1
|
Boykin KL, Mitchell MA. What Veterinarians Need to Know About the Newly-Emerging Field of Insects-as-Food-and-Feed. Vet Sci 2024; 12:12. [PMID: 39852887 PMCID: PMC11769356 DOI: 10.3390/vetsci12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Over the last two decades, the insects-as-food-and-feed industry has rapidly emerged. Its growth is largely because insects require substantially less resources (water, food, and energy) to produce than traditional sources of animal protein, making it a sustainable alternative food option. As this industry continues to grow, veterinarians will likely be called upon to assist in identifying food safety concerns, assessing animal health, implementing biosecurity measures, and formulating/prescribing treatment protocols comparable to what we have seen with the honeybee industry and the institution of veterinary feed directives (VFDs). Similar to other agricultural markets, high animal densities and management practices put insects at high risk for infectious diseases. Veterinarians interested in working with these species will need to become knowledgeable regarding the diseases afflicting the feeder insect industry and how best to diagnose and treat pathogens of concern. Using the edible cricket industry as an example, this review will highlight health and production issues while drawing similarities to other traditional livestock operations. If the insects-as-feed-and-food industry is going to be viable, veterinary involvement will be essential to ensure that insects can be used as a safe source of food for all.
Collapse
Affiliation(s)
- Kimberly L. Boykin
- Department of Veterinary Clinical Sciences, Louisiana State University, Skip Bertman Dr, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
2
|
Kullan ARK, Suresh A, Choi HL, Gabriel Neumann E, Hassan F. Bioconversion of Poultry Litter into Insect Meal and Organic Frasstilizer Using Black Soldier Fly Larvae as a Circular Economy Model for the Poultry Industry: A Review. INSECTS 2024; 16:12. [PMID: 39859592 PMCID: PMC11765739 DOI: 10.3390/insects16010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/27/2025]
Abstract
Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel technology that involves the bioconversion of organic waste utilizing insects (known as entomoremediation), particularly focusing on black soldier fly larvae (BSFL), and has demonstrated successful transformation of various organic waste materials into insect meal and frass (referred to as organic frasstilizer). Black soldier flies have the capacity to consume any organic waste material (ranging from livestock litter, food scraps, fruit and vegetable residues, sewage, sludge, municipal solid waste, carcasses, and defatted seed meal) and convert it into valuable BSFL insect meal (suitable for animal feed) and frass (serving as an organic fertilizer). The bioconversion of poultry litter by black soldier flies offers numerous advantages over traditional methods, notably in terms of reduced land and water requirements, lower emissions, cost-effectiveness, swift processing, and the production of both animal feeds and organic fertilizers. This review focuses on the existing knowledge of BSFL, their potential in bioconverting poultry litter into BSFL meal and frass, and the utilization of BSFL in poultry nutrition, emphasizing the necessity for further innovation to enhance this sustainable circular economy approach.
Collapse
Affiliation(s)
- Anand Raj Kumar Kullan
- Department of Integrative Agriculture, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates; (E.G.N.); (F.H.)
| | - Arumuganainar Suresh
- Resourcification Research Center for Crop-Animal Farming, Seoul 151-742, Republic of Korea; (A.S.); (H.L.C.)
| | - Hong Lim Choi
- Resourcification Research Center for Crop-Animal Farming, Seoul 151-742, Republic of Korea; (A.S.); (H.L.C.)
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Elke Gabriel Neumann
- Department of Integrative Agriculture, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates; (E.G.N.); (F.H.)
| | - Fatima Hassan
- Department of Integrative Agriculture, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates; (E.G.N.); (F.H.)
| |
Collapse
|
3
|
Salam M, Bolletta V, Meng Y, Yakti W, Grossule V, Shi D, Hayat F. Exploring the role of the microbiome of the H. illucens (black soldier fly) for microbial synergy in optimizing black soldier fly rearing and subsequent applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125055. [PMID: 39447631 DOI: 10.1016/j.envpol.2024.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
The symbiotic microbiome in the insect's gut is vital to the host insect's development, improvement of health, resistance to disease, and adaptability to the environment. The black soldier fly (BSF) can convert organic substrates into a protein- and fat-rich biomass that is viable for various applications. With the support of a selective microbiome, BSF can digest and recycle different organic waste, reduce the harmful effects of improper disposal, and transform low-value side streams into valuable resources. Molecular and systems-level investigations on the harbored microbial populations may uncover new biocatalysts for organic waste degradation. This article discusses and summarizes the efforts taken toward characterizing the BSF microbiota and analyzing its substrate-dependent shifts. In addition, the review discusses the dynamic insect-microbe relationship from the functional point of view and focuses on how understanding this symbiosis can lead to alternative applications for BSF. Valorization strategies can include manipulating the microbiota to optimize insect growth and biomass production, as well as exploiting the role of BSF microbiota to discover new bioactive compounds based on BSF immunity. Optimizing the BSF application in industrial setup and exploiting its gut microbiota for innovative biotechnological applications are potential developments that could emerge in the coming decade.
Collapse
Affiliation(s)
- Muhammad Salam
- Department of Environmental Science, and Ecology, Chengdu University of Technology, Chengdu, PR China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China.
| | - Viviana Bolletta
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Italy
| | - Ying Meng
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Wael Yakti
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin, Berlin, Germany
| | - Valentina Grossule
- Department of Civil, Architectural and Environmental Engineering, University of Padova, Italy
| | - Dezhi Shi
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China
| | - Faisal Hayat
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| |
Collapse
|
4
|
Zhao JH, Cheng P, Wang Y, Yan X, Xu ZM, Peng DH, Yu GH, Shao MW. Using kin discrimination to construct synthetic microbial communities of Bacillus subtilis strains impacts the growth of black soldier fly larvae. INSECT SCIENCE 2024; 31:1943-1959. [PMID: 38494587 DOI: 10.1111/1744-7917.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 03/19/2024]
Abstract
Using synthetic microbial communities to promote host growth is an effective approach. However, the construction of such communities lacks theoretical guidance. Kin discrimination is an effective means by which strains can recognize themselves from non-self, and construct competitive microbial communities to produce more secondary metabolites. However, the construction of cooperative communities benefits from the widespread use of beneficial microorganisms. We used kin discrimination to construct synthetic communities (SCs) comprising 13 Bacillus subtilis strains from the surface and gut of black soldier fly (BSF) larvae. We assessed larval growth promotion in a pigeon manure system and found that the synthetic community comprising 4 strains (SC 4) had the most profound effect. Genomic analyses of these 4 strains revealed that their complementary functional genes underpinned the robust functionality of the cooperative synthetic community, highlighting the importance of strain diversity. After analyzing the bacterial composition of BSF larvae and the pigeon manure substrate, we observed that SC 4 altered the bacterial abundance in both the larval gut and pigeon manure. This also influenced microbial metabolic functions and co-occurrence network complexity. Kin discrimination facilitates the rapid construction of synthetic communities. The positive effects of SC 4 on larval weight gain resulted from the functional redundancy and complementarity among the strains. Furthermore, SC 4 may enhance larval growth by inducing shifts in the bacterial composition of the larval gut and pigeon manure. This elucidated how the SC promoted larval growth by regulating bacterial composition and provided theoretical guidance for the construction of SCs.
Collapse
Affiliation(s)
- Jun-Hui Zhao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ping Cheng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yi Wang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xun Yan
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhi-Min Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dong-Hai Peng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guo-Hui Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ming-Wei Shao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
5
|
Sheng K, Miao H, Ni J, Yang K, Gu P, Ren X, Xiong J, Zhang Z. Deeper insight into the storage time of food waste on black soldier fly larvae growth and nutritive value: Interactions of substrate and gut microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175759. [PMID: 39182769 DOI: 10.1016/j.scitotenv.2024.175759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Biological treatment of food waste (FW) by black soldier fly larvae (BSFL) is considered as an effective management strategy. The composition and concentrations of nutrients in FW change during its storage and transport period, which potentially affect the FW conversion and BSFL growth. The present study systematically investigated the effect of different storage times (i.e., 0-15 d) on FW characteristics and its substantial influence on the BSFL growth. Results showed that the highest larvae weight of 282 mg and the shortest growth time of 14 days were achieved at the group of FW stored for 15 days, but shorter storage time (i.e., 2-7 d) had adverse effect on BSFL growth. Short storage time (i.e., 2-4 d) improved protein content of BSFL biomass and prolonged storage time (i.e., 7-10 d) led to the accumulation of fat content. The changes of substrate characteristics and indigenous microorganisms via FW storage time were the main reasons for BSFL growth difference. Lactic acid (LA) accumulation (i.e., 19.84 g/L) in FW storage for 7 days significantly limited the BSFL growth, leading to lowest larvae weight. Both the substrate and BSFL gut contained same bacterial communities (e.g., Klebsiella and Proteus), which exhibited similar change trend with the prolonged storage time. The transfer of Clostridioides from substrate to BSFL gut promoted nutrients digestion and intestinal flora balance with the FW stored for 15 days. Pathogens (e.g., Acinetobacter) in BSFL gut feeding with FW storage time of 7 days led to the decreased digestive function, consistent with the lowest larvae weight. Overall, shorter storage time (i.e., 2-7 d) inhibited the BSFL digestive function and growth performance, while the balance of the substrate nutrients and intestinal flora promoted the BSFL growth when using the FW stored for 15 days.
Collapse
Affiliation(s)
- Kuang Sheng
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Hengfeng Miao
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jun Ni
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xueli Ren
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianglei Xiong
- China Electronics Innovation Environmental Technology Co. Ltd, Wuxi 214111, PR China
| | - Zengshuai Zhang
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Lin SW, Shelomi M. Black Soldier Fly ( Hermetia illucens) Microbiome and Microbe Interactions: A Scoping Review. Animals (Basel) 2024; 14:3183. [PMID: 39595236 PMCID: PMC11590926 DOI: 10.3390/ani14223183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Black soldier fly (Hermetia illucens, BSF) is farmed worldwide to convert organic waste into usable biomaterials. Studies on the larval microbiome have been carried out to check for symbiotic or pathogenic microbes and their respective functions and fates. Some studies tested these microbes for industrial applications, while others tested the effects of exogenous microbes as probiotics or for substrate pre-processing to improve larval fitness, bioconversion rates, or nutritional qualities. This review examined all peer-reviewed literature on these topics to consolidate many disparate findings together. It followed the PRISMA guidelines for scoping reviews. The results found no evidence of globally conserved core microbes, as diet strongly correlated with gut microbiome, but some genera appeared most frequently in BSF larval guts worldwide regardless of diet. The gut microbes undoubtably assist in digestion, including pathogen suppression, and so microbial probiotics show promise for future investigations. However, the common gut microbes have not been explored as probiotics themselves, which would be a promising direction for future work. The impacts of BSF bioconversion on pathogens varied, so each rearing facility should investigate and manage their pathogen risks independently. The data summarized in this study provide useful reference points for future investigations into BSF-microbe interactions.
Collapse
Affiliation(s)
| | - Matan Shelomi
- Department of Entomology, National Taiwan University, No 1 Sec 4 Roosevelt Rd, Taipei 106319, Taiwan
| |
Collapse
|
7
|
Muurmann AT, Banovic M, Gilbert MTP, Sogari G, Limborg MT, Sicheritz-Pontén T, Bahrndorff S. Framework for valorizing waste- and by-products through insects and their microbiomes for food and feed. Food Res Int 2024; 187:114358. [PMID: 38763642 DOI: 10.1016/j.foodres.2024.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
One third of the food produced for human consumption is currently lost or wasted. Insects have a high potential for converting organic waste- and by-products into food and feed for a growing human population due to symbiosis with microorganisms. These symbioses provide an untapped reservoir of functional microbiomes that can be used to improve industrial insect production but are poorly studied in most insect species. Here we review the most current understanding and challenges of valorizing organic waste- and by-products through insects and their microbiomes for food and feed, and emerging novel food technologies that can be used to investigate and manipulate host(insects)-microbiome interactions. We further construct a holistic framework, by integration of novel food technologies including holo-omics, genome editing, breeding, phage therapy, and administration of prebiotics and probiotics to investigate and manipulate host(insects)-microbiome interactions, and solutions for achieving stakeholder acceptance of novel food technologies for a sustainable food production.
Collapse
Affiliation(s)
- Asmus Toftkær Muurmann
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Marija Banovic
- Aarhus University, Aarhus BSS, Department of Management, MAPP Centre, Fuglsangs Allé 4, 8210 Aarhus V, Denmark.
| | - M Thomas P Gilbert
- University of Copenhagen, GLOBE Institute, Øster Farimagsgade 5, 1014 København K, Denmark; University Museum, NTNU, Erling Skakkes gate 47B, 7012 Trondheim, Norway.
| | - Giovanni Sogari
- University of Parma, Department of Food and Drug, Parco Area delle Scienze, 45, 43124 Parma, Italy.
| | | | - Thomas Sicheritz-Pontén
- University of Copenhagen, GLOBE Institute, Øster Farimagsgade 5, 1014 København K, Denmark; AIMST University, Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Jalan Bedong-Semeling, 08100 Bedong, Kedah, Malaysia.
| | - Simon Bahrndorff
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| |
Collapse
|
8
|
Laursen SF, Flint CA, Bahrndorff S, Tomberlin JK, Kristensen TN. Reproductive output and other adult life-history traits of black soldier flies grown on different organic waste and by-products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:136-144. [PMID: 38608528 DOI: 10.1016/j.wasman.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
The interest in mass-rearing black soldier fly (Hermetia illucens) larvae for food and feed is rapidly increasing. This is partly sparked by the ability of the larvae to efficiently valorise a wide range of organic waste and by-products. Primarily, research has focused on the larval stage, hence underprioritizing aspects of the adult biology, and knowledge on reproduction-related traits such as egg production is needed. We investigated the impact of different organic waste and by-products as larval diets on various life-history traits of adult black soldier flies in a large-scale experimental setup. We reared larvae on four different diets: spent Brewer's grain, ground carrots, Gainesville diet, and ground oranges. Traits assessed were development time to pupa and adult life-stages, adult body mass, female lifespan, egg production, and egg hatch. Larval diet significantly impacted development time to pupa and adult, lifespan, body size, and egg production. In general, flies reared on Brewer's grain developed up to 4.7 d faster, lived up to 2.3 d longer, and produced up to 57% more eggs compared to flies reared on oranges on which they performed worst for these traits. There was no effect of diet type on egg hatch, suggesting that low-nutritious diets, i.e. carrots and oranges, do not reduce the quality but merely the quantity of eggs. Our results demonstrate the importance of larval diet on reproductive output and other adult traits, all important for an efficient valorisation of organic waste and by-products, which is important for a sustainable insect-based food and feed production.
Collapse
Affiliation(s)
- Stine Frey Laursen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark.
| | - Casey A Flint
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| |
Collapse
|
9
|
Kannan M, Vitenberg T, Schweitzer R, Opatovsky I. Hemolymph metabolism of black soldier fly (Diptera: Stratiomyidae), response to different supplemental fungi. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:5. [PMID: 38713543 DOI: 10.1093/jisesa/ieae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), is commonly used for organic waste recycling and animal feed production. However, the often inadequate nutrients in organic waste necessitate nutritional enhancement of black soldier fly larvae, e.g., by fungal supplementation of its diet. We investigated the amino acid composition of two fungi, Candida tropicalis (Castell.) Berkhout (Saccharomycetales: Saccharomycetaceae) and Pichia kudriavzevii Boidin, Pignal & Besson (Saccharomycetales: Pichiaceae), from the black soldier fly gut, and commercial baker's yeast, Saccharomyces cerevisiae Meyen ex E.C. Hansen (Saccharomycetales: Saccharomycetaceae), and their effects on larval growth and hemolymph metabolites in fifth-instar black soldier fly larvae. Liquid chromatography-mass spectrometry was used to study the effect of fungal metabolites on black soldier fly larval metabolism. Amino acid analysis revealed significant variation among the fungi. Fungal supplementation led to increased larval body mass and differential metabolite accumulation. The three fungal species caused distinct metabolic changes, with each over-accumulating and down-accumulating various metabolites. We identified significant alteration of histidine metabolism, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism in BSF larvae treated with C. tropicalis. Treatment with P. kudriavzevii affected histidine metabolism and citrate cycle metabolites, while both P. kudriavzevii and S. cerevisiae treatments impacted tyrosine metabolism. Treatment with S. cerevisiae resulted in down-accumulation of metabolites related to glycine, serine, and threonine metabolism. This study suggests that adding fungi to the larval diet significantly affects black soldier fly larval metabolomics. Further research is needed to understand how individual amino acids and their metabolites contributed by fungi affect black soldier fly larval physiology, growth, and development, to elucidate the interaction between fungal nutrients and black soldier fly physiology.
Collapse
Affiliation(s)
- Mani Kannan
- Laboratory of Insect Nutrition and Metabolism, Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai College, 11 Upper Galilee, Israel
| | - Tzach Vitenberg
- Laboratory of Insect Nutrition and Metabolism, Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Ron Schweitzer
- Department of Natural Compounds and Analytical Chemistry, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Itai Opatovsky
- Laboratory of Insect Nutrition and Metabolism, Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai College, 11 Upper Galilee, Israel
| |
Collapse
|
10
|
Savio C, Herren P, Rejasse A, Rios A, Bourelle W, Bruun-Jensen A, Lecocq A, van Loon JJA, Nielsen-LeRoux C. Minor impact of probiotic bacteria and egg white on Tenebrio molitor growth, microbial composition, and pathogen infection. FRONTIERS IN INSECT SCIENCE 2024; 4:1334526. [PMID: 38469340 PMCID: PMC10926391 DOI: 10.3389/finsc.2024.1334526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
The industrial rearing of the yellow mealworm (Tenebrio molitor) for feed and food purposes on agricultural by-products may expose larvae and adults to entomopathogens used as biocontrol agents in crop production. Bacterial spores/toxins or fungal conidia from species such as Bacillus thuringiensis or Metarhizium brunneum could affect the survival and growth of insects. Therefore, the aim of this study was to investigate the potential benefits of a wheat bran diet supplemented with probiotic bacteria and dried egg white on larval development and survival and its effects on the gut microbiome composition. Two probiotic bacterial species, Pediococcus pentosaceus KVL B19-01 and Lactiplantibacillus plantarum WJB, were added to wheat bran feed with and without dried egg white, as an additional protein source, directly from neonate larval hatching until reaching a body mass of 20 mg. Subsequently, larvae from the various diets were exposed for 72 h to B. thuringiensis, M. brunneum, or their combination. Larval survival and growth were recorded for 14 days, and the bacterial microbiota composition was analyzed using 16S rDNA sequencing prior to pathogen exposure and on days 3 and 11 after inoculation with the pathogens. The results showed increased survival for T. molitor larvae reared on feed supplemented with P. pentosaceus in the case of co-infection. Larval growth was also impacted in the co-infection treatment. No significant impact of egg white or of P. pentosaceus on larval growth was recorded, while the addition of Lb. plantarum resulted in a minor increase in individual mass gain compared with infected larvae without the latter probiotic. On day 14, B. thuringiensis was no longer detected and the overall bacterial community composition of the larvae was similar in all treatments. On the other hand, the relative operational taxonomic unit (OTU) abundance was dependent on day, diet, and probiotic. Interestingly, P. pentosaceus was present throughout the experiments, while Lb. plantarum was not found at a detectable level, although its transient presence slightly improved larval performance. Overall, this study confirms the potential benefits of some probiotics during the development of T. molitor while underlining the complexity of the relationship between the host and its microbiome.
Collapse
Affiliation(s)
- Carlotta Savio
- University of Paris Saclay, INRAE, Micalis, Jouy-en-Josas, France
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pascal Herren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Agnès Rejasse
- University of Paris Saclay, INRAE, Micalis, Jouy-en-Josas, France
| | | | - William Bourelle
- University of Paris Saclay, INRAE, Micalis, Jouy-en-Josas, France
| | - Annette Bruun-Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Antoine Lecocq
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Joop J. A. van Loon
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
11
|
Beesigamukama D, Tanga CM, Sevgan S, Ekesi S, Kelemu S. Waste to value: Global perspective on the impact of entomocomposting on environmental health, greenhouse gas mitigation and soil bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166067. [PMID: 37544444 PMCID: PMC10594063 DOI: 10.1016/j.scitotenv.2023.166067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The innovative use of insects to recycle low-value organic waste into value-added products such as food, feed and other products with a low ecological footprint has attracted rapid attention globally. The insect frass (a combination unconsumed substrate, faeces, and exuviae) contains substantial amounts of nutrients and beneficial microbes that could utilised as fertilizer. We analyse research trends and report on the production, nutrient quality, maturity and hygiene status of insect-composted organic fertilizer (ICOF) generated from different organic wastes, and their influence on soil fertility, pest and pathogen suppression, and crop productivity. Lastly, we discuss the impact of entomocomposting on greenhouse gas mitigation and provide critical analysis on the regulatory aspects of entomocomposting, and utilization and commercialisation ICOF products. This information should be critical to inform research and policy decisions aimed at developing and promoting appropriate standards and guidelines for quality production, sustainable utilization, and successful integration of entomocompost into existing fertilizer supply chains and cropping systems.
Collapse
Affiliation(s)
- Dennis Beesigamukama
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| | - Subramanian Sevgan
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - Segenet Kelemu
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
12
|
Wang F, Zhao Q, Zhang L, Chen J, Wang T, Qiao L, Zhang L, Ding C, Yuan Y, Qi Z, Chen T. Co-digestion of chicken manure and sewage sludge in black soldier fly larvae bioconversion system: bacterial biodiversity and nutrients quality of residues for biofertilizer application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119804-119813. [PMID: 37930569 DOI: 10.1007/s11356-023-30717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Black soldier fly larvae (BSFL) bioconversion system is emerging as an effective approach for organic waste pollution treatment. Co-digestion of different organic matters with BSFL can be an effective way to realize the innovative biowaste circular economy. In this study, organic waste mixture of chicken manure and sewage sludge was chosen as substrate for BSFL growth. The bacterial biodiversity and nutrients quality of BSFL residue were evaluated through gene sequencing and other characterizations to confirm their application potential as biofertilizers. The dominant bacteria in BSFL residue were Firmicutes (75.39%) at phylum level, Bacilli (71.61%) at class level and Pseudogracilibacillus (11.08%) at genus level. Antibiotic resistance genes (ARGs) were used to assess the harmlessness of BSFL residue. After BSFL treatment, 36.2% decrease in ARGs was observed. Taking nutrients quality into consideration, dissolved organic carbon, dissolved nitrogen, available phosphorous, and available potassium significantly increased in the co-digestion system. These results demonstrated that co-digestion of chicken manure and excess sludge in BSFL bioconversion system could improve the nutrients quality of residues. However, removal of ARGs in the bioconversion process should be further explored to eliminate environmental concerns associated with application of BSFL residue as biofertilizers.
Collapse
Affiliation(s)
- Feihong Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Qi Zhao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Lei Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Jie Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Tao Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Liang Qiao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Luyan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
- Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
| |
Collapse
|
13
|
Chen G, Zhang K, Tang W, Li Y, Pang J, Yuan X, Song X, Jiang L, Yu X, Zhu H, Wang J, Zhang J, Zhang X. Feed nutritional composition affects the intestinal microbiota and digestive enzyme activity of black soldier fly larvae. Front Microbiol 2023; 14:1184139. [PMID: 37293219 PMCID: PMC10244541 DOI: 10.3389/fmicb.2023.1184139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Using black soldier fly larvae (BSFLs) to treat food waste is one of the most promising environmental protection technologies. Methods We used high-throughput sequencing to study the effects of different nutritional compositions on the intestinal microbiota and digestive enzymes of BSF. Results Compared with standard feed (CK), high-protein feed (CAS), high-fat feed (OIL) and high-starch feed (STA) had different effects on the BSF intestinal microbiota. CAS significantly reduced the bacterial and fungal diversity in the BSF intestinal tract. At the genus level, CAS, OIL and STA decreased the Enterococcus abundance compared with CK, CAS increased the Lysinibacillus abundance, and OIL increased the Klebsiella, Acinetobacter and Bacillus abundances. Diutina, Issatchenkia and Candida were the dominant fungal genera in the BSFL gut. The relative abundance of Diutina in the CAS group was the highest, and that of Issatchenkia and Candida in the OIL group increased, while STA decreased the abundance of Diutina and increased that of Issatchenkia. The digestive enzyme activities differed among the four groups. The α-amylase, pepsin and lipase activities in the CK group were the highest, and those in the CAS group were the lowest or the second lowest. Correlation analysis of environmental factors showed a significant correlation between the intestinal microbiota composition and digestive enzyme activity, especially α-amylase activity, which was highly correlated with bacteria and fungi with high relative abundances. Moreover, the mortality rate of the CAS group was the highest, and that of the OIL group was the lowest. Discussion In summary, different nutritional compositions significantly affected the community structure of bacteria and fungi in the BSFL intestinal tract, affected digestive enzyme activity, and ultimately affected larval mortality. The high oil diet gave the best results in terms of growth, survival and intestinal microbiota diversity, although the digestive enzymes activities were not the highest.
Collapse
Affiliation(s)
- Guozhong Chen
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Kai Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Wenli Tang
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
| | - Junyi Pang
- School of Life Sciences, Ludong University, Yantai, China
| | - Xin Yuan
- School of Life Sciences, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Xiangbin Song
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Jiao Wang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| |
Collapse
|
14
|
Hao J, Liu S, Guo Z, Zhang Y, Zhang W, Li C. Effects of Disinfectants on Larval Growth and Gut Microbial Communities of Black Soldier Fly Larvae. INSECTS 2023; 14:250. [PMID: 36975935 PMCID: PMC10056710 DOI: 10.3390/insects14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The use of the black soldier fly has been demonstrated to be effective in the treatment of swine manure. Since the outbreaks of ASFV, prevention procedures, including manure disinfection, have changed dramatically. Glutaraldehyde (GA) and potassium peroxymonosulfate (PPMS) have been shown to be effective in the prevention of this pathogen and are thus widely used in the disinfection of swine manures, etc. However, research on the effects of disinfectants in manures on the growth of BSFL and gut microbiota is scarce. The goal of this study was to determine the effects of GA and PPMS on BSFL growth, manure reduction, and gut microbiota. In triplicate, 100 larvae were inoculated in 100 g of each type of manure compound (manure containing 1% GA treatment (GT1), manure containing 0.5% GA treatment (GT2), manure containing 1% PPMS treatment (PT1), manure containing 0.5% PPMS treatment (PT2), and manure without disinfectant (control)). After calculating the larval weight and waste reduction, the larval gut was extracted and used to determine the microbial composition. According to the results, the dry weights of the larvae fed PT1-2 (PT1: 86.7 ± 4.2 mg and PT2: 85.3 ± 1.3 mg) were significantly higher than those of the larvae fed GT1-2 (GT1: 72.5 ± 2.1 mg and GT2: 70 ± 2.8 mg) and the control (64.2 ± 5.8 mg). There was a 2.8-4.03% higher waste reduction in PT1-2 than in the control, and the waste reduction in GT1-2 was 7.17-7.87% lower than that in the control. In a gut microbiota analysis, two new genera (Fluviicola and Fusobacterium) were discovered in PT1-2 when compared to GT1-2 and the control. Furthermore, the disinfectants did not reduce the diversity of the microbial community; rather, Shannon indices revealed that the diversities of GT1-2 (GT1: 1.924 ± 0.015; GT2: 1.944 ± 0.016) and PT1 (1.861 ± 0.016) were higher than those of the control (1.738 ± 0.015). Finally, it was found that both disinfectants in swine manures at concentrations of 1% and 0.5% may be beneficial to the complexity and cooperation of BSFL gut microbiota, according to an analysis of microbial interactions.
Collapse
Affiliation(s)
- Jianwei Hao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030600, China
| | - Shuang Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Zhixue Guo
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yan Zhang
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030600, China
| | - Wuping Zhang
- Xinzhou Livestock Development Center, Xinzhou 034000, China
| | - Chujun Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
15
|
Gorrens E, Lecocq A, De Smet J. The Use of Probiotics during Rearing of Hermetia illucens: Potential, Caveats, and Knowledge Gaps. Microorganisms 2023; 11:245. [PMID: 36838211 PMCID: PMC9960648 DOI: 10.3390/microorganisms11020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Given the novelty of the industrial production of the edible insects sector, research has primarily focused on the zootechnical performances of black soldier fly larvae (BSFL) in response to different substrates and rearing conditions as a basis to optimize yield and quality. However recently, research has started to focus more on the associated microbes in the larval digestive system and their substrates and the effect of manipulating the composition of these communities on insect performance as a form of microbiome engineering. Here we present an overview of the existing literature on the use of microorganisms during rearing of the BSFL to optimize the productivity of this insect. These studies have had variable outcomes and potential explanations for this variation are offered to inspire future research that might lead to a better success rate for microbiome engineering in BSFL.
Collapse
Affiliation(s)
- Ellen Gorrens
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, 2440 Geel, Belgium
| | - Antoine Lecocq
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M²S), KU Leuven, 2440 Geel, Belgium
| |
Collapse
|
16
|
Vitenberg T, Opatovsky I. Assessing Fungal Diversity and Abundance in the Black Soldier Fly and its Environment. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:3. [PMID: 36398851 PMCID: PMC9673256 DOI: 10.1093/jisesa/ieac066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Detritivorous insects that flourish in decaying environments encounter microorganisms throughout their life cycle. However, it is not clear whether the microbial composition of the decaying environment affects the microbial composition of the insect gut, or whether the opposite is true, with the microorganisms that are adapted to the insect's digestive system being dispersed by the insects to new habitats, thereby becoming more and more common in the environment. To test these questions the fungal composition of the black soldier fly (BSF) (Stratiomyidae; Hermetia illucens Linnaeus) larval gut and its surrounding decaying environment (household compost bins) were analyzed using amplicon sequencing. Constancy in the dominance of the genus Candida (Debaryomycetaceae) in most of the environments and larval guts was found. This finding may suggest a 'core' structure to the fungal community of the BSF. In locations where nutrient composition of the environment had higher fiber content, the Candida was not dominant and the most common fungi were the genus Gibberella (Nectriaceae) and the family Dipodascaceae. The later was dominant also in the larval gut and the former was replaced with Meyerozyma (Debaryomycetaceae), which may suggest a selection process by the insect's gut. Little is known about the ecological interactions of insects with eukaryotic microorganisms, such as yeast-like fungi. As their metabolic complexity and ability is intense, they have the potential to dramatically affect the physiological condition of the insect.
Collapse
Affiliation(s)
- Tzach Vitenberg
- Department of Nutrition and Natural Products, Laboratory of Insect Nutrition and Metabolism, MIGAL - Galilee Research Centre, Kiryat Shmona, Israel
- Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | | |
Collapse
|
17
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
18
|
Black Soldier Fly Larvae Influence Internal and Substrate Bacterial Community Composition Depending on Substrate Type and Larval Density. Appl Environ Microbiol 2022; 88:e0008422. [PMID: 35532232 PMCID: PMC9128521 DOI: 10.1128/aem.00084-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Saprophagous fly larvae interact with a rich community of bacteria in decomposing organic matter. Larvae of some species, such as the black soldier fly, can process a wide range of organic residual streams into edible insect biomass and thus produce protein as a sustainable component of livestock feed. The microbiological safety of the insects and substrates remains a point of concern. Substrate-associated bacteria can dominate the larval gut microbiota, but the larvae can also alter the bacterial community in the substrate. However, the relative importance of substrate type and larval density in bacterial community dynamics is unknown. We investigated four larval densities (0 [control], 50, 100, or 200 larvae per container [520 mL; diameter, 75 mm]) and three feed substrates (chicken feed, chicken manure, and camelina substrate [50% chicken feed, 50% camelina oilseed press cake]) and sampled the bacterial communities of the substrates and larvae at three time points over 15 days. Although feed substrate was the strongest driver of microbiota composition over time, larval density significantly altered the relative abundances of several common bacterial genera, including potential pathogens, in each substrate and in larvae fed chicken feed. Bacterial communities of the larvae and substrate differed to a higher degree in chicken manure and camelina than in chicken feed. This supports the substrate-dependent impact of black soldier fly larvae on bacteria both within the larvae and in the substrate. This study indicates that substrate composition and larval density can alter bacterial community composition and might be used to improve insect microbiological safety. IMPORTANCE Black soldier fly larvae can process organic side streams into nutritious insect biomass, yielding a sustainable ingredient of animal feed. In processing such organic residues, the larvae impact the substrate and its microbiota. However, their role relative to the feed substrate in shaping the bacterial community is unknown. This may be important for the waste management industry to determine whether pathogens can be controlled by manipulating the larval density and the timing of harvest. We investigated how the type of feed substrate and the larval density (number of larvae per container) interacted to influence bacterial community composition in the substrates and larvae over time. Substrate type was the strongest driver of bacterial community composition, and the magnitude of the impact of the larvae depended on the substrate type and larval density. Thus, both substrate composition and larval density may be used to improve the microbiological safety of the larvae as animal feed.
Collapse
|
19
|
Savio C, Mugo-Kamiri L, Upfold JK. Bugs in Bugs: The Role of Probiotics and Prebiotics in Maintenance of Health in Mass-Reared Insects. INSECTS 2022; 13:376. [PMID: 35447818 PMCID: PMC9025317 DOI: 10.3390/insects13040376] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Interactions between insects and their microbiota affect insect behaviour and evolution. When specific microorganisms are provided as a dietary supplement, insect reproduction, food conversion and growth are enhanced and health is improved in cases of nutritional deficiency or pathogen infection. The purpose of this review is to provide an overview of insect-microbiota interactions, to review the role of probiotics, their general use in insects reared for food and feed, and their interactions with the host microbiota. We review how bacterial strains have been selected for insect species reared for food and feed and discuss methods used to isolate and measure the effectiveness of a probiotic. We outline future perspectives on probiotic applications in mass-reared insects.
Collapse
Affiliation(s)
- Carlotta Savio
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Laboratory of Entomology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Loretta Mugo-Kamiri
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS-University of Tours, 37200 Tours, France;
- Centre for Ecology and Conservation, Penryn Campus, College of Life and Environmental Science, University of Exeter, Cornwall TR10 9FE, UK
| | - Jennifer K. Upfold
- University of Paris Saclay, INRAE, Micalis, GME, 78350 Jouy en Josas, France;
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaildsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
20
|
Siddiqui SA, Ristow B, Rahayu T, Putra NS, Widya Yuwono N, Nisa' K, Mategeko B, Smetana S, Saki M, Nawaz A, Nagdalian A. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:1-13. [PMID: 35030456 DOI: 10.1016/j.wasman.2021.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/21/2021] [Accepted: 12/31/2021] [Indexed: 05/12/2023]
Abstract
There are two major problems that we are facing currently. Firstly, a growing human population continues to contribute to the increased food demand. Secondly, the volume of organic waste produced will threaten human health and the quality of the environment. Recently, there is an increasing number of efforts placed into farming insect biomass to produce alternative feed ingredients. Black soldier fly larvae (BSFL), Hermetia illucens have proven to convert organic waste into high-quality nutrients for pet foods, fish and poultry feeds, as well as residue fertilizer for soil amendment. However, better BSFL feed formulation and feeding approaches are necessary for yielding a higher nutrient content of the insect body, and if performed efficiently, whilst converting waste into higher value biomass. Lastly, this paper reveals that BSFL, in fact, thrives in various ranges of organic matter composition and with simple rearing systems.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straβe 7, 49610 Quakenbrück, Germany.
| | - Bridget Ristow
- Nutritionhub (Pty) Ltd Consultancy Firm. Doornbosch Centre, R44, Strand Road, Stellenbosch, South Africa
| | - Teguh Rahayu
- CV HermetiaTech, Voza Premium Office 20th Floor, Jl. HR. Muhammad No. 31A, Putat Gede, Surabaya 60189, Jawa Timur, Indonesia.
| | - Nugroho Susetya Putra
- Universitas Gadjah Mada, Faculty of Agriculture, Department of Plant Protection, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281, Indonesia.
| | - Nasih Widya Yuwono
- Universitas Gadjah Mada, Faculty of Agriculture, Department of Soil Science, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281, Indonesia.
| | - Khoirun Nisa'
- Sepuluh November Institute of Technology, Department of Environmental Engineering, Sukolilo, Surabaya 60111, Jawa Timur, Indonesia
| | - Bosco Mategeko
- Rwandan Society of Food Science and Technology (RFST), Rwanda
| | - Sergiy Smetana
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straβe 7, 49610 Quakenbrück, Germany.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asad Nawaz
- Institute for Advanced Study, Shenzhen University, Shenzhen, PR China.
| | - Andrey Nagdalian
- Food Technology and Engineering Department, North-Caucasus Federal University, Pushkina Street 1, 355009 Stavropol, Russia; Saint Petersburg State Agrarian University, Peterburgskoe Highway 2, 196601, Pushkin, Saint Petersburg, Russia.
| |
Collapse
|
21
|
Mat K, Abdul Kari Z, Rusli ND, Rahman MM, Che Harun H, Al-Amsyar SM, Mohd Nor MF, Dawood MA, Hassan AM. Effects of the inclusion of black soldier fly larvae (Hermetia illucens) meal on growth performance and blood plasma constituents in broiler chicken (Gallus gallus domesticus) production. Saudi J Biol Sci 2022; 29:809-815. [PMID: 35197748 PMCID: PMC8847962 DOI: 10.1016/j.sjbs.2021.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/02/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to identify the effect of inclusion of defatted black soldier fly larvae (Def-BSFL) meal as a protein source on the performance and blood plasma constituents of broiler chickens. A total of 360-day-old chicks were assigned into four dietary groups, which included four different levels of Def-BSFL meal namely control (0% BSFL), T1(4% BSFL), T2 (8% BSFL) and T3 (12% BSFL) for six weeks experimental feeding period. At the end of the experiment, the blood samples of three birds from each treatment were collected to measure plasma constituents. Birds fed control and T1 diets demonstrated higher feed intake during the finisher stage compared with T2 and T3 diets. The heaviest weight for the 6-week feeding trial was recorded at T1 (1043.8 ± 65.9 g). Birds fed T1 (1.1 ± 0.0) and T3 (0.9 ± 0.1) diets displayed lower feed conversion ratio during the finisher stage than those fed control (1.7 ± 0.1) and T2 (1.8 ± 0.3) diets. Birds fed the control diet demonstrated the highest red blood cell with mean and standard deviation of 7.5 ± 0.34, whereas those fed the T2 diet showed the highest haemoglobin levels with mean and standard deviation of 15.8 ± 0.24. Birds fed T1, T2, and T3 diets exhibited a higher number (P < 0.05) of monocytes than those fed a control diet. There were no differences in white blood cell count across all the groups. In addition, birds fed the T2 diet showed higher (P < 0.05) blood urea nitrogen followed by the T3, control, and T1 diets. As a conclusion, the 4% Def-BSFL in the broiler chicken diet could be used to replace fish meal (FM) and soybean meal (SBM) without compromising bird performance and blood traits.
Collapse
|
22
|
Jordan HR, Tomberlin JK. Microbial influence on reproduction, conversion, and growth of mass produced insects. CURRENT OPINION IN INSECT SCIENCE 2021; 48:57-63. [PMID: 34655809 DOI: 10.1016/j.cois.2021.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
One important feature of insect rearing is its apparent, and sometimes non-apparent, reliance on the bacterial ecosystem. Indeed, microbes contribute to insect nutrition, protection against natural enemies, and detoxification of dietary compounds, antibiotics, and insecticides. Further, microbes have been implicated as the source of signals and cues important to insect communication. But the incidence and general significance of these functions is only just being explored in the context of mass production of insects. Knowledge of the diversity and functional distribution of these microorganisms in mass-rearing systems is key to understanding microbial dynamics and to enhance system performance. Therefore, this brief review is a synthesis of literature surrounding insect rearing systems for the primary insects reared as food and feed (i.e. black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), mealworms (Coleoptera: Tenebrionidae), and cricket (Orthoptera: Grylloidea) with a focus on recent advances pertaining to microbial contribution to reproduction, growth, and waste conversion.
Collapse
|