed that all strains belong to sequence type 2 (ST) international clone.
Collapse
|
14
|
Almihyawi RAH, Naman ZT, Al-Hasani HMH, Muhseen ZT, Zhang S, Chen G. Integrated computer-aided drug design and biophysical simulation approaches to determine natural anti-bacterial compounds for Acinetobacter baumannii. Sci Rep 2022; 12:6590. [PMID: 35449379 PMCID: PMC9023527 DOI: 10.1038/s41598-022-10364-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial bacterial pathogen and is responsible for a wide range of diseases including pneumonia, necrotizing fasciitis, meningitis, and sepsis. The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (encoded by aroA gene) in ESKAPE pathogens catalyzes the sixth step of shikimate pathway. The shikimate pathway is an attractive drug targets pathway as it is present in bacteria but absent in humans. As EPSP is essential for the A. baumannii growth and needed during the infection process, therefore it was used as a drug target herein for high-throughput screening of a comprehensive marine natural products database (CMNPD). The objective was to identify natural molecules that fit best at the substrate binding pocket of the enzyme and interact with functionally critical residues. Comparative assessment of the docking scores allowed selection of three compounds namely CMNPD31561, CMNPD28986, and CMNPD28985 as best binding molecules. The molecules established a balanced network of hydrophobic and hydrophilic interactions, and the binding pose remained in equilibrium throughout the length of molecular simulation time. Radial distribution function (RDF) analysis projected key residues from enzyme active pocket which actively engaged the inhibitors. Further validation is performed through binding free energies estimation that affirms very low delta energy of <-22 kcal/mol in MM-GBSA method and <-12 kcal/mol in MM-PBSA method. Lastly, the most important active site residues were mutated and their ligand binding potential was re-investigated. The molecules also possess good druglike properties and better pharmacokinetics. Together, these findings suggest the potential biological potency of the leads and thus can be used by experimentalists in vivo and in vitro studies.
Collapse
Affiliation(s)
- Raed A H Almihyawi
- College of Life Sciences, Jilin Agricultural University, Jilin, China
- Department of Quality Control, Baghdad Water Authority, Mayoralty of Baghdad, Baghdad, Iraq
| | - Ziad Tareq Naman
- Department of Medical Laboratory Techniques, Al Mamoon University College, Baghdad, Iraq
| | - Halah M H Al-Hasani
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Ziyad Tariq Muhseen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Sitong Zhang
- College of Life Sciences, Jilin Agricultural University, Jilin, China.
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin, China.
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Jilin, China.
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin, China.
| |
Collapse
|
15
|
Camargo CH, Yamada AY, Nagamori FO, de Souza AR, Tiba-Casas MR, de Moraes França FA, Porto MHTN, de Lima Garzon ML, Higgins P, Madalosso G, de Assis DB. Clonal spread of ArmA- and OXA-23-coproducing Acinetobacter baumannii International Clone 2 in Brazil during the first wave of the COVID-19 pandemic. J Med Microbiol 2022; 71. [PMID: 35417321 DOI: 10.1099/jmm.0.001509] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Carbapenem-resistant Acinetobacter baumannii (CRAB) is the primary pathogen causing hospital-acquired infections. The spread of CRAB is mainly driven by the dissemination of resistant clones, and in Latin America, International Clones IC-1 (also known as clonal complex CC1), IC-4 (CC15) and IC-5 (CC79) are the most prevalent.Gap Statement. There are no documented outbreaks of CRAB International Clone 2 (IC-2) reported in Brazil.Aim. To describe a large outbreak of CRAB caused by the uncommon IC-2 in a Brazilian COVID-19 hospital.Methodology. From May 2020 to May 2021, 224 patients infected or colonized with CRAB were identified in a single hospital; 92 % of them were also infected with SARS-CoV-2. From these patients, 137 isolates were recovered and subjected to antimicrobial susceptibility testing, PCR analysis and molecular typing. Whole-genome sequencing and downstream analysis were carried out on a representative isolate (the first available isolate).Results. In 76 % of the patients, a single OXA-23-producing CRAB IC-2 was identified. All the isolates were susceptible to polymyxin B, but highly resistant (>95 %) to aminoglycosides, fluoroquinolones and beta-lactams. Genomic analysis revealed that the representative isolate also carried the 16S rRNA Methylase ArmA, which was detected for the first time in this species in Brazil.Conclusion. We report the rapid spread of an emerging CRAB clone responsible for causing a large outbreak in a hospital in Brazil, a country with predominance of other CRAB clones. Continuous and prospective surveillance is warranted to evaluate the impact of this clone in Brazilian hospital settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paul Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Geraldine Madalosso
- Divisão de Infecção Hospitalar, Centro de Vigilância Epidemiológica, São Paulo, Brazil
| | | |
Collapse
|
16
|
Odih EE, Irek EO, Obadare TO, Oaikhena AO, Afolayan AO, Underwood A, Adenekan AT, Ogunleye VO, Argimon S, Dalsgaard A, Aanensen DM, Okeke IN, Aboderin AO. Rectal Colonization and Nosocomial Transmission of Carbapenem-Resistant Acinetobacter baumannii in an Intensive Care Unit, Southwest Nigeria. Front Med (Lausanne) 2022; 9:846051. [PMID: 35321470 PMCID: PMC8936076 DOI: 10.3389/fmed.2022.846051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Acinetobacter baumannii are of major human health importance because they cause life-threatening nosocomial infections and often are highly resistant to antimicrobials. Specific multidrug-resistant A. baumannii lineages are implicated in hospital outbreaks globally. We retrospectively investigated a suspected outbreak of carbapenem-resistant A. baumannii (CRAB) colonizing patients in an intensive care unit (ICU) of a tertiary hospital in Southwest Nigeria where genomic surveillance of Acinetobacter has hitherto not been conducted. Methods A prospective observational study was conducted among all patients admitted to the ICU between August 2017 and June 2018. Acinetobacter species were isolated from rectal swabs and verified phenotypically with the Biomerieux Vitek 2 system. Whole genome sequencing (WGS) was performed on the Illumina platform to characterize isolates from a suspected outbreak during the study period. Phylogenetic analysis, multilocus sequence typing, and antimicrobial resistance gene prediction were carried out in silico. Results Acinetobacter isolates belonging to the A. baumannii complex were recovered from 20 (18.5%) ICU patients. Single nucleotide polymorphism (SNP) analysis and epidemiological information revealed a putative outbreak clone comprising seven CRAB strains belonging to the globally disseminated international clone (IC) 2. These isolates had ≤2 SNP differences, identical antimicrobial resistance and virulence genes, and were all ST1114/1841. Conclusion We report a carbapenem-resistant IC2 A. baumannii clone causing an outbreak in an ICU in Nigeria. The study findings underscore the need to strengthen the capacity to detect A. baumannii in human clinical samples in Nigeria and assess which interventions can effectively mitigate CRAB transmission in Nigerian hospital settings.
Collapse
Affiliation(s)
- Erkison Ewomazino Odih
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, University of Ibadan, Oyo, Nigeria
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Erkison Ewomazino Odih,
| | - Emmanuel Oladayo Irek
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals Complex, Ife, Nigeria
| | - Temitope O. Obadare
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals Complex, Ife, Nigeria
| | - Anderson O. Oaikhena
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, University of Ibadan, Oyo, Nigeria
| | - Ayorinde O. Afolayan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, University of Ibadan, Oyo, Nigeria
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Cambridge, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Anthony T. Adenekan
- Department of Anaesthesia and Intensive Care, Obafemi Awolowo University, Ife, Nigeria
| | | | - Silvia Argimon
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Cambridge, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Cambridge, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, University of Ibadan, Oyo, Nigeria
| | - A. Oladipo Aboderin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ife, Nigeria
- A. Oladipo Aboderin,
| |
Collapse
|
17
|
Spread of multidrug-resistant Acinetobacter baumannii isolates belonging to IC1 and IC5 major clones in Rondônia state. Braz J Microbiol 2022; 53:795-799. [PMID: 35141834 PMCID: PMC9151963 DOI: 10.1007/s42770-022-00706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
In Brazil, carbapenem-resistant A. baumannii (CRAB) is a critical pathogen showing high carbapenem resistance rates. Currently, there is little epidemiological data on A. baumannii isolated in the Northern Brazilian region. Herein, this study aimed to characterize the resistance mechanisms of CRAB isolates recovered from hospitalized patients in the state of Rondônia in 2019. Most of CRAB were considered as extensively drug-resistant, and some of them showed high MICs for minocycline. Only polymyxins showed a satisfactory activity. All isolates carried blaOXA-23 and were included in 14 distinct clusters, with the predominance of clonal group A (29%). The IC1 was the most frequent clonal group, followed by IC5 and IC4. Here, we firstly reported the epidemiological scenario of CRAB in the state of Rondônia, located in the Brazilian Amazon region. The high frequency of CRAB presenting XDR phenotype is of great concern, due to limited therapeutical options, especially in the actual pandemic scenario, in which we observed an overcrowding of ICU beds. Such results are essential to better characterize the epidemiology of CRAB in the entire Brazilian territory.
Collapse
|
18
|
pmrCAB Recombination Events among Colistin-Susceptible and -Resistant Acinetobacter baumannii Clinical Isolates Belonging to International Clone 7. mSphere 2021; 6:e0074621. [PMID: 34851165 PMCID: PMC8636104 DOI: 10.1128/msphere.00746-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Acinetobacter baumannii is a successful nosocomial pathogen due to its genomic plasticity. Homologous recombination allows genetic exchange and allelic variation among different clonal lineages and is one of the mechanisms associated with horizontal gene transfer (HGT) of resistance determinants. The main mechanism of colistin resistance in A. baumannii is mediated through mutations in the pmrCAB operon. Here, we describe two A. baumannii clinical isolates belonging to International Clone 7 (IC7) that have undergone recombination in the pmrCAB operon and evaluate the contribution of mobile genetic elements (MGE) to this phenomenon. Isolates 67569 and 72554 were colistin susceptible and resistant, respectively, and were submitted for short- and long-read genome sequencing using Illumina MiSeq and MinION platforms. Hybrid assemblies were built with Unicycler, and the assembled genomes were compared to reference genomes using NUCmer, Cortex, and SplitsTree. Genomes were annotated using Prokka, and MGEs were identified with ISfinder and repeat match. Both isolates presented a 21.5-kb recombining region encompassing pmrCAB. In isolate 67659, this region originated from IC5, while in isolate 72554 multiple recombination events might have happened, with the 5-kb recombining region encompassing pmrCAB associated with an isolate representing IC4. We could not identify MGEs involved in the mobilization of pmrCAB in these isolates. In summary, A. baumannii belonging to IC7 can present additional sequence divergence due to homologous recombination across clonal lineages. Such variation does not seem to be driven by antibiotic pressure but could contribute to HGT mediating colistin resistance. IMPORTANCE Colistin resistance rates among Acinetobacter baumannii clinical isolates have increased over the last 20 years. Despite reports of the spread of plasmid-mediated colistin resistance among Enterobacterales, the presence of mcr-type genes in Acinetobacter spp. remains rare, and reduced colistin susceptibility is mainly associated with the acquisition of nonsynonymous mutations in pmrCAB. We have recently demonstrated that distinct pmrCAB sequences are associated with different A. baumannii International Clones (IC). In this study, we identified the presence of homologous recombination as an additional cause of genetic variation in this operon, which, to the best of our knowledge, was not mediated by mobile genetic elements. Even though this phenomenon was observed in both colistin-susceptible and -resistant isolates, it has the potential to contribute to the spread of resistance-conferring alleles, leading to reduced susceptibility to this last-resort antimicrobial agent.
Collapse
|
19
|
Zafer MM, Hussein AFA, Al-Agamy MH, Radwan HH, Hamed SM. Genomic Characterization of Extensively Drug-Resistant NDM-Producing Acinetobacter baumannii Clinical Isolates With the Emergence of Novel bla ADC-257. Front Microbiol 2021; 12:736982. [PMID: 34880837 PMCID: PMC8645854 DOI: 10.3389/fmicb.2021.736982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii has become a major challenge to clinicians worldwide due to its high epidemic potential and acquisition of antimicrobial resistance. This work aimed at investigating antimicrobial resistance determinants and their context in four extensively drug-resistant (XDR) NDM-producing A. baumannii clinical isolates collected between July and October 2020 from Kasr Al-Ainy Hospital, Cairo, Egypt. A total of 20 A. baumannii were collected and screened for acquired carbapenemases (blaNDM, blaVIM and blaIMP) using PCR. Four NDM producer A. baumannii isolates were identified and selected for whole-genome sequencing, in silico multilocus sequence typing, and resistome analysis. Antimicrobial susceptibility profiles were determined using disk diffusion and broth microdilution tests. All blaNDM-positive A. baumannii isolates were XDR. Three isolates belonged to high-risk international clones (IC), namely, IC2 corresponding to ST570Pas/1701Oxf (M20) and IC9 corresponding to ST85Pas/ST1089Oxf (M02 and M11). For the first time, we report blaNDM-1 gene on the chromosome of an A. baumannii strain that belongs to sequence type ST164Pas/ST1418Oxf. Together with AphA6, blaNDM-1 was bracketed by two copies of ISAba14 in ST85Pas isolates possibly facilitating co-transfer of amikacin and carbapenem resistance. A novel blaADC allele (blaADC-257) with an upstream ISAba1 element was identified in M19 (ST/CC164Pas and ST1418Oxf/CC234Oxf). blaADC genes harbored by M02 and M11 were uniquely interrupted by IS1008. Tn2006-associated blaOXA-23 was carried by M20. blaOXA-94 genes were preceded by ISAba1 element in M02 and M11. AbGRI3 was carried by M20 hosting the resistance genes aph(3`)-Ia, aac(6`)-Ib`, catB8, ant(3``)-Ia, sul1, armA, msr(E), and mph(E). Nonsynonymous mutations were identified in the quinolone resistance determining regions (gyrA and parC) of all isolates. Resistance to colistin in M19 was accompanied by missense mutations in lpxACD and pmrABC genes. The current study provided an insight into the genomic background of XDR phenotype in A. baumannii recovered from patients in Egypt. WGS revealed strong association between resistance genes and diverse mobile genetic elements with novel insertion sites and genetic organizations.
Collapse
Affiliation(s)
- Mai M Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Amira F A Hussein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
20
|
Diversity of International High-Risk Clones of Acinetobacter baumannii Revealed in a Russian Multidisciplinary Medical Center during 2017-2019. Antibiotics (Basel) 2021; 10:antibiotics10081009. [PMID: 34439060 PMCID: PMC8389025 DOI: 10.3390/antibiotics10081009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Acinetobacter baumannii is a dangerous bacterial pathogen possessing the ability to persist on various surfaces, especially in clinical settings, and to rapidly acquire the resistance to a broad spectrum of antibiotics. Thus, the epidemiological surveillance of A. baumannii within a particular hospital, region, and across the world is an important healthcare task that currently usually includes performing whole-genome sequencing (WGS) of representative isolates. During the past years, the dissemination of A. baumannii across the world was mainly driven by the strains belonging to two major groups called the global clones or international clones (ICs) of high risk (IC1 and IC2). However, currently nine ICs are already considered. Although some clones were previously thought to spread in particular regions of the world, in recent years this is usually not the case. In this study, we determined five ICs, as well as three isolates not belonging to the major ICs, in one multidisciplinary medical center within the period 2017-2019. We performed WGS using both short- and long-read sequencing technologies of nine representative clinical A. baumannii isolates, which allowed us to determine the antibiotic resistance and virulence genomic determinants, reveal the CRISPR/Cas systems, and obtain the plasmid structures. The phenotypic and genotypic antibiotic resistance profiles are compared, and the possible ways of isolate and resistance spreading are discussed. We believe that the data obtained will provide a better understanding of the spreading and resistance acquisition of the ICs of A. baumannii and further stress the necessity for continuous genomic epidemiology surveillance of this problem-causing bacterial species.
Collapse
|
21
|
WGS-Based Analysis of Carbapenem-Resistant Acinetobacter baumannii in Vietnam and Molecular Characterization of Antimicrobial Determinants and MLST in Southeast Asia. Antibiotics (Basel) 2021; 10:antibiotics10050563. [PMID: 34064958 PMCID: PMC8150915 DOI: 10.3390/antibiotics10050563] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (A. baumannii, CRAb) is an emerging global threat for healthcare systems, particularly in Southeast Asia. Next-generation sequencing (NGS) technology was employed to map genes associated with antimicrobial resistance (AMR) and to identify multilocus sequence types (MLST). Eleven strains isolated from humans in Vietnam were sequenced, and their AMR genes and MLST were compared to published genomes of strains originating from Southeast Asia, i.e., Thailand (n = 49), Myanmar (n = 38), Malaysia (n = 11), Singapore (n = 4) and Taiwan (n = 1). Ten out of eleven Vietnamese strains were CRAb and were susceptible only to colistin. All strains harbored ant(3")-IIa, armA, aph(6)-Id and aph(3") genes conferring resistance to aminoglycosides, and blaOXA-51 variants and blaADC-25 conferring resistance to ß-lactams. More than half of the strains harbored genes that confer resistance to tetracyclines, sulfonamides and macrolides. The strains showed high diversity, where six were assigned to sequence type (ST)/2, and two were allocated to two new STs (ST/1411-1412). MLST analyses of 108 strains from Southeast Asia identified 19 sequence types (ST), and ST/2 was the most prevalent found in 62 strains. A broad range of AMR genes was identified mediating resistance to ß-lactams, including cephalosporins and carbapenems (e.g., blaOXA-51-like, blaOXA-23, blaADC-25, blaADC-73, blaTEM-1, blaNDM-1), aminoglycosides (e.g., ant(3")-IIa, aph(3")-Ib, aph(6)-Id, armA and aph(3')-Ia), phenicoles (e.g., catB8), tetracyclines (e.g., tet.B and tet.39), sulfonamides (e.g., sul.1 and sul.2), macrolides and lincosamide (e.g., mph.E, msr.E and abaF). MLST and core genome MLST (cgMLST) showed an extreme diversity among the strains. Several strains isolated from different countries clustered together by cgMLST; however, different clusters shared the same ST. Developing an action plan on AMR, increasing awareness and prohibiting the selling of antibiotics without prescription must be mandatory for this region. Such efforts are critical for enforcing targeted policies on the rational use of carbapenem compounds and controlling AMR dissemination and emergence in general.
Collapse
|