1
|
Long Y, Zhang N, Bi Y, Ma T, Paengkoum P, Xin J, Xiao W, Zhao Y, Yuan C, Wang D, Yang Y, Su C, Han Y. Partially substituting roughage with traditional Chinese herbal medicine residues in the diet of goats improved feed quality, growth performance, hematology, and rumen microbial profiles. BMC Vet Res 2024; 20:576. [PMID: 39716267 DOI: 10.1186/s12917-024-04412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
This study aimed to reveal the effect of traditional Chinese herbal medicine residues (TCHMR) on growth performance, hematology, ruminal microbiota, and economic benefits of Guizhou black male goats through the fermented total mixed ration (FTMR) diet technique. A total of 22 Guizhou black male goats with an initial weight of 21.77 ± 0.85 kg were randomly divided into 2 groups (n = 11), with 11 goats in each group. The control group (CON) was fed a traditional total mixed ration (TMR) diet without the TCHMR. The TCHMR group was fed an FTMR diet containing 40%TCHMR. Compared with the CON group, the results showed that the incorporation of TCHMR into goat diets reduced feeding costs and Feed conversion ratio (FCR). On the contrary, it improved (P < 0.01) feed quality, apparent digestibility of Dry matter (DM), Crude Protein (CP), Neutral detergent fiber (NDF), average daily gain (ADG), and dry matter intake. Interestingly, TCHMR also reduced (P < 0.01) acetate levels in the rumen of goats. Supplementally, TCHMR significantly increased (P < 0.01) the levels of GH, IgM, IgA (p < 0.05), and IFN-γ (P < 0.05), while significantly reducing (P < 0.01) the levels of IL-6, ALT, and AST in serum. Notably, at the phylum level, TCHMR significantly reduced (P < 0.01) the abundance of Bacteroidota and increased (P < 0.01) the abundance of Firmicutes. Moreover. at the genus level, TCHMR significantly reduced (P < 0.01) the abundance of Prevotella, F082, and Bacteroidales_RF16_group, while Muribaculaceae, Proteus, Lachnospiraceae_ND3007_group, and Ruminococcus were increased (P < 0.01). In conclusion, our current findings indicated that 40% TCHMR improved feed quality and the apparent digestibility of nutrients. Additionally, 40% TCHMR improved the growth performance and immunity of Guizhou black male goats, while also reorganizing the composition of ruminal microbiota. So far, under the conditions of this experiment, we have not found any negative effects of 40% TCHMR on goats. This study will be a new idea for developing feed resources, which will reduce environmental pollution and the cost of animal husbandry.
Collapse
Affiliation(s)
- Yong Long
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Naifeng Zhang
- Institute of Feed Research of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yanliang Bi
- Institute of Feed Research of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Tao Ma
- Institute of Feed Research of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Jiamin Xin
- The First Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Wen Xiao
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Yanpin Zhao
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Chao Yuan
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Defeng Wang
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Yang Yang
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Chaozhi Su
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Yong Han
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- Institute of Animal Husbandry and Veterinary Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China.
| |
Collapse
|
2
|
Guo X, Chen D, Huang P, Gao L, Zhou W, Zhang J, Zhang Q. Effects of tannin-tolerant lactic acid bacteria in combination with tannic acid on the fermentation quality, protease activity and bacterial community of stylo silage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39568328 DOI: 10.1002/jsfa.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Proteolysis during ensiling primarily occurs due to undesirable microbial and plant protease activities, which reduce the protein supply to ruminant livestock and cause a series of environmental problems. The objective of this study was to investigate the effects of the tannin-tolerant lactic acid bacterium strain Lactiplantibacillus plantarum 4 (LABLP4) in combination with tannic acid (TA) on protein preservation in stylo (Stylosanthes guianensis) silage. The stylos were either ensiled without additives (control) or treated with LABLP4 (106 colony-forming units per gram of fresh matter), 1% (fresh matter basis) TA, 2% TA, LABLP4 + 1% TA and LABLP4 + 2% TA. Fermentation quality, protein composition, protease activity and bacterial diversity were determined at 3, 7, 14 and 31 days of ensiling. RESULTS The combination of LABLP4 and TA decreased the pH, coliform bacteria count, non-protein nitrogen, ammonia-nitrogen (NH3-N) content and protease activities (P < 0.05) and increased the true protein content (P < 0.05) compared to the control. LABLP4 + TA led to a lower pH and NH3-N content than LABLP4 or TA alone (P < 0.05). On the last day (31 days) of ensiling, LABLP4 + TA increased the relative abundances of Firmicutes and Lactiplantibacillus (P < 0.05), except for the LABLP4 treatment, and decreased the relative abundance of Actinobacteria (P < 0.05). CONCLUSION The combination of tannin-tolerant LABLP4 and TA effectively improved the fermentation quality of stylo silage and reduced protein degradation by altering the bacterial community structure. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiang Guo
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Dandan Chen
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Peishan Huang
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Lin Gao
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Jianguo Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University/Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, China
| |
Collapse
|
3
|
Hao L, Jiang F, Wang Y, Wang H, Hu H, You W, Hu X, Cheng H, Wang C, Song E. Formic acid enhances whole-plant mulberry silage fermentation by boosting lactic acid production and inhibiting harmful bacteria. Front Microbiol 2024; 15:1399907. [PMID: 38915298 PMCID: PMC11194324 DOI: 10.3389/fmicb.2024.1399907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Mulberry has also been regarded as a valuable source of forage for ruminants. This study was developed to investigate the impact of four additives and combinations thereof on fermentation quality and bacterial communities associated with whole-plant mulberry silage. Control fresh material (FM) was left untreated, while other groups were treated with glucose (G, 20 g/kg FM), a mixture of Lactobacillus plantarum and L. buchneri (L, 106 CFU/g FM), formic acid (A, 5 mL/kg FM), salts including sodium benzoate and potassium sorbate (S, 1.5 g/kg FM), a combination of G and L (GL), a combination of G and A (GA), or a combination of G and S (GS), followed by ensiling for 90 days. Dry matter content in the A, S, GA, and GS groups was elevated relative to the other groups (p < 0.01). Relative to the C group, all additives and combinations thereof were associated with reductions in pH and NH3-N content (p < 0.01). The A groups exhibited the lowest pH and NH3-N content at 4.23 and 3.27 g/kg DM, respectively (p < 0.01), whereas the C groups demonstrated the highest values at 4.43 and 4.44 g/kg DM, respectively (p < 0.01). The highest levels of lactic acid were observed in the GA and A groups (70.99 and 69.14 g/kg DM, respectively; p < 0.01), followed by the GL, L, and GS groups (66.88, 64.17 and 63.68 g/kg DM, respectively), with all of these values being higher than those for the C group (53.27 g/kg DM; p < 0.01). Lactobacillus were the predominant bacteria associated with each of these samples, but the overall composition of the bacterial community was significantly impacted by different additives. For example, Lactobacillus levels were higher in the G, A, and GA groups (p < 0.01), while those of Weissella levels were raised in the L, GL, and GS groups (p < 0.01), Pediococcus levels were higher in the A and GA groups (p < 0.01), Enterococcus levels were higher in the G and S groups (p < 0.01), and Lactococcus levels were raised in the S group (p < 0.01). Relative to the C group, a reduction in the levels of undesirable Enterobacter was evident in all groups treated with additives (p < 0.01), with the greatest reductions being evident in the A, S, GA, and GS groups. The additives utilized in this study can thus improve the quality of whole-plant mulberry silage to varying extents through the modification of the associated bacterial community, with A and GA addition achieving the most efficient reductions in pH together with increases in lactic acid content and the suppression of undesirable bacterial growth.
Collapse
Affiliation(s)
- Lihong Hao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Fugui Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Yanping Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Huaizhong Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Hongmei Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Wei You
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Xin Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Haijian Cheng
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Cheng Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Enliang Song
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
4
|
Mpanza TDE, Mani S. Effects of Vachellia mearnsii Tannin Extract as an Additive on Fermentation Quality, Aerobic Stability, and Microbial Modulation of Maize Silage. Microorganisms 2023; 11:2767. [PMID: 38004778 PMCID: PMC10673101 DOI: 10.3390/microorganisms11112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Maize silage is produced to alleviate the effects of forage shortages on ruminant animals, particularly during the dry season. Microorganisms play a significant role in silage fermentation and thus, to a large extent, determine the silage quality. The modulation of silage microorganisms may help to inhibit undesirable bacteria and improve the silage quality. Therefore, condensed tannin extract from Vachellia mearnsii bark was used as an additive in maize silage during ensiling. Hence, this study evaluated the effects of a tannin extract (condensed tannin) additive on the fermentative quality, aerobic stability, and bacterial composition of maize silage. A mini-silo experiment on maize with five treatments was conducted for 75 days. The silage treatments were as follows: (T1) maize forage with no inoculation (negative control); (T2) maize forage inoculated with LAB and 1% tannin extract; (T3) maize forage inoculated with LAB only (positive control); (T4) and maize forage inoculated with LAB and 2% tannin extract; (T5) maize forage inoculated with LAB and 3% tannin extract. The results showed that the additives modulated the silage microorganism composition. However, this was without affecting the silage's fermentative quality and aerobic stability. All the silages recorded a pH below 4.2, which indicated well-fermented silage. The tannin extract suppressed the growth of undesirable bacteria, such as Dysgonomonas, Gluconacetobacter and Clostridium genera, while promoting desirable bacteria, such as Lactobacillus and Weissella genera, which were attributed to the silage quality. It is thus concluded that tannins can be strategically used as silage additives to modulate the microbial composition of silage and improve the silage quality by promoting the dominance of the desirable bacteria in the silage.
Collapse
Affiliation(s)
- Thamsanqa Doctor Empire Mpanza
- Animal Nutrition, Agricultural Research Council—Animal Production, Private Bag X2, Irene 0062, South Africa
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | - Sinalo Mani
- Gastrointestinal Microbiology and Biotechnology, Agricultural Research Council—Animal Production, Private Bag X2, Irene 0062, South Africa;
| |
Collapse
|
5
|
Du Z, Yamasaki S, Oya T, Cai Y. Cellulase-lactic acid bacteria synergy action regulates silage fermentation of woody plant. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:125. [PMID: 37542284 PMCID: PMC10403842 DOI: 10.1186/s13068-023-02368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Feed shortage is an important factor limiting livestock production in the world. To effectively utilize natural woody plant resources, we used wilting and microbial additives to prepare an anaerobic fermentation feed of mulberry, and used PacBio single-molecule real-time (SMRT) sequencing technology to analyse the "enzyme-bacteria synergy" and fermentation mechanism. RESULTS The fresh branches and leaves of mulberry have high levels of moisture and nutrients, and also contain a diverse range of epiphytic microorganisms. After ensiling, the microbial diversity decreased markedly, and the dominant bacteria rapidly shifted from Gram-negative Proteobacteria to Gram-positive Firmicutes. Lactic acid bacteria (LAB) emerged as the dominant microbial population, resulting in increased in the proportion of the carbohydrate metabolism and decreased in the proportion of the amino acid and "global and overview map" (GOM) metabolism categories. The combination of cellulase and LAB exhibited a synergistic effect, through which cellulases such as glycanase, pectinase, and carboxymethyl cellulase decomposed cellulose and hemicellulose into sugars. LAB converted these sugars into lactic acid through the glycolytic pathway, thereby improving the microbial community structure, metabolism and fermentation quality of mulberry silage. The GOM, carbohydrate metabolism, and amino acid metabolism were the main microbial metabolic categories during ensiling. The presence of LAB had an important effect on the microbial community and metabolic pathways during silage fermentation. A "co-occurrence microbial network" formed with LAB, effectively inhibiting the growth of harmful microorganisms, and dominating the anaerobic fermentation process. CONCLUSIONS In summary, PacBio SMRT was used to accurately analyse the microbial network information and regulatory mechanism of anaerobic fermentation, which provided a scientific basis for the study of woody silage fermentation theory. This study reveals for the first time the main principle of the enzyme-bacteria synergy in a woody silage fermentation system, which provides technical support for the development and utilization of woody feed resources, and achieves sustainable livestock production.
Collapse
Affiliation(s)
- Zhumei Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Seishi Yamasaki
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Tetsuji Oya
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Yimin Cai
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan.
| |
Collapse
|
6
|
Patil U, Gulzar S, Ma L, Zhang B, Benjakul S. Pickering Emulsion Stabilized by Fish Myofibrillar Proteins Modified with Tannic Acid, as Influenced by Different Drying Methods. Foods 2023; 12:foods12071556. [PMID: 37048376 PMCID: PMC10094371 DOI: 10.3390/foods12071556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
A novel food-grade, particles-based Pickering emulsion (PE) was prepared from a marine source. Yellow stripe trevally is an under-utilized species. The use of its muscle protein as solid food-grade particles for the preparation of a Pickering emulsion can be a potential means of obtaining the natural nutritive emulsifier/stabilizer. Fish myofibrillar proteins (FMP) were modified with tannic acid (TA) at varying concentrations (0.125, 0.25, and 0.5%) followed by freeze-drying (FD) or spray-drying (SD). Physicochemical characteristics and emulsifying properties of obtained FMP-TA complexed particles were assessed for structural changes and oil-in-water emulsion stabilization. The addition of TA caused a reduction in surface hydrophobicity and total sulfhydryl content values for either FD-FMP or SD-FMP. Conversely, disulfide bond content was significantly increased, particularly when TA at 0.5% was used (p < 0.05). FTIR, spectrofluorometer, and the protein pattern also confirmed the cross-linking between FMP and TA. SD-FMP modified with 0.5% TA (SD-FMP-0.5TA) rendered the highest emulsifying stability index but had a lowered emulsifying activity index (p < 0.05). Confocal microscopic images, droplet size, and rheological properties revealed that a SD-FMP-0.5TA-stabilized emulsion had higher stability after 45 days of storage than an FD-FMP-0.5TA-stabilized emulsion. Therefore, the SD-FMP-0.5TA complex could be used as a potential food-grade stabilizer/emulsifier for PE with enhanced emulsifying properties.
Collapse
Affiliation(s)
- Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Saqib Gulzar
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Chen D, Zheng M, Zhou Y, Gao L, Zhou W, Wang M, Zhu Y, Xu W. Improving the quality of Napier grass silage with pyroligneous acid: Fermentation, aerobic stability, and microbial communities. Front Microbiol 2022; 13:1034198. [PMID: 36523820 PMCID: PMC9745580 DOI: 10.3389/fmicb.2022.1034198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 10/22/2024] Open
Abstract
The presence of undesirable microorganisms in silage always leads to poor fermentation quality and low aerobic stability. Pyroligneous acid (PA), a by-product of biochar production, is known to have strong antimicrobial and antioxidant activities. To investigate the effects of PA on fermentation characteristics, aerobic stability, and microbial communities, Napier grass was ensiled with or without 1 and 2% PA for 30 days and then aerobically stored for 5 days. The results showed that PA application decreased (P < 0.01) the pH value, ammonia nitrogen content, and number of undesirable microorganisms (coliform bacteria, yeasts, and molds) after 30 days of ensiling and 5 days of exposure to air. The temperature of the PA-treated group was stable during the 5-day aerobic test, which did not exceed room temperature more than 2°C. The addition of PA also enhanced the relative abundance of Lactobacillus and reduced that of Klebsiella and Kosakonia. The relative abundance of Candida was higher in PA-treated silage than in untreated silage. The addition of PA decreased the relative abundance of Kodamaea and increased that of Monascus after 5 days of exposure to air. The abundances of Cladosporium and Neurospora were relatively high in 2% PA-treated NG, while these genera were note observed in the control group. These results suggested that the addition of PA could improve fermentation characteristics and aerobic stability, and alter microbial communities of silage.
Collapse
Affiliation(s)
- Dandan Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Mingyang Zheng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuxin Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Lin Gao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Mingya Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yongwen Zhu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Weijie Xu
- Zhengzhi Poultry Industry Co., Ltd., Shantou, China
| |
Collapse
|
8
|
Gao L, Guo X, Wu S, Chen D, Ge L, Zhou W, Zhang Q, Pian R. Tannin tolerance lactic acid bacteria screening and their effects on fermentation quality of stylo and soybean silages. Front Microbiol 2022; 13:991387. [PMID: 36187999 PMCID: PMC9520722 DOI: 10.3389/fmicb.2022.991387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Some excellent legume forages are difficult to ensile naturally due to their high buffering capacity and low water-soluble carbohydrate content. This may cause serious problems like proteolysis. In the present study, strains of lactic acid bacteria with high acid productivity and high tannin tolerance were screened from different silages and combined with tannic acid (TA) as an addition to ensiling. The screened strains were identified as Lactobacillus plantarum (LP), with four of these strains then selected for their high tannin tolerance. Stylosanthes guianensis and whole-plant soybean (WPS) were ensiled with 1 and 2% (fresh matter basis) TA, four LP strains alone (6 log10 colony forming units per gram of fresh matter), or TA combined with LP strains. Fermentation parameters and in vitro rumen fermentation characteristics were analyzed after 30 days of fermentation. The results showed that TA + LP can be used to reduce pH values (P < 0.01), non-protein nitrogen (P < 0.01), and ammonia-nitrogen (P < 0.01). The in vitro crude protein digestibility of WPS silage was also decreased with the addition of TA + LP (P < 0.01). These results indicate that the addition of TA combined with tannin tolerance LP strains may improve the fermentation quality of legume silage, especially for reducing proteolysis.
Collapse
|
9
|
Chen R, Li M, Yang J, Chen L, Zi X, Zhou H, Tang J. Exploring the effect of wilting on fermentation profiles and microbial community structure during ensiling and air exposure of king grass silage. Front Microbiol 2022; 13:971426. [PMID: 36160258 PMCID: PMC9493678 DOI: 10.3389/fmicb.2022.971426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
In order to better understand the effect of wilting treatment on silage, we study analyzed the fermentation quality of unwilted (CK) and wilted (WT) king grass silage, and the dynamic changes of microorganisms in silage and aerobic exposure. After 30 days of silage, WT silage significantly reduced the pH of the silage (p < 0.05) and increased the contents of lactic acid and acetic acid (p < 0.05), but did not reduce the content of Ammonia-N (p > 0.05). Wilting treatment increased bacterial and fungal diversity during silage but decreased fungal diversity during aerobic exposure. The relative abundance of Lactococcus and Enterococcus in wilting silage increased. In the aerobic exposure stage, the relative abundance of Klebsiella decreased, but the relative abundance of Enterobacter increased in wilting treatment silage. In addition, the relative abundance of Acinetobacter and Ignatzschineria increased after 5 days of aerobic exposure. In contrast with unwilted silage, wilting treatment silage after aerobic exposure had no Candida, but the relative abundance of Wickerhamomyces increased. The results showed that wilting treatment could raise the silage quality of king grass. However, WT silage did not inhibit the reproduction of harmful microorganisms during aerobic exposure and did not significantly improve the aerobic stability of silage.
Collapse
Affiliation(s)
- Rong Chen
- Hainan University, Haikou, Hainan, China
| | - Mao Li
- Hainan University, Haikou, Hainan, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jinsong Yang
- Hainan University, Haikou, Hainan, China
- *Correspondence: Jinsong Yang,
| | - Liwei Chen
- Hainan University, Haikou, Hainan, China
| | - Xuejuan Zi
- Hainan University, Haikou, Hainan, China
- Xuejuan Zi,
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jun Tang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
10
|
Xian Z, Wu J, Deng M, Wang M, Tian H, Liu D, Li Y, Liu G, Sun B, Guo Y. Effects of Cellulase and Lactiplantibacillus plantarum on the Fermentation Parameters, Nutrients, and Bacterial Community in Cassia alata Silage. Front Microbiol 2022; 13:926065. [PMID: 35875586 PMCID: PMC9301268 DOI: 10.3389/fmicb.2022.926065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 01/04/2023] Open
Abstract
Silage Cassia alata (CA) can alleviate feed shortage in some areas to a certain extent and reduce feed costs. The present research evaluated the effect of cellulase (CE) and Lactiplantibacillus plantarum (LP) on the fermentation parameters, nutrients, and bacterial community of CA silage. Chopped CA was ensiled with three different treatments, namely, no inoculant (CK), CE, and LP, and the indexes were determined on the 2nd, 6th, 14th, and 30th days of silage fermentation. The fermentation parameters indicate that the pH value of the three groups decreased and then increased with the ensilage process, and the lowest value was observed on the 14th day. The CK and LP groups attained the highest value on the 30th day, while the CE group attained the highest value on the 2nd day. Additionally, the pH value and NH3-N content were significantly lower (P < 0.05) in the CE and LP groups than in the CK group. In terms of nutrients, crude protein (CP) contents significantly increased (P < 0.05) in the CE and LP groups on the 30th day. The neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents of the CE group were significantly and negatively associated with fermentation time, and the water-soluble carbohydrate (WSC) contents of the three groups were significantly lower during ensiling. In comparison with the CK group, the NDF and ADF contents were significantly reduced (P < 0.05), and the WSC content increased (P < 0.05) in the CE group on day 30. Sequencing analysis of bacterial communities showed that Lactobacillus became the most dominant genus in the ensilage process. Moreover, both CE and LP groups increased the abundance of Lactobacillus and decreased that of Klebsiella, Weissella, and Acetobacter in comparison to the CK group, in which LP had a better effect. CE and LP could further improve the silage quality of CA, and LP had a more significant effect in reconstructing the bacterial community in the silage environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Effects of urea supplementation on the nutritional quality and microbial community of alfalfa (Medicago sativa L.) silage. Arch Microbiol 2022; 204:414. [PMID: 35737124 DOI: 10.1007/s00203-022-03046-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/02/2023]
Abstract
The objectives of this study were to evaluate the contribution of urea on the nutritional quality and microbial community of ensiled alfalfa (Medicago sativa L.). Alfalfa silage was control group without urea (AL), supplementation with 0.5% urea (AU1), or supplementation with 1% urea (AU2). The silage tanks were opened and sampled after silage at 0, 15, 30, and 60 d. Results showed that AU2 had higher pH, ratio of (ammonia-N)/(total nitrogen) (NH3-N/TN) and crude protein (CP) content than those in AL and AU1, while AU1 had higher acid detergent fiber (ADF) than that in AL and AU2 after 15 d silage. Richness and diversity indices of microbial communities in silage were no significant differences among AL, AU1 and AU2 group. Proteobacteria (58.23%) and Firmicutes (40.95%) were the predominant phylum in three groups during the silage process. The percent of community abundances on genera level of Enterobacteriaceae (37.61%) and Klebsiella (41.78%) in AL were a little higher than those in AU1 (30.39%, 25.02%) and AU2 (33.48%, 26.92%). These results showed that silage with urea alone could not improve the quality of alfalfa.
Collapse
|
12
|
Bao J, Wang L, Yu Z. Effects of Different Moisture Levels and Additives on the Ensiling Characteristics and In Vitro Digestibility of Stylosanthes Silage. Animals (Basel) 2022; 12:ani12121555. [PMID: 35739891 PMCID: PMC9219415 DOI: 10.3390/ani12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The silage fermentation of Stylosanthes is one of the most effective solutions to solve the shortage of feed due to the inability of Stylosanthes to grow in winter. In our previous study, it was found that the effect of direct silage fermentation was poor due to factors such as the high buffer energy value and high fiber content. In this study, we used the transgenic engineered lactic acid bacteria independently developed by our team as additives to explore the effects of cellulase-producing engineered lactic acid bacteria on the fermentation quality and in vitro digestibility of Stylosanthes silage under different raw material moisture contents. The results are discussed in terms of chemical composition. We found that lactic acid bacteria can produce a large amount of cellulase in the process of Stylosanthes silage fermentation, significantly reduce the fiber content in Stylosanthes, and improve the quality and in vitro digestibility of Stylosanthes silage. Our research results provide a deeper understanding of the influence of moisture content and lactic acid bacteria additives on Stylosanthes silage, and provide technical support and a theoretical basis for guiding production practice and further in-depth research, development and utilization of more warm-season forage silage. Abstract The present study aims to estimate the dynamic effects of moisture levels and inoculants on the fermentation quality and in vitro degradability of Stylosanthes silage. In this experiment, Stylosanthes was ensiled with (1) no additive (control), (2) Lactobacillus plantarum (LP), (3) Lactobacillus plantarum carrying heterologous genes encoding multifunctional glycoside hydrolases (xg), or (4) LP + xg and was wilted until different moisture levels (60% and 72%) were attained. The ensiled bags were unpacked after different storage periods to determine the chemical composition and fermentation quality of the Stylosanthes silage. Moreover, the in vitro degradability was also determined 45 days after the ensiling process. The results show that the silage prepared with freshly mowed Stylosanthes also had a lower pH and NH3- N content. Adding transgenic engineered lactic acid bacteria xg not only decreased the NDF and ADF content of the silage, but also improved the in vitro digestibility significantly. We concluded that the addition of xg to Stylosanthes silage can improve its quality and increase in vitro digestibility and gas production. The results provide technical support and a theoretical basis for the utilization of warm-season forage silage.
Collapse
|
13
|
Xiong Y, Xu J, Guo L, Chen F, Jiang D, Lin Y, Guo C, Li X, Chen Y, Ni K, Yang F. Exploring the Effects of Different Bacteria Additives on Fermentation Quality, Microbial Community and In Vitro Gas Production of Forage Oat Silage. Animals (Basel) 2022; 12:ani12091122. [PMID: 35565552 PMCID: PMC9100174 DOI: 10.3390/ani12091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Forage oat is an important feed resource in the world. Few studies on the application of different bacterial additives in forage oat silage have been found, which limits the utilization and promotion of oat silage in animal husbandry. In this study, we compared the fermentation quality and in vitro gas production of oat silage treated with four additives (Lactiplantibacillusplantarum F1,LP; Lacticaseibacillusrhamnosus XJJ01, LR; Lacticaseibacillusparacasei XJJ02, LC; and Propionibacterium acidipropionici 1.1161, PP). The results show that compared to the CK group (without additives), the LR group had a higher dry matter content, while the LP group showed an improvement in fermentation quality. At the same time, the bacterial community in the LR group was also different from that in other groups. The treatments of PP and LC had no significant effects on fermentation quality, but the in vitro gas production was significantly reduced in the treated oat silage. These results could help us to optimize the utilization of forage oat silage in balanced ruminant diets. Abstract Bacterial inoculants are considered as a good choice for successful ensiling, playing a key role in improving the silage quality. However, the potential of different bacteria, especially the propionic acid bacteria, in forage oat ensiling is yet to be explored. Therefore, the purpose of this study was to investigate the regulation effects of different bacterial additives on the fermentation quality of forage oat silage. Four additives (Lactiplantibacillus plantarum F1, LP; Lacticaseibacillus 0rhamnosus XJJ01, LR; Lacticaseibacillus paracasei XJJ02, LC; and Propionibacterium acidipropionici 1.1161, PP; without additives, CK) were inoculated in forage oat silage, and the fermentation quality and organic compounds were determined after 60 days of ensiling. Notably, LR showed higher dry matter preservation compared to other additives and CK. In addition, LP and LR showed strong lactic acid synthesis capacity, resulting in lower pH compared to other additives and CK. The treatments of PP and LC increased the bacterial diversity in silage, while the bacterial community in the LR group was different from that in other groups. In addition, the PP- and LC-treated oat silage showed significantly lower total in vitro gas production and a lower methane content. These results suggest that LP is more favorable for producing high-quality oat silage than LR, LC, or PP. Both the PP- and LC- treated oat silage may reduce rumen greenhouse gas emissions.
Collapse
Affiliation(s)
- Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Jingjing Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Linna Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Fei Chen
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Dedai Jiang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Yanli Lin
- Beijing Sure Academy of Biosciences, Beijing 100193, China;
| | - Chunze Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Yunrong Chen
- Donghan Animal Husbandry and Veterinary Station of Fuqing City, Fujian 350300, China;
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (J.X.); (L.G.); (F.C.); (D.J.); (C.G.); (X.L.); (K.N.)
- Correspondence: ; Tel.: +86-010-62733052
| |
Collapse
|
14
|
Huang R, Zhang F, Wang T, Zhang Y, Li X, Chen Y, Ma C. Effect of Intrinsic Tannins on the Fermentation Quality and Associated with the Bacterial and Fungal Community of Sainfoin Silage. Microorganisms 2022; 10:microorganisms10050844. [PMID: 35630290 PMCID: PMC9147618 DOI: 10.3390/microorganisms10050844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/31/2023] Open
Abstract
Sainfoin (Onobrychis viciifolia) is rich in condensed tannins (CT). CT function includes inhibiting bacterial and fungi activity during the ensiling process. We used polyethylene glycol (PEG) to deactivate tannin activity to find out the effects of CT. The results show that the addition of PEG increased dry-matter loss (8.32% vs. 14.15%, on a dry-matter basis) after 60 d of ensiling, and also increased lactic acid (10.90% vs. 15.90%, on a dry-matter basis) and acetic-acid content (7.32% vs. 13.85%, on a dry-matter basis) after 30 d of ensiling. The PEG-treated group increased its Pediococcus relative abundance (0.37−3.38% vs. 7.82−23.5%,) during the ensiling process, increased its Gibellulopsis relative abundance after 3 d of ensiling (5.96% vs. 19.52%), increased its Vishniacozyma relative abundance after 3 d and 7 d of ensiling (2.36% vs. 17.02%, 3.65% vs. 17.17%), and increased its Aspergillus relative abundance after 7 d, 14 d and 60 d of ensiling (0.28% vs. 1.32%, 0.49% vs. 2.84% and 1.74% vs. 7.56%). However, the PEG-treated group decreased its Alternaria relative abundance during entire ensiling process (14.00−25.21% vs. 3.33−7.49%). These results suggest that condensed tannins inhibit lactic-acid bacteria fermentation though reducing Pediococcus activity, and inhibiting fungi activity depending on different strains.
Collapse
|
15
|
Abstract
This study was conducted to investigate the effect of ellagic acid on the bacterial community and fermentability of stylo silage. Three treatments of stylo silage were used: control (CK) and treated with 1% or 2% ellagic acid (EA1 and EA2) on a fresh matter basis. All silage was stored at ambient temperature and opened on days 3, 7, 14, and 30. Fermentation characteristics, protein fraction, and bacteria community of all periods of silage were analyzed. Results showed that dry matter and crude protein content were increased, and pH value, number of coliform bacteria, contents of acetic acid, and ammonium nitrogen were decreased with the addition of ellagic acid. The antioxidant activity of 1% and 2% ellagic acid treated silages was significantly higher than the control. Meanwhile, the relative abundance of Klebsiella and Clostridium was decreased with the addition of ellagic acid, and the abundance of Lactobacillus, Weissella, and Enterococcus was increased with prolonged days of ensiling. Adding ellagic acid to stylo silage could improve the fermentation quality and preservation of protein, and reduce the abundance of harmful bacteria.
Collapse
|
16
|
Lin H, Lin S, Awasthi MK, Wang Y, Xu P. Exploring the bacterial community and fermentation characteristics during silage fermentation of abandoned fresh tea leaves. CHEMOSPHERE 2021; 283:131234. [PMID: 34153916 DOI: 10.1016/j.chemosphere.2021.131234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
The potential application of silage fermentation on abandoned fresh tea leaves (AFTL) was investigated. Dynamic profiles of fermentation-related components, characteristic components and the bacterial community of AFTL during ensiling were analysed. The results showed that after ensiling for 60 days, the concentrations of lactic, acetic and propionic acid increased, whereas a high pH value (4.80) and NH3-N content (106 g/kg TN) were detected. Characteristic components, including caffeine, polyphenols, theanine and catechins, were well preserved. The microbial community changed significantly, and Lactobacillus (63.6%) became the dominant phylum. Spearman rank correlation revealed a positive correlation between lactic acid concentration and the abundance of Lactobacillus (63.6%) and Klebsiella (25.0%), whereas the abundance of Klebsiella was negatively correlated with catechin concentration. In conclusion, ensiling could be an effective utilization for AFTL and provides a new idea for utilizing idle resources on tea plantations.
Collapse
Affiliation(s)
- Haiyu Lin
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Shiqi Lin
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Wang C, Zheng M, Wu S, Zou X, Chen X, Ge L, Zhang Q. Effects of Gallic Acid on Fermentation Parameters, Protein Fraction, and Bacterial Community of Whole Plant Soybean Silage. Front Microbiol 2021; 12:662966. [PMID: 34079531 PMCID: PMC8165322 DOI: 10.3389/fmicb.2021.662966] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Whole plant soybean (WPS) is a kind of legume resource with characteristics of high nutrition, large biomass, and wide distribution. In the present study, we have investigated the feasibility and effects of gallic acid (GA) on WPS silage quality, nitrogen distribution, tannin content, and bacterial community. The 0.5 and 1% (fresh matter basis) GA were added into WPS for dynamic ensiling (days 3, 7, 14, and 30, respectively). The results showed that the WPS silage with GA addition significantly decreased pH value (6.16–5.38 at ensiling day 30), coliform bacteria count and butyric acid (65.3–62.0 g/kg dry matter at ensiling day 30), and amino nitrogen contents (259–88.2 g/kg total nitrogen at ensiling day 30) and promoted lactic acid (9.62–31.5 g/kg dry matter at ensiling day 30), acetic acid (24.1–85.6 g/kg dry matter at ensiling day 30), and tannin (total phenol and hydrolyzable tannin) contents. Additionally, the GA addition also contributed to the change of bacterial community, where Firmicutes and Lactobacillus were most abundant on phylum and genus levels, respectively. The above results suggested that GA additive applied in WPS silage was an effective strategy to protect nutrition and improve fermentation quality, and the 1% GA addition showed a better effect.
Collapse
Affiliation(s)
- Cheng Wang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Mingyang Zheng
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shuo Wu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xuan Zou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Liangfa Ge
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Center of Modern Agriculture (Woody Forage) Industrial Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|