1
|
Bradford LM, Yao L, Anastasiadis C, Cooper AL, Blais B, Deckert A, Reid-Smith R, Lau C, Diarra MS, Carrillo C, Wong A. Limit of detection of Salmonella ser. Enteritidis using culture-based versus culture-independent diagnostic approaches. Microbiol Spectr 2024:e0102724. [PMID: 39495170 DOI: 10.1128/spectrum.01027-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/28/2024] [Indexed: 11/05/2024] Open
Abstract
To prevent the spread of foodborne illnesses, the presence of pathogens in the food chain is monitored by government agencies and food producers. The culture-based methods currently employed are sensitive but time- and labor-intensive, leading to increasing interest in exploring culture-independent diagnostic tests (CIDTs) for pathogen detection. However, few studies quantify the relative sensitivity and reliability of these CIDTs compared to current approaches. To address this issue, we conducted a comparison of the limit of detection (LOD50) for Salmonella between a culture-based method and three CIDTs: qPCR (targeting invA and stn), metabarcode (16S) sequencing, and shotgun metagenomic sequencing. Samples of chicken feed and chicken caecal contents were spiked with S. serovar Enteritidis and subjected to culture- and DNA-based detection methods. To explore the impact of non-selective enrichment on LOD50, all samples underwent both immediate DNA extraction and overnight enrichment prior to gDNA extraction. In addition to this spike-in experiment, feed and caecal samples acquired from the field were tested with culturing, qPCR, and metabarcoding. In general, LOD50 was comparable between qPCR and shotgun sequencing methods. Overnight microbiological enrichment resulted in an improvement in LOD50 with up to a three-log decrease. However, Salmonella reads were detected in some unspiked feed samples, suggesting false-positive detection of Salmonella. In addition, the LOD50 in feeds was three logs lower than in caecal contents, underscoring the impact of background microbiota on Salmonella detection using all methods. IMPORTANCE The appeal of culture-independent diagnostic tests (CIDTs) is increased speed with lowered cost, as well as the potential to detect multiple pathogen species in a single analysis and to monitor other areas of concern such as antimicrobial resistance genes or virulence factors. This study provides quantitative data on the sensitivity of CIDTs relative to current approaches, which is essential for determining the feasibility of implementing these methods in pathogen surveillance programs.
Collapse
Affiliation(s)
- L M Bradford
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - L Yao
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - C Anastasiadis
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - A L Cooper
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - B Blais
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - A Deckert
- Centre for Foodborne Environmental and Zoonotic Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - R Reid-Smith
- Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - C Lau
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - M S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - C Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - A Wong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute for Advancing Health Through Agriculture, Texas A&M University, Fort Worth, Texas, USA
| |
Collapse
|
2
|
Schadron T, van den Beld M, Mughini-Gras L, Franz E. Use of whole genome sequencing for surveillance and control of foodborne diseases: status quo and quo vadis. Front Microbiol 2024; 15:1460335. [PMID: 39345263 PMCID: PMC11427404 DOI: 10.3389/fmicb.2024.1460335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Improvements in sequencing quality, availability, speed and costs results in an increased presence of genomics in infectious disease applications. Nevertheless, there are still hurdles in regard to the optimal use of WGS for public health purposes. Here, we discuss the current state ("status quo") and future directions ("quo vadis") based on literature regarding the use of genomics in surveillance, hazard characterization and source attribution of foodborne pathogens. The future directions include the application of new techniques, such as machine learning and network approaches that may overcome the current shortcomings. These include the use of fixed genomic distances in cluster delineation, disentangling similarity or lack thereof in source attribution, and difficulties ascertaining function in hazard characterization. Although, the aforementioned methods can relatively easily be applied technically, an overarching challenge is the inference and biological/epidemiological interpretation of these large amounts of high-resolution data. Understanding the context in terms of bacterial isolate and host diversity allows to assess the level of representativeness in regard to sources and isolates in the dataset, which in turn defines the level of certainty associated with defining clusters, sources and risks. This also marks the importance of metadata (clinical, epidemiological, and biological) when using genomics for public health purposes.
Collapse
Affiliation(s)
- Tristan Schadron
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Maaike van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
3
|
Mather AE, Gilmour MW, Reid SWJ, French NP. Foodborne bacterial pathogens: genome-based approaches for enduring and emerging threats in a complex and changing world. Nat Rev Microbiol 2024; 22:543-555. [PMID: 38789668 DOI: 10.1038/s41579-024-01051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/26/2024]
Abstract
Foodborne illnesses pose a substantial health and economic burden, presenting challenges in prevention due to the diverse microbial hazards that can enter and spread within food systems. Various factors, including natural, political and commercial drivers, influence food production and distribution. The risks of foodborne illness will continue to evolve in step with these drivers and with changes to food systems. For example, climate impacts on water availability for agriculture, changes in food sustainability targets and evolving customer preferences can all have an impact on the ecology of foodborne pathogens and the agrifood niches that can carry microorganisms. Whole-genome and metagenome sequencing, combined with microbial surveillance schemes and insights from the food system, can provide authorities and businesses with transformative information to address risks and implement new food safety interventions across the food chain. In this Review, we describe how genome-based approaches have advanced our understanding of the evolution and spread of enduring bacterial foodborne hazards as well as their role in identifying emerging foodborne hazards. Furthermore, foodborne hazards exist in complex microbial communities across the entire food chain, and consideration of these co-existing organisms is essential to understanding the entire ecology supporting pathogen persistence and transmission in an evolving food system.
Collapse
Affiliation(s)
- Alison E Mather
- Quadram Institute Bioscience, Norwich, UK.
- University of East Anglia, Norwich, UK.
| | - Matthew W Gilmour
- Quadram Institute Bioscience, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Nigel P French
- Tāuwharau Ora, School of Veterinary Science, Te Kunenga Ki Pūrehuroa, Massey University, Papaioea, Palmerston North, Aotearoa New Zealand
| |
Collapse
|
4
|
Trinh P, Teichman S, Roberts MC, Rabinowitz PM, Willis AD. A cross-sectional comparison of gut metagenomes between dairy workers and community controls. BMC Genomics 2024; 25:708. [PMID: 39033279 DOI: 10.1186/s12864-024-10562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens before a spillover event. In light of this, we aimed to characterize the microbiomes and resistomes of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. RESULTS Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of 10 dairy farm workers and 6 community controls' gut metagenomes, contextualizing these samples with additional publicly available gut metagenomes. We found no significant differences in the prevalence of resistance genes, virulence factors, or taxonomic composition between the two groups. The lack of statistical significance may be attributed, in part, to the limited sample size of our study or the potential similarities in exposures between the dairy workers and community controls. We did, however, observe patterns warranting further investigation including greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes as well as lower average gene diversity (even after accounting for differential sequencing depth) in dairy workers' metagenomes. We also found evidence of commensal organism association with tetracycline resistance genes in both groups (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). CONCLUSIONS This study highlights the utility of shotgun metagenomics in examining the microbiomes and resistomes of livestock workers, focusing on a cohort of dairy workers in the United States. While our study revealed no statistically significant differences between groups in taxonomy, diversity and gene presence, we observed patterns in antibiotic resistance gene abundance and prevalence that align with findings from previous studies of livestock workers in China and Europe. Our results lay the groundwork for future research involving larger cohorts of dairy and non-dairy workers to better understand the impact of occupational exposure to livestock farming on the microbiomes and resistomes of workers.
Collapse
Affiliation(s)
- Pauline Trinh
- Department of Biostatistics, University of Washington, Seattle, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, USA
| | - Sarah Teichman
- Department of Statistics, University of Washington, Seattle, USA
| | - Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, USA
| | - Peter M Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, USA.
- Department of Statistics, University of Washington, Seattle, USA.
| |
Collapse
|
5
|
Munk P, Yang D, Röder T, Maier L, Petersen TN, Duarte ASR, Clausen PTLC, Brinch C, Van Gompel L, Luiken R, Wagenaar JA, Schmitt H, Heederik DJJ, Mevius DJ, Smit LAM, Bossers A, Aarestrup FM. The European livestock resistome. mSystems 2024; 9:e0132823. [PMID: 38501800 PMCID: PMC11019871 DOI: 10.1128/msystems.01328-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Metagenomic sequencing has proven to be a powerful tool in the monitoring of antimicrobial resistance (AMR). Here, we provide a comparative analysis of the resistome from pigs, poultry, veal calves, turkey, and rainbow trout, for a total of 538 herds across nine European countries. We calculated the effects of per-farm management practices and antimicrobial usage (AMU) on the resistome in pigs, broilers, and veal calves. We also provide an in-depth study of the associations between bacterial diversity, resistome diversity, and AMR abundances as well as co-occurrence analysis of bacterial taxa and antimicrobial resistance genes (ARGs) and the universality of the latter. The resistomes of veal calves and pigs clustered together, as did those of avian origin, while the rainbow trout resistome was different. Moreover, we identified clear core resistomes for each specific food-producing animal species. We identified positive associations between bacterial alpha diversity and both resistome alpha diversity and abundance. Network analyses revealed very few taxa-ARG associations in pigs but a large number for the avian species. Using updated reference databases and optimized bioinformatics, previously reported significant associations between AMU, biosecurity, and AMR in pig and poultry farms were validated. AMU is an important driver for AMR; however, our integrated analyses suggest that factors contributing to increased bacterial diversity might also be associated with higher AMR load. We also found that dispersal limitations of ARGs are shaping livestock resistomes, and future efforts to fight AMR should continue to emphasize biosecurity measures.IMPORTANCEUnderstanding the occurrence, diversity, and drivers for antimicrobial resistance (AMR) is important to focus future control efforts. So far, almost all attempts to limit AMR in livestock have addressed antimicrobial consumption. We here performed an integrated analysis of the resistomes of five important farmed animal populations across Europe finding that the resistome and AMR levels are also shaped by factors related to bacterial diversity, as well as dispersal limitations. Thus, future studies and interventions aimed at reducing AMR should not only address antimicrobial usage but also consider other epidemiological and ecological factors.
Collapse
Affiliation(s)
- Patrick Munk
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Dongsheng Yang
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Timo Röder
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Leonie Maier
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
| | | | | | | | - Christian Brinch
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Liese Van Gompel
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Roosmarijn Luiken
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Dick J. J. Heederik
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Dik J. Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - EFFORT ConsortiumGravelandHaitskeGonzalez-ZornBrunoMoyanoGabrielSandersPascalChauvinClaireBattistiAntonioDewulfJeroenWadepohlKatharinaWasylDariuszSkarzyńskaMagdalenaZajacMagdalenaPękala-SafińskaAgnieszkaDaskalovHristoStärkKatharina D. C.
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Frank M. Aarestrup
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
6
|
Cardim Falcao R, Edwards MR, Hurst M, Fraser E, Otterstatter M. A Review on Microbiological Source Attribution Methods of Human Salmonellosis: From Subtyping to Whole-Genome Sequencing. Foodborne Pathog Dis 2024; 21:137-146. [PMID: 38032610 PMCID: PMC10924193 DOI: 10.1089/fpd.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Salmonella is one of the main causes of human foodborne illness. It is endemic worldwide, with different animals and animal-based food products as reservoirs and vehicles of infection. Identifying animal reservoirs and potential transmission pathways of Salmonella is essential for prevention and control. There are many approaches for source attribution, each using different statistical models and data streams. Some aim to identify the animal reservoir, while others aim to determine the point at which exposure occurred. With the advance of whole-genome sequencing (WGS) technologies, new source attribution models will greatly benefit from the discriminating power gained with WGS. This review discusses some key source attribution methods and their mathematical and statistical tools. We also highlight recent studies utilizing WGS for source attribution and discuss open questions and challenges in developing new WGS methods. We aim to provide a better understanding of the current state of these methodologies with application to Salmonella and other foodborne pathogens that are common sources of illness in the poultry and human sectors.
Collapse
Affiliation(s)
- Rebeca Cardim Falcao
- British Columbia Centre for Disease Control, Vancouver, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada
| | - Megan R Edwards
- British Columbia Centre for Disease Control, Vancouver, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada
| | - Matt Hurst
- Public Health Agency of Canada, Guelph, Canada
| | - Erin Fraser
- British Columbia Centre for Disease Control, Vancouver, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada
| | - Michael Otterstatter
- British Columbia Centre for Disease Control, Vancouver, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Arnold KE, Laing G, McMahon BJ, Fanning S, Stekel DJ, Pahl O, Coyne L, Latham SM, McIntyre KM. The need for One Health systems-thinking approaches to understand multiscale dissemination of antimicrobial resistance. Lancet Planet Health 2024; 8:e124-e133. [PMID: 38331529 DOI: 10.1016/s2542-5196(23)00278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/29/2023] [Accepted: 12/15/2023] [Indexed: 02/10/2024]
Abstract
Although the effects of antimicrobial resistance (AMR) are most obvious at clinical treatment failure, AMR evolution, transmission, and dispersal happen largely in environmental settings, for example within farms, waterways, livestock, and wildlife. We argue that systems-thinking, One Health approaches are crucial for tackling AMR, by understanding and predicting how anthropogenic activities interact within environmental subsystems, to drive AMR emergence and transmission. Innovative computational methods integrating big data streams (eg, from clinical, agricultural, and environmental monitoring) will accelerate our understanding of AMR, supporting decision making. There are challenges to accessing, integrating, synthesising, and interpreting such complex, multidimensional, heterogeneous datasets, including the lack of specific metrics to quantify anthropogenic AMR. Moreover, data confidentiality, geopolitical and cultural variation, surveillance gaps, and science funding cause biases, uncertainty, and gaps in AMR data and metadata. Combining systems-thinking with modelling will allow exploration, scaling-up, and extrapolation of existing data. This combination will provide vital understanding of the dynamic movement and transmission of AMR within and among environmental subsystems, and its effects across the greater system. Consequently, strategies for slowing down AMR dissemination can be modelled and compared for efficacy and cost-effectiveness.
Collapse
Affiliation(s)
- Kathryn E Arnold
- Department of Environment and Geography, University of York, York, UK.
| | | | - Barry J McMahon
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Ireland
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK; Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa
| | - Ole Pahl
- Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow, UK
| | - Lucy Coyne
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; National Office of Animal Health, Stevenage, UK
| | - Sophia M Latham
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - K Marie McIntyre
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Modelling, Evidence and Policy group, School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
8
|
Salgueiro HS, Ferreira AC, Duarte ASR, Botelho A. Source Attribution of Antibiotic Resistance Genes in Estuarine Aquaculture: A Machine Learning Approach. Antibiotics (Basel) 2024; 13:107. [PMID: 38275336 PMCID: PMC10812778 DOI: 10.3390/antibiotics13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Aquaculture located in urban river estuaries, where other anthropogenic activities may occur, has an impact on and may be affected by the environment where they are inserted, namely by the exchange of antimicrobial resistance genes. The latter may ultimately, through the food chain, represent a source of resistance genes to the human resistome. In an exploratory study of the presence of resistance genes in aquaculture sediments located in urban river estuaries, two machine learning models were applied to predict the source of 34 resistome observations in the aquaculture sediments of oysters and gilt-head sea bream, located in the estuaries of the Sado and Lima Rivers and in the Aveiro Lagoon, as well as in the sediments of the Tejo River estuary, where Japanese clams and mussels are collected. The first model included all 34 resistomes, amounting to 53 different antimicrobial resistance genes used as source predictors. The most important antimicrobial genes for source attribution were tetracycline resistance genes tet(51) and tet(L); aminoglycoside resistance gene aadA6; beta-lactam resistance gene blaBRO-2; and amphenicol resistance gene cmx_1. The second model included only oyster sediment resistomes, amounting to 30 antimicrobial resistance genes as predictors. The most important antimicrobial genes for source attribution were the aminoglycoside resistance gene aadA6, followed by the tetracycline genes tet(L) and tet(33). This exploratory study provides the first information about antimicrobial resistance genes in intensive and semi-intensive aquaculture in Portugal, helping to recognize the importance of environmental control to maintain the integrity and the sustainability of aquaculture farms.
Collapse
Affiliation(s)
| | - Ana Cristina Ferreira
- National Institute for Agrarian and Veterinary Research (INIAV IP), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ana Sofia Ribeiro Duarte
- National Food Institute, Technical University of Denmark, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Ana Botelho
- National Institute for Agrarian and Veterinary Research (INIAV IP), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| |
Collapse
|
9
|
Cooper AL, Low A, Wong A, Tamber S, Blais BW, Carrillo CD. Modeling the limits of detection for antimicrobial resistance genes in agri-food samples: a comparative analysis of bioinformatics tools. BMC Microbiol 2024; 24:31. [PMID: 38245666 PMCID: PMC10799530 DOI: 10.1186/s12866-023-03148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Although the spread of antimicrobial resistance (AMR) through food and its production poses a significant concern, there is limited research on the prevalence of AMR bacteria in various agri-food products. Sequencing technologies are increasingly being used to track the spread of AMR genes (ARGs) in bacteria, and metagenomics has the potential to bypass some of the limitations of single isolate characterization by allowing simultaneous analysis of the agri-food product microbiome and associated resistome. However, metagenomics may still be hindered by methodological biases, presence of eukaryotic DNA, and difficulties in detecting low abundance targets within an attainable sequence coverage. The goal of this study was to assess whether limits of detection of ARGs in agri-food metagenomes were influenced by sample type and bioinformatic approaches. RESULTS We simulated metagenomes containing different proportions of AMR pathogens and analysed them for taxonomic composition and ARGs using several common bioinformatic tools. Kraken2/Bracken estimates of species abundance were closest to expected values. However, analysis by both Kraken2/Bracken indicated presence of organisms not included in the synthetic metagenomes. Metaphlan3/Metaphlan4 analysis of community composition was more specific but with lower sensitivity than the Kraken2/Bracken analysis. Accurate detection of ARGs dropped drastically below 5X isolate genome coverage. However, it was sometimes possible to detect ARGs and closely related alleles at lower coverage levels if using a lower ARG-target coverage cutoff (< 80%). While KMA and CARD-RGI only predicted presence of expected ARG-targets or closely related gene-alleles, SRST2 (which allows read to map to multiple targets) falsely reported presence of distantly related ARGs at all isolate genome coverage levels. The presence of background microbiota in metagenomes influenced the accuracy of ARG detection by KMA, resulting in mcr-1 detection at 0.1X isolate coverage in the lettuce but not in the beef metagenome. CONCLUSIONS This study demonstrates accurate detection of ARGs in synthetic metagenomes using various bioinformatic methods, provided that reads from the ARG-encoding organism exceed approximately 5X isolate coverage (i.e. 0.4% of a 40 million read metagenome). While lowering thresholds for target gene detection improved sensitivity, this led to the identification of alternative ARG-alleles, potentially confounding the identification of critical ARGs in the resistome. Further advancements in sequencing technologies providing increased coverage depth or extended read lengths may improve ARG detection in agri-food metagenomic samples, enabling use of this approach for tracking clinically important ARGs in agri-food samples.
Collapse
Affiliation(s)
- Ashley L Cooper
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andrew Low
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Burton W Blais
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Catherine D Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada.
- Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Eiamsam-ang T, Tadee P, Buddhasiri S, Chuammitri P, Kittiwan N, Pascoe B, Patchanee P. Commercial farmed swine harbour a variety of pathogenic bacteria and antimicrobial resistance genes. J Med Microbiol 2024; 73:001787. [PMID: 38230911 PMCID: PMC11418424 DOI: 10.1099/jmm.0.001787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/10/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction. The northern region of Thailand serves as a crucial area for swine production, contributing to the Thai community food supply. Previous studies have highlighted the presence of foodborne bacterial pathogens originating from swine farms in this region, posing a threat to both human and animal health.Gap statement. Multiple swine bacterial pathogens have been studied at a species level, but the distribution and co-occurrence of bacterial pathogens in agricultural swine has not been well established.Aim. Our study employed the intestinal scraping technique to directly examine the bacterial micro-organisms interacting with the swine host.Methodology. We used shotgun metagenomic sequencing to analyse the bacterial pathogens inhabiting the caecal microbiome of swine from five commercial farms in northern Thailand.Results. A variety of pathogenic and opportunistic bacteria were identified, including Escherichia coli, Clostridium botulinum, Staphylococcus aureus and the Corynebacterium genus. From a One Health perspective, these species are important foodborne and opportunistic pathogens in both humans and agricultural animals, making swine a critical pathogen reservoir that can cause illness in humans, especially farm workers. Additionally, the swine caecal microbiome contains commensal bacteria such as Bifidobacterium, Lactobacillus and Faecalibacterium, which are associated with normal physiology and feed utilization in healthy swine. Antimicrobial resistance genes were also detected in all samples, specifically conferring resistance to tetracycline and aminoglycosides, which have historically been used extensively in swine farming.Conclusion. The findings further support the need for improved sanitation standards in swine farms, and additional monitoring of agricultural animals and farm workers to reduce contamination and improved produce safety for human consumption.
Collapse
Affiliation(s)
- Thanaporn Eiamsam-ang
- Graduate Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Pakpoom Tadee
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Songphon Buddhasiri
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Phongsakorn Chuammitri
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Nattinee Kittiwan
- Veterinary Research and Development Center (Upper Northern Region), Hang Chat, Lampang, Thailand
| | - Ben Pascoe
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Ineos Oxford Istitute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Prapas Patchanee
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| |
Collapse
|
11
|
Vieira TR, de Oliveira EFC, Cibulski SP, Silva NMV, Borba MR, Oliveira CJB, Cardoso M. Comparative resistome, mobilome, and microbial composition of retail chicken originated from conventional, organic, and antibiotic-free production systems. Poult Sci 2023; 102:103002. [PMID: 37713802 PMCID: PMC10511805 DOI: 10.1016/j.psj.2023.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/17/2023] Open
Abstract
The aim of this study was to investigate the microbial composition, and the profiles of antimicrobial resistance genes (ARGs, resistome) and mobile genetic elements (mobilome) of retail chicken carcasses originated from conventional intensive production systems (CO), certified antimicrobial-free intensive production systems (AF), and certified organic production systems with restricted antimicrobial use (OR). DNA samples were collected from 72 chicken carcasses according to a cross-sectional study design. Shot-gun metagenomics was performed by means of Illumina high throughput DNA sequencing followed by downstream bioinformatic analyses. Gammaproteobacteria was the most abundant bacterial class in all groups. Although CO, AF, and OR did not differ in terms of alpha- and beta-microbial diversity, the abundance of some taxa differed significantly across the groups, including spoilage-associated organisms such as Pseudomonas and Acinetobacter. The co-resistome comprised 29 ARGs shared by CO, AF and OR, including genes conferring resistance to beta-lactams (blaACT-8, 10, 13, 29; blaOXA-212;blaOXA-275 and ompA), aminoglycosides (aph(3')-IIIa, VI, VIa and spd), tetracyclines (tet KL (W/N/W and M), lincosamides (inu A,C) and fosfomycin (fosA). ARGs were significantly less abundant (P < 0.05) in chicken carcasses from AF and OR compared with CO. Regarding mobile genetic elements (MGEs), transposases accounted for 97.2% of the mapped genes. A higher abundance (P = 0.037) of MGEs was found in CO compared to OR. There were no significant differences in ARGs or MGEs diversity among groups according to the Simpson´s index. In summary, retail frozen chicken carcasses from AF and OR systems show similar ARGs, MGEs and microbiota profiles compared with CO, even though the abundance of ARGs and MGEs was higher in chicken carcasses from CO, probably due to a higher selective pressure.
Collapse
Affiliation(s)
- Tatiana R Vieira
- Department of Preventive Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), 91540-000, Porto Alegre, RS, Brazil
| | - Esther F Cavinatto de Oliveira
- Department of Preventive Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), 91540-000, Porto Alegre, RS, Brazil
| | - Samuel P Cibulski
- Department of Biotechnology, Center for Biotechnology (CBiotec), Federal University of Paraiba (UFPB), 58397-000, Areia, PB, Brazil
| | - Núbia M V Silva
- Federal Institute of Education, Science and Technology of Sertão Pernambucano, Campus Salgueiro (IF-Sertão Pernambucano), 56000-000, Salgueiro, PE, Brazil; Department of Animal Sciences, College of Agricultural Sciences (CCA), Federal University of Paraiba (UFPB), 58397-000, Areia, PB, Brazil
| | - Mauro R Borba
- Department of Preventive Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), 91540-000, Porto Alegre, RS, Brazil
| | - Celso J B Oliveira
- Department of Animal Sciences, College of Agricultural Sciences (CCA), Federal University of Paraiba (UFPB), 58397-000, Areia, PB, Brazil
| | - Marisa Cardoso
- Department of Preventive Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), 91540-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Bianconi I, Aschbacher R, Pagani E. Current Uses and Future Perspectives of Genomic Technologies in Clinical Microbiology. Antibiotics (Basel) 2023; 12:1580. [PMID: 37998782 PMCID: PMC10668849 DOI: 10.3390/antibiotics12111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Recent advancements in sequencing technology and data analytics have led to a transformative era in pathogen detection and typing. These developments not only expedite the process, but also render it more cost-effective. Genomic analyses of infectious diseases are swiftly becoming the standard for pathogen analysis and control. Additionally, national surveillance systems can derive substantial benefits from genomic data, as they offer profound insights into pathogen epidemiology and the emergence of antimicrobial-resistant strains. Antimicrobial resistance (AMR) is a pressing global public health issue. While clinical laboratories have traditionally relied on culture-based antimicrobial susceptibility testing, the integration of genomic data into AMR analysis holds immense promise. Genomic-based AMR data can furnish swift, consistent, and highly accurate predictions of resistance phenotypes for specific strains or populations, all while contributing invaluable insights for surveillance. Moreover, genome sequencing assumes a pivotal role in the investigation of hospital outbreaks. It aids in the identification of infection sources, unveils genetic connections among isolates, and informs strategies for infection control. The One Health initiative, with its focus on the intricate interconnectedness of humans, animals, and the environment, seeks to develop comprehensive approaches for disease surveillance, control, and prevention. When integrated with epidemiological data from surveillance systems, genomic data can forecast the expansion of bacterial populations and species transmissions. Consequently, this provides profound insights into the evolution and genetic relationships of AMR in pathogens, hosts, and the environment.
Collapse
Affiliation(s)
- Irene Bianconi
- Laboratory of Microbiology and Virology, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversitätvia Amba Alagi 5, 39100 Bolzano, Italy; (R.A.); (E.P.)
| | | | | |
Collapse
|
13
|
Rios Galicia B, Sáenz JS, Yergaliyev T, Camarinha-Silva A, Seifert J. Host specific adaptations of Ligilactobacillus aviarius to poultry. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100199. [PMID: 37727231 PMCID: PMC10505982 DOI: 10.1016/j.crmicr.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The genus Ligilactobacillus encompasses species adapted to vertebrate hosts and fermented food. Their genomes encode adaptations to the host lifestyle. Reports of gut microbiota from chicken and turkey gastrointestinal tract have shown a high persistence of Ligilactobacillus aviarius along the digestive system compared to other species found in the same host. However, its adaptations to poultry as a host has not yet been described. In this work, the pan-genome of Ligilactobacillus aviarius was explored to describe the functional adaptability to the gastrointestinal environment. The core genome is composed of 1179 gene clusters that are present at least in one copy that codifies to structural, ribosomal and biogenesis proteins. The rest of the identified regions were classified into three different functional clusters of orthologous groups (clusters) that codify carbohydrate metabolism, envelope biogenesis, viral defence mechanisms, and mobilome inclusions. The pan-genome of Ligilactobacillus aviarius is a closed pan-genome, frequently found in poultry and highly prevalent across chicken faecal samples. The genome of L. aviarius codifies different clusters of glycoside hydrolases and glycosyltransferases that mediate interactions with the host cells. Accessory features, such as antiviral mechanisms and prophage inclusions, variate amongst strains from different GIT sections. This information provides hints about the interaction of this species with viral particles and other bacterial species. This work highlights functional adaptability traits present in L. aviarius that make it a dominant key member of the poultry gut microbiota and enlightens the convergent ecological relation of this species to the poultry gut environment.
Collapse
Affiliation(s)
- Bibiana Rios Galicia
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Johan Sebastian Sáenz
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Timur Yergaliyev
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| |
Collapse
|
14
|
Uhland FC, Li XZ, Mulvey MR, Reid-Smith R, Sherk LM, Ziraldo H, Jin G, Young KM, Reist M, Carson CA. Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada-A Risk Profile Using the Codex Framework. Antibiotics (Basel) 2023; 12:1412. [PMID: 37760708 PMCID: PMC10525137 DOI: 10.3390/antibiotics12091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-EB) encompass several important human pathogens and are found on the World Health Organization (WHO) priority pathogens list of antibiotic-resistant bacteria. They are a group of organisms which demonstrate resistance to third-generation cephalosporins (3GC) and their presence has been documented worldwide, including in aquaculture and the aquatic environment. This risk profile was developed following the Codex Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance with the objectives of describing the current state of knowledge of ESBL-EB in relation to retail shrimp and salmon available to consumers in Canada, the primary aquacultured species consumed in Canada. The risk profile found that Enterobacterales and ESBL-EB have been found in multiple aquatic environments, as well as multiple host species and production levels. Although the information available did not permit the conclusion as to whether there is a human health risk related to ESBLs in Enterobacterales in salmon and shrimp available for consumption by Canadians, ESBL-EB in imported seafood available at the retail level in Canada have been found. Surveillance activities to detect ESBL-EB in seafood are needed; salmon and shrimp could be used in initial surveillance activities, representing domestic and imported products.
Collapse
Affiliation(s)
- F. Carl Uhland
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Richard Reid-Smith
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Lauren M. Sherk
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Hilary Ziraldo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Grace Jin
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Kaitlin M. Young
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Mark Reist
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carolee A. Carson
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| |
Collapse
|
15
|
Fastl C, De Carvalho Ferreira HC, Babo Martins S, Sucena Afonso J, di Bari C, Venkateswaran N, Pires SM, Mughini-Gras L, Huntington B, Rushton J, Pigott D, Devleesschauwer B. Animal sources of antimicrobial-resistant bacterial infections in humans: a systematic review. Epidemiol Infect 2023; 151:e143. [PMID: 37577944 PMCID: PMC10540179 DOI: 10.1017/s0950268823001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023] Open
Abstract
Bacterial antimicrobial resistance (AMR) is among the leading global health challenges of the century. Animals and their products are known contributors to the human AMR burden, but the extent of this contribution is not clear. This systematic literature review aimed to identify studies investigating the direct impact of animal sources, defined as livestock, aquaculture, pets, and animal-based food, on human AMR. We searched four scientific databases and identified 31 relevant publications, including 12 risk assessments, 16 source attribution studies, and three other studies. Most studies were published between 2012 and 2022, and most came from Europe and North America, but we also identified five articles from South and South-East Asia. The studies differed in their methodologies, conceptual approaches (bottom-up, top-down, and complex), definitions of the AMR hazard and outcome, the number and type of sources they addressed, and the outcome measures they reported. The most frequently addressed animal source was chicken, followed by cattle and pigs. Most studies investigated bacteria-resistance combinations. Overall, studies on the direct contribution of animal sources of AMR are rare but increasing. More recent publications tailor their methodologies increasingly towards the AMR hazard as a whole, providing grounds for future research to build on.
Collapse
Affiliation(s)
- Christina Fastl
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | | | - Sara Babo Martins
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - João Sucena Afonso
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Carlotta di Bari
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Narmada Venkateswaran
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute for Health Metrics and Evaluation, Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | | | - Lapo Mughini-Gras
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Institute for Risk Assessment Sciences (IRAS), Utrecht, The Netherlands
| | - Ben Huntington
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
- Pengwern Animal Health Ltd, Wallasey, UK
| | - Jonathan Rushton
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - David Pigott
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Institute for Health Metrics and Evaluation, Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Brecht Devleesschauwer
- Global Burden of Animal Diseases Programme, University of Liverpool, Liverpool, UK
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| |
Collapse
|
16
|
Liu T, Li G, Liu Z, Xi L, Ma W, Gao X. Characteristics of aerosols from swine farms: A review of the past two-decade progress. ENVIRONMENT INTERNATIONAL 2023; 178:108074. [PMID: 37441818 DOI: 10.1016/j.envint.2023.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
With the rapid development of large-scale and intensive swine production, the emission of aerosols from swine farms has become a growing concern, attracting extensive attention. While aerosols are found in various environments, those from swine farms are distinguished from human habitats, such as residential, suburban, and urban areas. In order to gain a comprehensive understanding of aerosols from swine farms, this paper reviewed relevant studies conducted between 2000 and 2022. The main components, concentrations, and size distribution of the aerosols were systematically reviewed. The differences between aerosols from swine farms and human living and working environments were compared. Finally, the sources, influencing factors, and reduction technologies for aerosols from swine farms were thoroughly elucidated. The results demonstrated that the concentrations of aerosols inside swine farms varied considerably, and most exceeded safety thresholds. However, further exploration is needed to fully understand the difference in airborne microorganism community structure and particles with small sizes (<1 μm) between swine farms and human living and working environments. More airborne bacterial and viruses were adhered to large particles in swine houses, while the proportion of airborne fungi in the respirable fraction was similar to that of human living and working environments. In addition, swine farms have a higher abundance and diversity of potential pathogens, airborne resistant microorganisms and resistant genes compared to the human living and working environments. The aerosols of swine farms mainly originated from sources such as manure, feed, swine hair and skin, secondary production, and waste treatment. According to the source analysis and factors influencing aerosols in swine farms, various technologies could be employed to mitigate aerosol emissions, and some end-of-pipe technologies need to be further improved before they are widely applied. Swine farms are advised not to increase aerosol concentration in human living and working environments, in order to decrease the impact of aerosols from swine farms on human health and restrain the spread of airborne potential pathogens. This review provides critical insights into aerosols of swine farms, offering guidance for taking appropriate measures to enhance air quality inside and surrounding swine farms.
Collapse
Affiliation(s)
- Tongshuai Liu
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Guoming Li
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; Institute for Artificial Intelligence, The University of Georgia, Athens, GA 30602, USA.
| | - Zhilong Liu
- Henan University of Animal Husbandry and Economy Library, Zhengzhou, Henan 450046, China
| | - Lei Xi
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Wei Ma
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Xuan Gao
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| |
Collapse
|
17
|
Trinh P, Roberts MC, Rabinowitz PM, Willis AD. Differences in gut metagenomes between dairy workers and community controls: a cross-sectional study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540270. [PMID: 37215025 PMCID: PMC10197731 DOI: 10.1101/2023.05.10.540270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens as they undergo evolution prior to a spillover event. In light of this, we are interested in characterizing the microbiome and resistome of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. Results Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of the human gut microbiome of 10 dairy farm workers and 6 community controls, supplementing these samples with additional publicly available gut metagenomes. We observed greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes in dairy workers' metagenomes, and lower average gene diversity. We also found evidence of commensal organism association with plasmid-mediated tetracycline resistance genes in both dairy workers and community controls (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). However, we did not find significant differences in the prevalence of resistance genes or virulence factors overall, nor differences in the taxonomic composition of dairy worker and community control metagenomes. Conclusions This study presents the first metagenomics analysis of United States dairy workers, providing insights into potential risks of exposure to antibiotics and pathogens in animal farming environments. Previous metagenomic studies of livestock workers in China and Europe have reported increased abundance and carriage of antibiotic resistance genes in livestock workers. While our investigation found no strong evidence for differences in the abundance or carriage of antibiotic resistance genes and virulence factors between dairy worker and community control gut metagenomes, we did observe patterns in the abundance of tetracycline resistance genes and the prevalence of cephamycin resistance genes that is consistent with previous work.
Collapse
Affiliation(s)
- Pauline Trinh
- Department of Environmental & Occupational Health Sciences, University of Washington
- Department of Biostatistics, University of Washington
| | - Marilyn C Roberts
- Department of Environmental & Occupational Health Sciences, University of Washington
| | - Peter M Rabinowitz
- Department of Environmental & Occupational Health Sciences, University of Washington
| | - Amy D Willis
- Department of Biostatistics, University of Washington
| |
Collapse
|
18
|
Duarte ASR, Marques AR, Andersen VD, Korsgaard HB, Mordhorst H, Møller FD, Petersen TN, Vigre H, Hald T, Aarestrup FM. Antimicrobial resistance monitoring in the Danish swine production by phenotypic methods and metagenomics from 1999 to 2018. Euro Surveill 2023; 28:2200678. [PMID: 37199989 PMCID: PMC10197494 DOI: 10.2807/1560-7917.es.2023.28.20.2200678] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023] Open
Abstract
BackgroundIn Denmark, antimicrobial resistance (AMR) in pigs has been monitored since 1995 by phenotypic approaches using the same indicator bacteria. Emerging methodologies, such as metagenomics, may allow novel surveillance ways.AimThis study aimed to assess the relevance of indicator bacteria (Escherichia coli and Enterococcus faecalis) for AMR surveillance in pigs, and the utility of metagenomics.MethodsWe collated existing data on AMR and antimicrobial use (AMU) from the Danish surveillance programme and performed metagenomics sequencing on caecal samples that had been collected/stored through the programme during 1999-2004 and 2015-2018. We compared phenotypic and metagenomics results regarding AMR, and the correlation of both with AMU.ResultsVia the relative abundance of AMR genes, metagenomics allowed to rank these genes as well as the AMRs they contributed to, by their level of occurrence. Across the two study periods, resistance to aminoglycosides, macrolides, tetracycline, and beta-lactams appeared prominent, while resistance to fosfomycin and quinolones appeared low. In 2015-2018 sulfonamide resistance shifted from a low occurrence category to an intermediate one. Resistance to glycopeptides consistently decreased during the entire study period. Outcomes of both phenotypic and metagenomics approaches appeared to positively correlate with AMU. Metagenomics further allowed to identify multiple time-lagged correlations between AMU and AMR, the most evident being that increased macrolide use in sow/piglets or fatteners led to increased macrolide resistance with a lag of 3-6 months.ConclusionWe validated the long-term usefulness of indicator bacteria and showed that metagenomics is a promising approach for AMR surveillance.
Collapse
Affiliation(s)
- Ana Sofia R Duarte
- Technical University of Denmark, National Food Institute, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Ana Rita Marques
- Technical University of Denmark, National Food Institute, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Vibe D Andersen
- Technical University of Denmark, National Food Institute, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Helle B Korsgaard
- Technical University of Denmark, National Food Institute, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Hanne Mordhorst
- Technical University of Denmark, National Food Institute, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Frederik D Møller
- Technical University of Denmark, National Food Institute, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Thomas N Petersen
- Technical University of Denmark, National Food Institute, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Håkan Vigre
- Technical University of Denmark, National Food Institute, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Tine Hald
- Technical University of Denmark, National Food Institute, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Frank M Aarestrup
- Technical University of Denmark, National Food Institute, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Despotovic M, de Nies L, Busi SB, Wilmes P. Reservoirs of antimicrobial resistance in the context of One Health. Curr Opin Microbiol 2023; 73:102291. [PMID: 36913905 DOI: 10.1016/j.mib.2023.102291] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
The emergence and spread of antimicrobial resistance (AMR) and resistant bacteria, are a global public health challenge. Through horizontal gene transfer, potential pathogens can acquire antimicrobial resistance genes (ARGs) that can subsequently be spread between human, animal, and environmental reservoirs. To understand the dissemination of ARGs and linked microbial taxa, it is necessary to map the resistome within different microbial reservoirs. By integrating knowledge on ARGs in the different reservoirs, the One Health approach is crucial to our understanding of the complex mechanisms and epidemiology of AMR. Here, we highlight the latest insights into the emergence and spread of AMR from the One Health perspective, providing a baseline of understanding for future scientific investigations into this constantly growing global health threat.
Collapse
Affiliation(s)
- Milena Despotovic
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Laura de Nies
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Susheel Bhanu Busi
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L-4367, Luxembourg.
| |
Collapse
|
20
|
Havelaar AH, Brhane M, Ahmed IA, Kedir J, Chen D, Deblais L, French N, Gebreyes WA, Hassen JY, Li X, Manary MJ, Mekuria Z, Ibrahim AM, Mummed B, Ojeda A, Rajashekara G, Roba KT, Saleem C, Singh N, Usmane IA, Yang Y, Yimer G, McKune S. Unravelling the reservoirs for colonisation of infants with Campylobacter spp. in rural Ethiopia: protocol for a longitudinal study during a global pandemic and political tensions. BMJ Open 2022; 12:e061311. [PMID: 36198455 PMCID: PMC9535169 DOI: 10.1136/bmjopen-2022-061311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Undernutrition is an underlying cause of mortality in children under five (CU5) years of age. Animal-source foods have been shown to decrease malnutrition in CU5. Livestock are important reservoirs for Campylobacter bacteria, which are recognised as risk factors for child malnutrition. Increasing livestock production may be beneficial for improving nutrition of children but these benefits may be negated by increased exposure to Campylobacter and research is needed to evaluate the complex pathways of Campylobacter exposure and infection applicable to low-income and middle-income countries. We aim to identify reservoirs of infection with Campylobacter spp. of infants in rural Eastern Ethiopia and evaluate interactions with child health (environmental enteric dysfunction and stunting) in the context of their sociodemographic environment. METHODS AND ANALYSIS This longitudinal study involves 115 infants who are followed from birth to 12 months of age and are selected randomly from 10 kebeles of Haramaya woreda, East Hararghe zone, Oromia region, Ethiopia. Questionnaire-based information is obtained on demographics, livelihoods, wealth, health, nutrition and women empowerment; animal ownership/management and diseases; and water, sanitation and hygiene. Faecal samples are collected from infants, mothers, siblings and livestock, drinking water and soil. These samples are analysed by a range of phenotypic and genotypic microbiological methods to characterise the genetic structure of the Campylobacter population in each of these reservoirs, which will support inference about the main sources of exposure for infants. ETHICS AND DISSEMINATION Ethical approval was obtained from the University of Florida Internal Review Board (IRB201903141), the Haramaya University Institutional Health Research Ethics Committee (COHMS/1010/3796/20) and the Ethiopia National Research Ethics Review Committee (SM/14.1/1059/20). Written informed consent is obtained from all participating households. Research findings will be disseminated to stakeholders through conferences and peer-reviewed journals and through the Feed the Future Innovation Lab for Livestock Systems.
Collapse
Affiliation(s)
| | | | | | | | - Dehao Chen
- University of Florida, Gainesville, Florida, USA
| | | | - Nigel French
- Massey University, Palmerston North, New Zealand
| | - Wondwossen A Gebreyes
- The Ohio State University, Columbus, Ohio, USA
- Ohio State Global One Health LLC, Addis Ababa, Ethiopia
| | | | - Xiaolong Li
- University of Florida, Gainesville, Florida, USA
| | - Mark J Manary
- Washington University in St Louis, St Louis, Missouri, USA
| | - Zelealem Mekuria
- The Ohio State University, Columbus, Ohio, USA
- Ohio State Global One Health LLC, Addis Ababa, Ethiopia
| | | | | | - Amanda Ojeda
- University of Florida, Gainesville, Florida, USA
| | | | | | - Cyrus Saleem
- University of Florida, Gainesville, Florida, USA
| | - Nitya Singh
- University of Florida, Gainesville, Florida, USA
| | | | - Yang Yang
- University of Florida, Gainesville, Florida, USA
| | - Getnet Yimer
- Ohio State Global One Health LLC, Addis Ababa, Ethiopia
| | - Sarah McKune
- University of Florida, Gainesville, Florida, USA
| |
Collapse
|
21
|
Teseo S, Otani S, Brinch C, Leroy S, Ruiz P, Desvaux M, Forano E, Aarestrup FM, Sapountzis P. A global phylogenomic and metabolic reconstruction of the large intestine bacterial community of domesticated cattle. MICROBIOME 2022; 10:155. [PMID: 36155629 PMCID: PMC9511753 DOI: 10.1186/s40168-022-01357-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/24/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND The large intestine is a colonization site of beneficial microbes complementing the nutrition of cattle but also of zoonotic and animal pathogens. Here, we present the first global gene catalog of cattle fecal microbiomes, a proxy of the large intestine microbiomes, from 436 metagenomes from six countries. RESULTS Phylogenomics suggested that the reconstructed genomes and their close relatives form distinct branches and produced clustering patterns that were reminiscent of the metagenomics sample origin. Bacterial taxa had distinct metabolic profiles, and complete metabolic pathways were mainly linked to carbohydrates and amino acids metabolism. Dietary changes affected the community composition, diversity, and potential virulence. However, predicted enzymes, which were part of complete metabolic pathways, remained present, albeit encoded by different microbes. CONCLUSIONS Our findings provide a global insight into the phylogenetic relationships and the metabolic potential of a rich yet understudied bacterial community and suggest that it provides valuable services to the host. However, we tentatively infer that members of that community are not irreplaceable, because similar to previous findings, symbionts of complex bacterial communities of mammals are expendable if there are substitutes that can perform the same task. Video Abstract.
Collapse
Affiliation(s)
- S Teseo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - S Otani
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - C Brinch
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - S Leroy
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - P Ruiz
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - M Desvaux
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - E Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - F M Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - P Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France.
| |
Collapse
|
22
|
Janes VA, Matamoros S, Munk P, Clausen PTLC, Koekkoek SM, Koster LAM, Jakobs ME, de Wever B, Visser CE, Aarestrup FM, Lund O, de Jong MD, Bossuyt PMM, Mende DR, Schultsz C. Metagenomic DNA sequencing for semi-quantitative pathogen detection from urine: a prospective, laboratory-based, proof-of-concept study. THE LANCET MICROBE 2022; 3:e588-e597. [DOI: 10.1016/s2666-5247(22)00088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/11/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022] Open
|
23
|
Wallenborn JT, Vonaesch P. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac010. [PMID: 35419206 PMCID: PMC8996373 DOI: 10.1093/gastro/goac010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
The intestinal microbiota plays a crucial role in health and changes in its composition are linked with major global human diseases. Fully understanding what shapes the human intestinal microbiota composition and knowing ways of modulating the composition are critical for promotion of life-course health, combating diseases, and reducing global health disparities. We aim to provide a foundation for understanding what shapes the human intestinal microbiota on an individual and global scale, and how interventions could utilize this information to promote life-course health and reduce global health disparities. We briefly review experiences within the first 1,000 days of life and how long-term exposures to environmental elements or geographic specific cultures have lasting impacts on the intestinal microbiota. We also discuss major public health threats linked to the intestinal microbiota, including antimicrobial resistance and disappearing microbial diversity due to globalization. In order to promote global health, we argue that the interplay of the larger ecosystem with intestinal microbiota research should be utilized for future research and urge for global efforts to conserve microbial diversity.
Collapse
Affiliation(s)
- Jordyn T Wallenborn
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore Campus UNIL-Sorge, Lausanne, Switzerland
- Corresponding author. Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland. Tel: +41-21-692-5600;
| |
Collapse
|
24
|
Yang D, Heederik DJJ, Scherpenisse P, Van Gompel L, Luiken REC, Wadepohl K, Skarżyńska M, Van Heijnsbergen E, Wouters IM, Greve GD, Jongerius-Gortemaker BGM, Tersteeg-Zijderveld M, Portengen L, Juraschek K, Fischer J, Zając M, Wasyl D, Wagenaar JA, Mevius DJ, Smit LAM, Schmitt H. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1883-1893. [PMID: 35466367 PMCID: PMC9244224 DOI: 10.1093/jac/dkac133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background Real-time quantitative PCR (qPCR) is an affordable method to quantify antimicrobial resistance gene (ARG) targets, allowing comparisons of ARG abundance along animal production chains. Objectives We present a comparison of ARG abundance across various animal species, production environments and humans in Europe. AMR variation sources were quantified. The correlation of ARG abundance between qPCR data and previously published metagenomic data was assessed. Methods A cross-sectional study was conducted in nine European countries, comprising 9572 samples. qPCR was used to quantify abundance of ARGs [aph(3′)-III, erm(B), sul2, tet(W)] and 16S rRNA. Variance component analysis was conducted to explore AMR variation sources. Spearman’s rank correlation of ARG abundance values was evaluated between pooled qPCR data and earlier published pooled metagenomic data. Results ARG abundance varied strongly among animal species, environments and humans. This variation was dominated by between-farm variation (pigs) or within-farm variation (broilers, veal calves and turkeys). A decrease in ARG abundance along pig and broiler production chains (‘farm to fork’) was observed. ARG abundance was higher in farmers than in slaughterhouse workers, and lowest in control subjects. ARG abundance showed a high correlation (Spearman’s ρ > 0.7) between qPCR data and metagenomic data of pooled samples. Conclusions qPCR analysis is a valuable tool to assess ARG abundance in a large collection of livestock-associated samples. The between-country and between-farm variation of ARG abundance could partially be explained by antimicrobial use and farm biosecurity levels. ARG abundance in human faeces was related to livestock antimicrobial resistance exposure.
Collapse
Affiliation(s)
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter Scherpenisse
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liese Van Gompel
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roosmarijn E C Luiken
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Katharina Wadepohl
- Außenstelle für Epidemiologie, Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute, Pulawy, Poland
| | - Eri Van Heijnsbergen
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Gerdit D Greve
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Monique Tersteeg-Zijderveld
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Katharina Juraschek
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute, Pulawy, Poland
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute, Pulawy, Poland
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Dik J Mevius
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
25
|
Sapountzis P, Teseo S, Otani S, Aarestrup FM, Forano E, Suen G, Tsiamis G, Haley B, Van Kessel JA, Huws SA. FI: The Fecobiome Initiative. Foodborne Pathog Dis 2021; 19:441-447. [PMID: 34936494 PMCID: PMC9297326 DOI: 10.1089/fpd.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Animal husbandry has been key to the sustainability of human societies for millennia. Livestock animals, such as cattle, convert plants to protein biomass due to a compartmentalized gastrointestinal tract (GIT) and the complementary contributions of a diverse GIT microbiota, thereby providing humans with meat and dairy products. Research on cattle gut microbial symbionts has mainly focused on the rumen (which is the primary fermentation compartment) and there is a paucity of functional insight on the intestinal (distal end) microbiota, where most foodborne zoonotic bacteria reside. Here, we present the Fecobiome Initiative (or FI), an international effort that aims at facilitating collaboration on research projects related to the intestinal microbiota, disseminating research results, and increasing public availability of resources. By doing so, the FI can help mitigate foodborne and animal pathogens that threaten livestock and human health, reduce the emergence and spread of antimicrobial resistance in cattle and their proximate environment, and potentially improve the welfare and nutrition of animals. We invite all researchers interested in this type of research to join the FI through our website: www.fecobiome.com
Collapse
Affiliation(s)
| | - Serafino Teseo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Saria Otani
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Garett Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - George Tsiamis
- Lab of Systems Microbiology and Applied Genomics, University of Patras, Agrinio, Greece
| | - Bradd Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Jo Ann Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast (QUB), Belfast, United Kingdom
| |
Collapse
|
26
|
van Harten RM, Veldhuizen EJA, Haagsman HP, Scheenstra MR. The cathelicidin CATH-2 efficiently neutralizes LPS- and E. coli-induced activation of porcine bone marrow derived macrophages. Vet Immunol Immunopathol 2021; 244:110369. [PMID: 34954638 DOI: 10.1016/j.vetimm.2021.110369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 01/13/2023]
Abstract
Infectious diseases in pigs cause monetary loss to farmers and pose a zoonotic risk. Therefore, it is important to obtain more porcine specific immunological knowledge as a measure to protect against infectious diseases, for example by exploring immunomodulators that are usable as vaccine adjuvants. Cathelicidins are a class of host defence peptides (HDPs) able to directly kill microbes as well as exert a diverse range of effects on the immune system. The peptides have shown promise as immunomodulatory peptides in many applications, including vaccines. However, it is currently unknown what the precise effect of these peptides is on porcine immune cells and whether peptides of other species might also have a strong immunomodulatory effect on porcine macrophages. Mononuclear bone marrow cells of pigs, aged 5-6 months, were cultured into M1 or M2 macrophages and stimulated with LPS or whole bacteria in the presence of host defence peptides (HDPs). CATH-2 and LL-37 strongly inhibited LPS-induced activation of M1 macrophages, the inhibition of LPS-induced activation of M2 macrophages by HDPs was milder, showing that the peptides have selective effects on different cell types. Upon stimulation with whole bacteria, only CATH-2 could effectively inhibit macrophage activation, showing the potent anti-inflammatory potential of this peptide. These results show that porcine peptides are not necessarily the most active in a porcine system, and that CATH-2 is effective in a porcine system as an anti-inflammatory immune modulator, which can be used, for example, in inactivated pathogen vaccines.
Collapse
Affiliation(s)
- Roel M van Harten
- Division of Molecular Host Defence, Dept. of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Dept. of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Division of Immunology, Dept. of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | - Henk P Haagsman
- Division of Molecular Host Defence, Dept. of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Maaike R Scheenstra
- Division of Molecular Host Defence, Dept. of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| |
Collapse
|
27
|
Horie M, Yang D, Joosten P, Munk P, Wadepohl K, Chauvin C, Moyano G, Skarżyńska M, Dewulf J, Aarestrup FM, Blaha T, Sanders P, Gonzalez-Zorn B, Wasyl D, Wagenaar JA, Heederik D, Mevius D, Schmitt H, Smit LAM, Van Gompel L. Risk Factors for Antimicrobial Resistance in Turkey Farms: A Cross-Sectional Study in Three European Countries. Antibiotics (Basel) 2021; 10:820. [PMID: 34356741 PMCID: PMC8300668 DOI: 10.3390/antibiotics10070820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Food-producing animals are an important reservoir and potential source of transmission of antimicrobial resistance (AMR) to humans. However, research on AMR in turkey farms is limited. This study aimed to identify risk factors for AMR in turkey farms in three European countries (Germany, France, and Spain). Between 2014 and 2016, faecal samples, antimicrobial usage (AMU), and biosecurity information were collected from 60 farms. The level of AMR in faecal samples was quantified in three ways: By measuring the abundance of AMR genes through (i) shotgun metagenomics sequencing (n = 60), (ii) quantitative real-time polymerase chain reaction (qPCR) targeting ermB, tetW, sul2, and aph3'-III; (n = 304), and (iii) by identifying the phenotypic prevalence of AMR in Escherichia coli isolates by minimum inhibitory concentrations (MIC) (n = 600). The association between AMU or biosecurity and AMR was explored. Significant positive associations were detected between AMU and both genotypic and phenotypic AMR for specific antimicrobial classes. Beta-lactam and colistin resistance (metagenomics sequencing); ampicillin and ciprofloxacin resistance (MIC) were associated with AMU. However, no robust AMU-AMR association was detected by analyzing qPCR targets. In addition, no evidence was found that lower biosecurity increases AMR abundance. Using multiple complementary AMR detection methods added insights into AMU-AMR associations at turkey farms.
Collapse
Affiliation(s)
- Mayu Horie
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Dongsheng Yang
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Philip Joosten
- Veterinary Epidemiology Unit, Department of Obstetrics, Reproduction and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (P.J.); (J.D.)
| | - Patrick Munk
- Research Group for Genomic Epidemiology, The National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark; (P.M.); (F.M.A.)
| | - Katharina Wadepohl
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Büscheler Straße 9, 49456 Bakum, Germany; (K.W.); (T.B.)
| | - Claire Chauvin
- Epidemiology, Health and Welfare Unit, The French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (C.C.); (P.S.)
| | - Gabriel Moyano
- Antimicrobial Resistance Unit (ARU), Animal Health Departement, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (G.M.); (B.G.-Z.)
| | - Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute (PIWet), Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.S.); (D.W.)
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Department of Obstetrics, Reproduction and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (P.J.); (J.D.)
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, The National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark; (P.M.); (F.M.A.)
| | - Thomas Blaha
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Büscheler Straße 9, 49456 Bakum, Germany; (K.W.); (T.B.)
| | - Pascal Sanders
- Epidemiology, Health and Welfare Unit, The French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (C.C.); (P.S.)
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Animal Health Departement, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (G.M.); (B.G.-Z.)
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute (PIWet), Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.S.); (D.W.)
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (J.A.W.); (D.M.)
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Dik Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (J.A.W.); (D.M.)
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Liese Van Gompel
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| |
Collapse
|