1
|
Lei H, Liu J, Deng J, Zou P, Zou Z, Li Z, Li H, Luo L, Tan Z. Behavior, hormone, and gut microbiota change by YYNS intervention in an OVX mouse model. Front Cell Infect Microbiol 2024; 14:1445741. [PMID: 39575307 PMCID: PMC11580528 DOI: 10.3389/fcimb.2024.1445741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Object Perimenopause depression disorder (PDD) is a very common problem in clinical practice and is characterized by depression and autonomic nervous symptoms, including hot flashes, palpitation, and night sweating. In addition, the comorbidity of menopause depression has long been an integral component of the estradiol (E2) shortage. Previous studies have suggested that the mechanisms underlying this comorbidity involved overlap of endocrine and cerebellar networks. Emerging evidence has shown that the endocrine-brain-gut-microbiota axis plays a key role in the regulation of affective disorders. Yangyin-ningshen formula (YYNS) is a traditional Chinese decoction tailored by Yijintang for menopausal depression intervention. Thus, we hypothesized that the YYNS may be involved in the menopause depression alleviation through the endocrine-brain-gut-microbiota axis. Methods To verify this, we constructed a bilateral ovariectomy (OVX) mouse model to simulate menopausal-related depression. Subsequently, behavioral tests including the open field test (OFT) and the forced swimming test (FST) were conducted to examine the depression state post-OVX. With YYNS or E2 intervention, enzyme-linked immunosorbent assay (ELISA) was used to determine the serum sex hormones level. 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) were used to analyze the microbiome of the colon samples collected from mice in the sham surgery group (CSH), the OVX model group (CMD), the OVX with E2 hormone intervention group (CHM), and the OVX with YYNS intervention group (CYYNS). One week after OVX, CMD, CHM, and CYYNS showed depression in OFT, FST. Three weeks post-OVX, CHM and CYYNS showed a notable relief of depression; CMD shaped the OTUs shrinkage; and OTUs were raised in the sham, CHM, and CYYNS group. The CMD group showed that the abundance of Actinobiota decreased but that of Bacteriodia increased. The relative abundance of the genus varied in each group. Moreover, functional correlation of changes in sex hormone and gut microbes between different groups showed that the PRL level was negatively correlated with Odoribacter. T level was positively correlated with Lachnospiraceae NK4A136 group and Odoribacter abundance (p < 0.05). Conclusion Our results not only offer novel insights into the sex hormones and depression with OVX mice but also build an important basis for E2 or YYNS therapeutic efficacy on PDD, which provide for future research on this etiology through the endocrine-brain-gut-microbiota network.
Collapse
Affiliation(s)
- Huajuan Lei
- Department of Anesthesiology, the First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Chinese Medicine, ChangSha Medical University, Changsha, China
| | - Jian Liu
- Department of Innovation Experiments Center, the First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Juan Deng
- Department of Anesthesiology, Changsha Hospital Affiliated with Hunan University of Chinese Medicine, Changsha, China
| | - Pan Zou
- Department of Radiology, the First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zixiang Zou
- Department of Gynaecology, the First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ziou Li
- Department of Radiology, Changsha Hospital Affiliated with Hunan University of Chinese Medicine, Changsha, China
| | - Honghui Li
- Department of Orthopedics, the First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lin Luo
- Department of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- Department of Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Liu D, Zhou J, Fu Q, Zhao Y, Wang P, Zheng Y, Cui M, Zhang H. A Bioinformatic Analysis of Gut Microbiota Related with Immune Cell Infiltration in Colorectal Cancer. Cancer Invest 2024; 42:491-499. [PMID: 38905519 DOI: 10.1080/07357907.2024.2368233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE The composition of microbiota which correlates with infiltrating immune cells and clinical signatures is not clarified in CRC. METHODS We applied 4 kinds of bioinformatic tools GSVA (version: 1.42.0), ESTIMATE (version: 1.0.13), CIBERSORT (version: 2.0), and immune-related genes. RESULTS We found that a total of 8 types of microbiotas appeared in the three immune correlation analyses. Among these microbiotas, significant enrichments in relative abundances associated with immune cell infiltration can be found for the dominant phyla Proteobacteria, Firmicutes, and Actinobacteria. Moreover, there existed correlations between some of the 8 microbiotas and clinical-related indicators. CONCLUSION We identified some novel microbiotas involved in immune regulation in CRC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jiang Zhou
- Department of Medicine, Tianjin Georigin Biology Co., Ltd, Tianjin, China
| | - Qiong Fu
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yuanzhu Zhao
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Panpan Wang
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yang Zheng
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Meihong Cui
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Heng Zhang
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
3
|
Zhou X, Liang J, Xiong X, Yin Y. Amino acids in piglet diarrhea: Effects, mechanisms and insights. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:267-274. [PMID: 38362520 PMCID: PMC10867606 DOI: 10.1016/j.aninu.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 02/17/2024]
Abstract
Piglet diarrhea is among one of the most serious health problems faced by the pig industry, resulting in significant economic losses. Diarrheal disease in piglets has a multifactorial etiology that is affected by physiology, environment, and management strategy. Diarrhea is the most apparent symptom of intestinal dysfunction. As a key class of essential nutrients in the piglet diet, amino acids confer a variety of beneficial effects on piglets in addition to being used as a substrate for protein synthesis, including maintaining appropriate intestinal integrity, permeability and epithelial renewal, and alleviating morphological damage and inflammatory and oxidative stress. Thus, provision of appropriate levels of amino acids could alleviate piglet diarrhea. Most amino acid effects are mediated by metabolites, gut microbes, and related signaling pathways. In this review, we summarize the current understanding of dietary amino acid effects on gut health and diarrhea incidence in piglets, and reveal the mechanisms involved. We also provide ideas for using amino acid blends and emphasize the importance of amino acid balance in the diet to prevent diarrhea in piglets.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Xiong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zhang CY, Peng XX, Wu Y, Peng MJ, Liu TH, Tan ZJ. Intestinal mucosal microbiota mediate amino acid metabolism involved in the gastrointestinal adaptability to cold and humid environmental stress in mice. Microb Cell Fact 2024; 23:33. [PMID: 38267983 PMCID: PMC10809741 DOI: 10.1186/s12934-024-02307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
Growing evidence has demonstrated that cold and humid environmental stress triggers gastrointestinal (GI) disorders. In this study, we explored the effects of intestinal microbiota homeostasis on the intestinal mucus barrier and GI disorders by cold and humid environmental stress. Moreover, the inner link between the intestinal mucosal microbiota and metabolites in mice with cold and humid environmental stress was interpreted by integrative analysis of PacBio HiFi sequencing microbial genomics and targeted metabolomics. In the current study, we found (1) after the cold and wet cold and humid environmental stress intervened in the intestinal microbiota disorder and homeostasis mice respectively, the bacterial culturing and fluorescein diacetate (FDA) microbial activity detection of intestinal microbiota including feces, intestinal contents, and intestinal mucosa suggested that the cold and humid environmental stress decreased the colony of culturable bacteria and microbial activity, in which intestinal microbiota disorder aggravated the injury of the intestinal mucus barrier and the GI symptoms related to cold and humid environmental stress; (2) the serum amino acid transferases such as glutamate pyruvic transa (GPT), and glutamic oxaloacetic transaminase (GOT) in cold and humid environmental stressed mice increased significantly, indicating that the intestinal microbiota adapted to cold and humid environmental stress by regulating the host's amino acid metabolism; (3) the integrative analysis of multi-omics illustrated a prediction model based on the microbiota Lactobacillus reuteri abundance and host amino acid level that can predict intestinal mucoprotein Muc2 with an adjusted R2 of 75.0%. In conclusion, the cold and humid environmental stress regulates the neurotransmitter amino acids metabolic function both in intestinal mucosal microbiota and host serum by adjusting the composition of the dominant bacterial population Lactobacillus reuteri, which contributes to the intestinal mucus barrier injury and GI disorders caused by cold and humid environmental stress.
Collapse
Affiliation(s)
- Chen-Yang Zhang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin-Xin Peng
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yi Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Mai-Jiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Tiao-Hao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Zhou-Jin Tan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
5
|
Pan Z, Chen Y, Zhou M, McAllister TA, Mcneilly TN, Guan LL. Linking active rectal mucosa-attached microbiota to host immunity reveals its role in host-pathogenic STEC O157 interactions. THE ISME JOURNAL 2024; 18:wrae127. [PMID: 38984791 PMCID: PMC11304501 DOI: 10.1093/ismejo/wrae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
The rectal-anal junction (RAJ) is the major colonization site of Shiga toxin-producing Escherichia coli (STEC) O157 in beef cattle, leading to transmission of this foodborne pathogen from farms to food chains. To date, there is limited understanding regarding whether the mucosa-attached microbiome has a profound impact on host-STEC interactions. In this study, the active RAJ mucosa-attached microbiota and its potential role in host immunity-STEC commensal interactions were investigated using RAJ mucosal biopsies collected from calves orally challenged with two STEC O157 strains with or without functional stx2a (stx2a+ or stx2a-). The results revealed that shifts of microbial diversity, topology, and assembly patterns were subjected to stx2a production post-challenge and Paeniclostridium and Gallibacterium were the keystone taxa for both microbial interactions and assembly. Additional mucosal transcriptome profiling showed stx2a-dependent host immune responses (i.e. B- and T-cell signaling and antigen processing and presentation) post-challenge. Further integrated analysis revealed that mucosa-attached beneficial microbes (i.e. Provotella, Faecalibacterium, and Dorea) interacted with host immune genes pre-challenge to maintain host homeostasis; however, opportunistic pathogenic microbes (i.e. Paeniclostridium) could interact with host immune genes after the STEC O157 colonization and interactions were stx2a-dependent. Furthermore, predicted bacterial functions involved in pathogen (O157 and Paeniclostridium) colonization and metabolism were related to host immunity. These findings suggest that during pathogen colonization, host-microbe interactions could shift from beneficial to opportunistic pathogenic bacteria driven and be dependent on the production of particular virulence factors, highlighting the potential regulatory role of mucosa-attached microbiota in affecting pathogen-commensal host interactions in calves with STEC O157 infection.
Collapse
Affiliation(s)
- Zhe Pan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Tom N Mcneilly
- Moredun Research Institute, Penicuik EH26 0PZ, United Kingdom
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Qiao B, Liu J, Peng X, Cai Y, Peng M, Li X, Tan Z, Deng N. Association of Short-Chain Fatty Acids with Gut Microbiota and Lipid Metabolism in Mice with Diarrhea Induced by High-Fat Diet in a Fatigued State. Mol Nutr Food Res 2023; 67:e2300452. [PMID: 37622564 DOI: 10.1002/mnfr.202300452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/26/2023] [Indexed: 08/26/2023]
Abstract
SCOPE Preliminary research finds that a high-fat diet (HFD) in a fatigued state triggers diarrhea, but the exact mechanism has not been clarified. To address concerns about the pathogenesis of diarrhea, the study evaluates the composition and metabolomics of the gut microbiota. METHODS AND RESULTS The study uses the multiple platform apparatus device to induce fatigue in mice, combined with intragastric administration of lard-caused diarrhea. Subsequently, the characteristics and interaction relationship of gut microbiota, short-chain fatty acids (SCFAs), inflammatory biomarkers, brain-gut peptides, and lipid metabolism are analyzed at the end of the experiment. HFD in a fatigued state results in a significant increase in interleukin-17, interleukin-6, cholecystokinin, somatostatin, and malondialdehyde content in mice (p < 0.05), along with a substantial decrease in high-density lipoprotein (p < 0.05). Additionally, an HFD in a fatigued state causes changes in the structure and composition of the gut microbiota, with Lactobacillus murinus as its characteristic bacteria, and reduces the production of SCFAs. CONCLUSIONS An HFD in a fatigued state triggers diarrhea, possibly associated with gut content microbiota dysbiosis, SCFAs deprivation, increased inflammation, and dysregulated lipid metabolism.
Collapse
Affiliation(s)
- Bo Qiao
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jing Liu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Ying Cai
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Maijiao Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiaoya Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Na Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
7
|
Liu J, Wu Y, Cai Y, Tan Z, Deng N. Long-term consumption of different doses of Grifola frondosa affects immunity and metabolism: correlation with intestinal mucosal microbiota and blood lipids. 3 Biotech 2023; 13:189. [PMID: 37193332 PMCID: PMC10183060 DOI: 10.1007/s13205-023-03617-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Grifola frondosa (GF) is an edible mushroom with hypoglycemic and hypolipidemic effects. In this study, the specific pathogen-free male mice were randomized into the normal (NM), low-dose GF (LGF), medium-dose GF (MGF), and high-dose GF (HGF) groups. The LGF, MGF, and HGF groups were fed with 1.425 g/(kg d), 2.85 g/(kg d), and 5.735 g/(kg d) of GF solution for 8 weeks. After feeding with GF solution, compared with the NM group, the thymus index was significantly increased in the LGF group, and TC, TG, and LDL of mice were significantly increased in the HGF group, while HDL was significantly decreased. Compared with the NM group, the uncultured Bacteroidales bacterium, Ligilactobacillus increased in the LGF group, and Candidatus Arthromitus increased in the MGF group. The characteristic bacteria of the HGF group included Christensenellaceae R7, unclassified Clostridia UCG 014, unclassified Eubacteria coprostanoligenes, and Prevotellaceae Ga6A1. Among them, Ligilactobacillus showed a negative correlation with HDL. Unclassified Eubacterium coprostanoligenes group and Ligilactobacillus showed a positive correlation with TG. In summary, our experiments evidenced that GF improves lipid metabolism disorders by regulating the intestinal microbiota, providing a new pathway for hypolipidemic using GF dietary.
Collapse
Affiliation(s)
- Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
| |
Collapse
|
8
|
Liang J, Cai W, Xu Z, Zhou G, Li J, Xiang Z. A Fine-Grained Image Classification Approach for Dog Feces Using MC-SCMNet under Complex Backgrounds. Animals (Basel) 2023; 13:ani13101660. [PMID: 37238089 DOI: 10.3390/ani13101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In a natural environment, factors such as weathering and sun exposure will degrade the characteristics of dog feces; disturbances such as decaying wood and dirt are likely to make false detections; the recognition distinctions between different kinds of feces are slight. To address these issues, this paper proposes a fine-grained image classification approach for dog feces using MC-SCMNet under complex backgrounds. First, a multi-scale attention down-sampling module (MADM) is proposed. It carefully retrieves tiny feces feature information. Second, a coordinate location attention mechanism (CLAM) is proposed. It inhibits the entry of disturbance information into the network's feature layer. Then, an SCM-Block containing MADM and CLAM is proposed. We utilized the block to construct a new backbone network to increase the efficiency of fecal feature fusion in dogs. Throughout the network, we decrease the number of parameters using depthwise separable convolution (DSC). In conclusion, MC-SCMNet outperforms all other models in terms of accuracy. On our self-built DFML dataset, it achieves an average identification accuracy of 88.27% and an F1 value of 88.91%. The results of the experiments demonstrate that it is more appropriate for dog fecal identification and maintains stable results even in complex backgrounds, which may be applied to dog gastrointestinal health checks.
Collapse
Affiliation(s)
- Jinyu Liang
- College of Computer & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weiwei Cai
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
| | - Zhuonong Xu
- College of Computer & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guoxiong Zhou
- College of Computer & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Johnny Li
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, USA
| | - Zuofu Xiang
- Institute of Evolutionary Ecology and Conservation Biology, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
9
|
Zhu J, Li X, Deng N, Zhou K, Qiao B, Li D, Tan Z. Intestinal mucosal flora of the intestine-kidney remediation process of diarrhea with deficiency kidney-yang syndrome in Sishen Pill treatment: Association with interactions between Lactobacillus johnsonii, Ca 2+-Mg 2+-ATP-ase, and Na +-K +-ATP-ase. Heliyon 2023; 9:e16166. [PMID: 37215812 PMCID: PMC10199185 DOI: 10.1016/j.heliyon.2023.e16166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
This study aims to investigate the effect of Sishen Pill on the characteristics of gut mucosal microbiota in diarrhea mice with deficiency kidney-yang syndrome. Fifteen Kunming male mice were randomly divided into Normal control group (C), Model self-healing group (X) and Sishen Pill group (S), with 5 mice/cages. Hematoxylin eosin (HE) staining was used to observe the kidney structure. Serum Na+-K+-ATP-ase and Ca2+-Mg2+-ATP-ase were detected by enzyme-linked immunosorbent assay (ELISA), Analysis of intestinal mucosal flora using third-generation high-throughput sequencing. The relative abundance results in the three groups revealed that the dominant bacterial genera: Lactobacillus, Muribaculum and Candidatus-Arthromitus; bacterial species: Lactobacillus johnsonii, Lactobacillus reuteri, Lactobacillus murinus, and Lactobacillus intestinalis, and differences in the presence of major microbiota between the X and S groups. A positive correlation between Lactobacillus johnsonii and both Ca2+-Mg2+-ATP-ase and Na+-K+-ATP-ase was found via correlation analysis. Sishen Pill also changed the manufacture of other secondary metabolites, as well as the metabolism of carbohydrates, glycans, energy, lipids, and other amino acids, and xenobiotics biodegradation and metabolism. In conclusion, Sishen Pill improved kidney structure, energy metabolism and the diversity and structure of intestinal mucosal flora. In addition, Lactobacillus johnsonii may be a characteristic species of Sishen Pill in treating diarrhea with kidney-yang deficiency syndrome.
Collapse
Affiliation(s)
- Jiayuan Zhu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Xiaoya Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Na Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Kang Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Bo Qiao
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Dandan Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| | - Zhoujin Tan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, 410208, China
| |
Collapse
|
10
|
Yi X, Zhou K, Deng N, Cai Y, Peng X, Tan Z. Simo decoction curing spleen deficiency constipation was associated with brain-bacteria-gut axis by intestinal mucosal microbiota. Front Microbiol 2023; 14:1090302. [PMID: 36846756 PMCID: PMC9947565 DOI: 10.3389/fmicb.2023.1090302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Background Simo decoction (SMD) is a traditional prescription for treating gastrointestinal diseases. More and more evidences prove that SMD can treat constipation by regulating intestinal microbiota and related oxidative stress indicators, but the specific mechanism is still unclear. Methods A network pharmacological analysis was used to predict the medicinal substances and potential targets of SMD to alleviate constipation. Then, 15 male mice were randomly divided into normal group (MN group), natural recovery group (MR group), and SMD treatment group (MT group). Constipation model mice were constructed by gavage of Folium sennae decoction and control of diet and drinking water, and SMD was used for intervention after successful modeling. The levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal peptide (VIP), superoxide dismutase (SOD), malondialdehyde (MDA), and fecal microbial activities were measured, and the intestinal mucosal microbiota was sequenced. Result Network pharmacology analysis showed that a total of 24 potential active components were obtained from SMD, and 226 target proteins were obtained after conversion. Meanwhile, we obtained 1,273 and 424 disease-related targets in the GeneCards database and the DisGeNET database, respectively. After combination and deduplication, the disease targets shared 101 targets with the potential active components of SMD. When the mice were intervened with SMD, the 5-HT, VIP, MDA, SOD content, and microbial activity in MT group were close to MN group, and Chao 1 and ACE in MT group were significantly higher than that in MR group. In the Linear discriminant analysis Effect Size (LEfSe) analysis, the abundance of beneficial bacteria such as Bacteroides, Faecalibacterium, Alistipes, Subdoligranulum, Lactiplantibacillus, and Phascolarctobacterium in MT group increased. At the same time, there were some associations between microbiota and brain-gut peptides and oxidative stress indicators. Conclusion SMD can promote intestinal health and relieve constipation through brain-bacteria-gut axis associating with intestinal mucosal microbiota and alleviate oxidative stress.
Collapse
Affiliation(s)
- Xin Yi
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Kang Zhou
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Cai
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinxin Peng
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China,The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China,*Correspondence: Xinxin Peng, ✉
| | - Zhoujin Tan
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China,Zhoujin Tan, ✉
| |
Collapse
|
11
|
Zhang Y, Cheng L, Liu Y, Zhan S, Wu Z, Luo S, Zhang X. Dietary flavonoids: a novel strategy for the amelioration of cognitive impairment through intestinal microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:488-495. [PMID: 35892267 DOI: 10.1002/jsfa.12151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The chances of people suffering from cognitive impairments increase gradually with age. Diet and lifestyle are closely related to the occurrence and development of cognitive function. Dietary flavonoid supplementation has been shown to be one of the protective factors against cognitive decline. Flavonoids belong to a class of polyphenols that have been proposed for the treatment of cognitive decline. Recent evidence has shown that intestinal flora in the human body can interact with flavonoids. Intestinal microbiota can modify the chemical structure of flavonoids, producing new metabolites, the pharmacological activities of which may be different from those of the parent; meanwhile, flavonoids and their metabolites can, in turn, regulate the composition and structure of intestinal flora. Notably, intestinal flora affect host nervous system activity through the gut-brain axis, ultimately causing changes in cognitive function. This review therefore summarizes the interaction of dietary flavonoids and intestinal flora, and their protective effect against cognitive decline through the gut-brain axis, indicating that dietary flavonoids may ameliorate cognitive impairment through their interaction with intestinal microbiota. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Songmei Luo
- Department of Pharmacy, Lishui Central Hospital, Lishui, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
12
|
Liu J, Liu Y, Li X. Effects of intestinal flora on polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1151723. [PMID: 36967808 PMCID: PMC10036050 DOI: 10.3389/fendo.2023.1151723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age. Its clinical characteristics are mainly oligo-ovulation or anovulation, hyperandrogenemia (HA) and insulin resistance (IR). PCOS is considered to be one of the main causes of infertility in women of childbearing age, and its pathogenesis is still unclear. Intestinal flora, known as the "second genome" of human beings, is closely related to metabolic diseases, immune diseases and infectious diseases. At the same time, mounting evidence suggests that intestinal flora can regulate insulin synthesis and secretion, affect androgen metabolism and follicular development, and is involved in the occurrence of chronic inflammation and obesity. The imbalance of intestinal flora is caused by the abnormal interaction between intestinal flora and host cells caused by the change of intestinal microbial diversity, which is related to the occurrence and development of PCOS. The adjustment of intestinal flora may be a potential direction for the treatment of PCOS.
Collapse
Affiliation(s)
- Jiayue Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- College of Pharmacy, Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Ying Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- College of Pharmacy, Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiaoliang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- College of Pharmacy, Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, Heilongjiang, China
- *Correspondence: Xiaoliang Li,
| |
Collapse
|
13
|
Ping Y, Gao Q, Li C, Wang Y, Wang Y, Li S, Qiu M, Zhang L, Tu A, Tian Y, Zhao H. Construction of microneedle of Atractylodes macrocephala Rhizoma aqueous extract and effect on mammary gland hyperplasia based on intestinal flora. Front Endocrinol (Lausanne) 2023; 14:1158318. [PMID: 36926033 PMCID: PMC10011648 DOI: 10.3389/fendo.2023.1158318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND A microneedle patch loaded with Atractylodes macrocephala Rhizoma water extract was prepared for the treatment of mammary gland hyperplasia. To explore the relationship between Mammary gland hyperplasia and intestinal flora. MATERIALS AND METHODS Preparation of the microneedle patch by micromolding method, the prescription of the microneedle was optimized by the Box-Behnken Design response surface test, and the micro-morphology, penetration, toughness, and brittleness were investigated. In vitro release of drug-loaded microneedles was measured by diffusion cell method. The rat model of mammary gland hyperplasia was prepared by the combination of estradiol benzoate-progesterone, and the microneedle patch of Atractylodes macrocephala Rhizoma aqueous extract was used for intervention treatment. The change of levels in E2, P, and PRL in rat serum was determined. The intestinal contents of rats were collected and the changes in intestinal flora in MGH rats were analyzed by 16s rRNA high-throughput sequencing. RESULTS The optimized microneedle formula is a PVA concentration of 6.0%, HA concentration of 15.5%, and PVPK30 concentration of 16.0%. The prepared microneedle tip loaded with Atractylodes macrocephala Rhizoma aqueous extract has complete, sharp, and no bubbles and the needle rate of the microneedle array is in the range of 95%~100%. The bending rate of the microneedle is about 12.7%, and it has good flexibility, and the microneedle can puncture 4 layers of ParafilmⓇ membrane smoothly, and the puncture rate is more than 96%. The in vitro release of the microneedle was characterized by rapid release. The results of animal experiments showed that Atractylodes macrocephala Rhizoma aqueous extract microneedle patch could significantly reduce the E2 level, significantly reduce the PRL level, and significantly increase the P level. At the same time, it can regulate the abundance and diversity of intestinal flora in MGH rats, improve the intestinal flora disorder caused by mammary gland hyperplasia, and balance the community structure. CONCLUSION The prepared microneedle containing Atractylodes macrocephala Rhizoma aqueous extract has good toughness and brittle strength, can penetrate the skin and enter the dermis, and effectively deliver drugs to play a role in the treatment of mammary gland hyperplasia.
Collapse
|
14
|
Wu Y, Peng X, Li X, Li D, Tan Z, Yu R. Sex hormones influence the intestinal microbiota composition in mice. Front Microbiol 2022; 13:964847. [PMID: 36386696 PMCID: PMC9659915 DOI: 10.3389/fmicb.2022.964847] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/26/2022] [Indexed: 08/26/2023] Open
Abstract
Sex hormone secretion difference is one of the main reasons for sexually dimorphic traits in animals, which affects the dimorphism of the intestinal microbiota; however, their interaction is still unknown. Intestinal mucosa-associated microbiota (MAM) and intestinal luminal content microbiota (LM) belong to two different habitats according to the difference in interactions between bacteria and host intestinal epithelium/nutrients. To clarify the sexually dimorphic characteristics of MAM and LM and their correlation with sex hormones, 12 specific pathogen-free (SPF) Kunming mice from the same nest were fed separately according to sex. After 8 weeks, samples from the male intestinal mucosa group (MM group), the female intestinal mucosa group (FM group), the male intestinal content group (MC group), and the female intestinal content group (FC group) were collected and then, the next-generation sequencing of 16S ribosomal ribonucleic acid (rRNA) gene was performed. Our results showed that the sexual dimorphism of MAM was more obvious than that of LM and the relative abundance of Muribaculaceae, Turicibacter, and Parasutterella was significantly higher in the FM group than in the MM group (p < 0.001, p < 0.05, p < 0.05). Next, we measured the level of serum sex hormones in mice and calculated the correlation coefficient between major bacteria and sex hormones. The results showed that the correlation between MAM and sex hormones was more prominent, and finally, three bacterial genera (Muribaculaceae, Turicibacter, and Parasutterella) were obtained, which could better represent the relationship between sexual dimorphism and sex hormones. The abundance of Parasutterella is positively and negatively correlated with estradiol and testosterone (T), respectively, which may be related to the differences in the metabolism of bile acid and glucose. A decrease in the abundance of Turicibacter is closely related to autism. Our results show that the abundance of Turicibacter is negatively and positively correlated with T and estradiol, respectively, which can provide a hint for the prevalence of male autism. In conclusion, it is proposed in our study that intestinal microbiota is probably the biological basis of physiological and pathological differences due to sex, and intestinal MAM can better represent the sexual dimorphism of mice.
Collapse
Affiliation(s)
- Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Xinxin Peng
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Dandan Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| | - Rong Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Key Laboratory of Chinese Medicine Prescription and Syndromes Translational Medicine, Changsha, China
| |
Collapse
|
15
|
Qiao B, Liu J, Xiao N, Tan Z, Peng M. Effects of sweeteners on host physiology by intestinal mucosal microbiota: Example-addition sweeteners in Qiweibaizhu Powder on intestinal mucosal microbiota of mice with antibiotic-associated diarrhea. Front Nutr 2022; 9:1038364. [PMID: 36337643 PMCID: PMC9631320 DOI: 10.3389/fnut.2022.1038364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, sweeteners have gained massive popularity under the trend of limiting sugar intake. Our previous study found that Qiweibaizhu Powder (QWBZP) could improve gut microbiota dysbiosis and has good efficacy in treating antibiotic-associated diarrhea (AAD). In this study, we investigated the effects of sucrose, sorbitol, xylitol, and saccharin on the intestinal mucosal microbiota of AAD mice treated with QWBZP. When the AAD model was constructed by being gavaged mixed antibiotic solution, Kunming mice were randomly assigned to seven groups: the control (mn) group, the ADD (mm) group, the QWBZP (mq) group, the saccharin + QWBZP (mc) group, the sucrose + QWBZP (ms) group, the xylito + QWBZP (mx) group, and the sorbitol + QWBZP (msl) group. Subsequently, 16S rRNA gene amplicon sequencing was used to analyze the intestinal mucosal microbiota composition and abundance. The results showed that feces from AAD mice were diluted and wet and improved diarrhea symptoms with QWBZP and sorbitol. In contrast, the addition of sucrose, saccharin, and xylitol delayed the healing of diarrhea. The relative abundance of intestinal mucosal microbiota showed Glutamicibacter, Robinsoniella, and Blautia were characteristic bacteria of the mx group, Candidatus Arthromitus, and Bacteroidales_S24-7_group as the typical bacteria of the mn group, Clostridium_innocuum_group as the distinct bacteria of the mm group. Mycoplasma and Bifidobacterium as the characteristic bacteria of the ms group. Correlation analysis of typical bacterial genera with metabolic functions shows that Blautia negatively correlates with D-Glutamine and D-glutamate metabolism. Bacteroidales_S24-7_group has a significant negative correlation with the Synthesis and degradation of ketone bodies. The study confirmed that sucrose, sorbitol, xylitol, and saccharin might further influence metabolic function by altering the intestinal mucosal microbiota. Compared to the other sweetener, adding sorbitol to QWBZP was the best therapeutic effect for AAD and increased the biosynthesis and degradation activities. It provides the experimental basis for applying artificial sweeteners in traditional Chinese medicine (TCM) as a reference for further rational development and safe use of artificial sweeteners.
Collapse
Affiliation(s)
- Bo Qiao
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Maijiao Peng,
| |
Collapse
|
16
|
Li X, Peng X, Qiao B, Peng M, Deng N, Yu R, Tan Z. Gut-Kidney Impairment Process of Adenine Combined with Folium sennae-Induced Diarrhea: Association with Interactions between Lactobacillus intestinalis, Bacteroides acidifaciens and Acetic Acid, Inflammation, and Kidney Function. Cells 2022; 11:3261. [PMID: 36291135 PMCID: PMC9599973 DOI: 10.3390/cells11203261] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Extensive evidence suggests that gut microbiota may interact with the kidneys and play central roles in the pathogenesis of disease. However, the association of gut microbiota-kidneys in diarrhea remains unclear. METHODS A diarrhea mouse model was constructed by combining adenine with Folium sennae. We analyzed the characteristics of the gut content microbiota and short chain fatty acids (SCFAs); and explored the potential link between gut content microbiota, SCFAs, intestinal inflammatory response and kidney function. RESULTS Characteristic bacteria Lactobacillus intestinalis and Bacteroides acidifaciens were enriched in the gut contents of mice. The productions of SCFAs were remarkably inhibited. Model mice presented an increased trend of creatinine (Cr), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), a decreased trend of blood urea nitrogen (BUN) and secretory immunoglobulin A (SIgA). The pathological analysis proved obvious damage to the kidney structure. Lactobacillus intestinalis and Bacteroides acidifaciens exisited in the correlations with acetic acid, intestinal inflammatory response and kidney function. CONCLUSIONS Adenine combined with Folium sennae-induced diarrhea, altered the structure and function of the gut content microbiota in mice, causing the enrichment of the characteristic bacteria Lactobacillus intestinalis and Bacteroides acidifaciens. The interactions between Lactobacillus intestinalis, Bacteroides acidifaciens and acetic acid, intestinal inflammation, and kidney function might be involved in the process of gut-kidney impairment in adenine, combined with Folium sennae-induced diarrhea.
Collapse
Affiliation(s)
- Xiaoya Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xinxin Peng
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bo Qiao
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Maijiao Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Na Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
17
|
Zhu J, Li X, Deng N, Peng X, Tan Z. Diarrhea with deficiency kidney-yang syndrome caused by adenine combined with Folium senna was associated with gut mucosal microbiota. Front Microbiol 2022; 13:1007609. [PMID: 36304943 PMCID: PMC9593090 DOI: 10.3389/fmicb.2022.1007609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/15/2022] [Indexed: 01/30/2023] Open
Abstract
The present study aims to study and analyze the characteristics of gut mucosal microbiota in diarrhea mice with deficiency kidney-yang syndrome. Ten male mice were randomly divided into the control group and the model group. Diarrhea mice model with deficiency kidney-yang syndrome was established by adenine combined with Folium sennae. The kidney structure was observed by hematoxylin-eosin (HE) staining. Serum Na+-K+-ATP-ase and Ca2+-Mg2+-ATP-ase were detected by enzyme-linked immunosorbent assay (ELISA). The characteristics of gut mucosal microbiota were analyzed by performing third-generation high-throughput sequencing. The results showed that the model mice exhibit obvious structural damage to the kidney. Serum Na+-K+-ATP-ase and Ca2+-Mg2+-ATP-ase levels showed a decreased trend in the model group. The diversity and community structure of the gut mucosal microbiota improved in the model group. Dominant bacteria like Candidatus Arthromitus, Muribaculum, and Lactobacillus reuteri varied significantly at different taxonomic levels. The characteristic bacteria like Bacteroides, Erysipelatoclostridium, Anaerotignum, Akkermansia muciniphila, Clostridium cocleatum, Bacteroides vulgatus, and Bacteroides sartorii were enriched in the model group. A correlation analysis described that Erysipelatoclostridium was positively correlated with Na+-K+-ATP-ase and Ca2+-Mg2+-ATP-ase levels, while Anaerotignum exhibited an opposite trend. Together, adenine combined with Folium sennae damaged the structure of the kidney, affected energy metabolism, and caused disorders of gut mucosal microbiota in mice. Bacteroides, Erysipelatoclostridium, and Anaerotignum showed significant inhibition or promotion effects on energy metabolism. Besides, Akkermansia muciniphila, Clostridium cocleatum, Bacteroides vulgatus, and Bacteroides sartorii might be the characteristic species of gut mucosal microbiota responsible for causing diarrhea with deficiency kidney-yang syndrome.
Collapse
Affiliation(s)
- Jiayuan Zhu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinxin Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
18
|
Zhou K, Peng M, Deng N, Tan Z, Xiao N. Lactase bacteria in intestinal mucosa are associated with diarrhea caused by high-fat and high-protein diet. BMC Microbiol 2022; 22:226. [PMID: 36171559 PMCID: PMC9516839 DOI: 10.1186/s12866-022-02647-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Excessive fat and protein in food can cause diarrhea by disturbing the intestinal microecology. Lactase is a functional enzyme strongly associated with diarrhea, while lactase bacteria in the intestine are an important source of microbial lactase. Therefore, we reconnoiter the relationship between diarrhea induced by a high-fat and high-protein diet (HFHPD) and intestinal mucosal lactase bacteria from the perspective of functional genes. Result Operational Taxonomic Units (OTUs) were 23 and 31 in the normal group (NM) and model group (MD), respectively, and 11 of these were identical. The Chao1 and Observed specie indexes in the MD were higher than those in the NM, but this was not significant (P > 0.05). Meanwhile, the Principal coordinate analysis (PCoA) and Adonis test showed that the community structures of lactase bacteria in NM and MD were significantly different (P < 0.05). In taxonomic composition, lactase bacteria on the intestinal mucosa were sourced from Actinobacteria and Proteobacteria. Where Actinobacteria were higher in NM, and Proteobacteria were higher in MD. At the genus level, Bifidobacterium was the dominant genus (over 90% of the total). Compared to NM, the abundance of Bifidobacterium were lower in MD, while MD added sources for lactase bacteria of Rhizobium, Amycolatopsis, and Cedecea. Conclusions Our data demonstrate that HFHPD altered the community structure of lactase bacteria in the intestinal mucosa, decreased the abundance of the critical lactase bacteria, and promoted the occurrence of diarrhea.
Collapse
Affiliation(s)
- Kang Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhoujin Tan
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China.,College of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
19
|
Huang L, Zheng T, Hui H, Xie G. Soybean isoflavones modulate gut microbiota to benefit the health weight and metabolism. Front Cell Infect Microbiol 2022; 12:1004765. [PMID: 36118025 PMCID: PMC9478439 DOI: 10.3389/fcimb.2022.1004765] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
Soybean isoflavones (SIs) are widely found in food and herbal medicines. Although the pharmacological activities of SIs have been widely reported, their effects on the intestinal microecology of normal hosts have received little attention. Five-week-old Kunming (KM) mice were administered SIs (10 mg/kg/day) for 15 days. Food intake, body weight, and digestive enzyme activity were measured. Small intestine microbiota, including lumen-associated bacteria (LAB) and mucosa-associated bacteria (MAB), were analyzed using 16S ribosomal ribonucleic acid (16S rRNA) gene sequencing. Short-chain fatty acids (SCFAs) were analyzed using gas chromatography-mass spectrometry (GC-MS). The results showed that the mice that consuming SIs showed a higher food intake but a lower body weight gain rate than that of normal mice. Sucrase, cellulase, and amylase activities reduced, while protease activity increased after SIs intervention. Moreover, SIs increased the intestinal bacterial diversity in both LAB and MAB of normal mice. The composition of LAB was more sensitive to SIs than those of MAB. Lactobacillus, Adlercreutzia, Coprococcus, Ruminococcus, Butyricicoccus, and Desulfovibrio were the differential bacteria among the LAB of mice treated with SIs. In addition, acetic acid, valeric acid, isobutyric acid, isovaleric acid, and caproic acid decreased, while butyric acid and propionic acid increased in the mice treated with SIs. Taken together, SIs are beneficial for weight control, even in short-term interventions. The specific mechanism is related to regulating the gut microbiota, changing digestive enzyme activities, and further affecting carbohydrate absorption and metabolism.
Collapse
|
20
|
Zheng T, Wu Y, Peng MJ, Xiao NQ, Tan ZJ, Yang T. Hypertension of liver-yang hyperactivity syndrome induced by a high salt diet by altering components of the gut microbiota associated with the glutamate/GABA-glutamine cycle. Front Nutr 2022; 9:964273. [PMID: 36017217 PMCID: PMC9395663 DOI: 10.3389/fnut.2022.964273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
The gut microbiota and metabolites are closely related to hypertension; however, the changes in the composition of the gut microbiome and metabolites linking a high salt diet to elevated blood pressure are not established. In this study, traditional Chinese medicine (TCM) syndrome of hypertension caused by high salt had been diagnosed and the pathogenesis of hypertension was explored from the perspective of intestinal microecology. Rats in a high salt diet-induced hypertension group (CG) and normal group (CZ) were compared by 16S rRNA gene full-length sequencing and liquid chromatography and mass spectrometry to identify differences in the bacterial community structure, metabolites, and metabolic pathways. Hypertension induced by a high salt diet belongs to liver-Yang hyperactivity syndrome. Alpha and beta diversity as well as the composition of microbiota from the phylum to species levels differed substantially between the CG and CZ groups. In an analysis of differential metabolites in the intestines, a high salt diet mainly affected the metabolism of amino acids and their derivatives; in particular, γ-aminobutyric acid (GABA) was down-regulated and glutamic acid and its derivatives were up-regulated under a high salt diet. Based on a KEGG analysis, high salt intake mainly altered pathways related to GABA and the glutamate/glutamine metabolism, such as the GABAergic synapse pathway and glutamatergic synapse pathway. The correlation analysis of differential gut microbes and differential metabolites suggested that a high salt diet promoted hypertension via the inhibition of Clostridiaceae_1 growth and alterations in the GABA metabolic pathway, leading to increased blood pressure. These findings suggest that a high salt diet induces hypertension of liver-Yang hyperactivity syndrome by mediating the microbiota associated with the glutamate/GABA-glutamine metabolic cycle via the gut–brain axis.
Collapse
Affiliation(s)
- Tao Zheng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Wu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Mai-Jiao Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Nen-Qun Xiao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhou-Jin Tan
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
21
|
Zhou K, Deng N, Yi X, Cai Y, Peng M, Xiao N. Baohe pill decoction for diarrhea induced by high-fat and high-protein diet is associated with the structure of lactase-producing bacterial community. Front Cell Infect Microbiol 2022; 12:1004845. [PMID: 36093186 PMCID: PMC9458856 DOI: 10.3389/fcimb.2022.1004845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 01/30/2023] Open
Abstract
Background This study investigated the effects of Baohe pill decoction on the diversity and community composition of lactase-producing bacteria in the intestinal contents of mice with diarrhea induced by high-fat and high-protein diet, which provided an experimental basis for the study on the therapeutic mechanism of Baohe pill decoction. Materials and methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP), DisGeNET, UniProt, National Center for Biotechnology Information (NCBI), and GeneCards databases were used to collect the potential targets with active ingredients of Baohe pill decoction, diarrhea, and lactase, and then construct correlation networks. Fifteen Kunming mice were randomly divided into the control group (CN), natural recovery group (NR), and Baohe pill decoction treatment group (BHP), with five mice in each group. After constructing a mouse diarrhea model by HFHPD induction, BHP was gavaged with Baohe pill decoction, and the other groups were gavaged with distilled water of equal. The intestinal contents were collected from ileal to jejunal and analyzed using metagenomic sequencing to characterize the intestinal content of lactase-producing bacteria in mice. Results The core active ingredients related to diarrhea in Baohe pill decoction were quercetin, luteolin, kaempferol, forsythin, and wogonin. And there was no intersection between the potential targets with the active ingredient of Baohe pill, lactase, and diarrhea. After the intervention of Baohe pill decoction, the Observed species, Chao1 index, and Operational Taxonomic Units (OTU) number increased in BHP (P > 0.05), while the Pielous evenness and Shannon index decreased (P > 0.05). In Beta diversity, the community structure of the NR was significantly different from CN and BHP (P < 0.05), and the community structure of the CN was not significant difference from BHP (P > 0.05). Compared to NR, the relative abundance of Bifidobacterium and Amycolatopsis increased, while the relative abundance of Lachnoclostridium, Sinorhizobium, Cedecea, and Escherichia decreased in BHP, but none of the significant differences (P > 0.05). Conclusion The therapeutic effect of Baohe pill decoction on diarrhea induced by HFHPD does not appear to involve the body’s lactase gene targets directly, but is associated with the change of the construction of lactase-producing bacterial communities.
Collapse
Affiliation(s)
- Kang Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Maijiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Maijiao Peng, ; Nenqun Xiao,
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Maijiao Peng, ; Nenqun Xiao,
| |
Collapse
|
22
|
Yi YL, Li Y, Guo S, Yan H, Ma XF, Tao WW, Shang EX, Niu Y, Qian DW, Duan JA. Elucidation of the Reinforcing Spleen Effect of Jujube Fruits Based on Metabolomics and Intestinal Flora Analysis. Front Cell Infect Microbiol 2022; 12:847828. [PMID: 35402299 PMCID: PMC8987507 DOI: 10.3389/fcimb.2022.847828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Jujube (Ziziphus jujuba Mill.) fruit (JF) is widely consumed as food in Asian countries due to its potential effects for human health. As a traditional Chinese medicine, JF is often used to treat anorexia, fatigue and loose stools caused by spleen deficiency syndromes in China, but the mechanism underlying this effect has not been thoroughly elucidated. In this study, a rat model of spleen deficiency syndromes was adopted to investigate the therapeutic effect of JF extract and its possible mechanism by metabolomics analyses of plasma and urine as well as the intestinal flora analysis. The results showed that the changes in plasma and urine metabolites caused by spleen deficiency were reversed after administration of JF, and these changed endogenous metabolites were mainly involved in retinol metabolism, pentose and glucuronate interconversions, nicotinate and niacinamide metabolism pathways. The 16S rDNA sequencing results showed that JF could regulate intestinal flora imbalance caused by spleen deficiency. The covariance analysis of intestinal flora structure and metabolome indicated that Aerococcus may be a candidate strain for predicting and treating the metabolic pathways of spleen deficiency and related disorders. In summary, it can be revealed that spleen deficiency, which alters metabolic profiles and the intestinal flora, could be alleviated effectively by JF extract.
Collapse
Affiliation(s)
- Yan-ling Yi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-fei Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Da-wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Feng T, Ding H, Wang J, Xu W, Liu Y, Kenéz Á. Alterations of Serum Metabolites and Fecal Microbiota Involved in Ewe Follicular Cyst. Front Microbiol 2021; 12:675480. [PMID: 34054784 PMCID: PMC8149755 DOI: 10.3389/fmicb.2021.675480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
While the interactions of the gut microbiome and blood metabolome have been widely studied in polycystic ovary disease in women, follicular cysts of ewes have been scarcely investigated using these methods. In this study, the fecal microbiome and serum metabolome were used to compare between ewes diagnosed with ovarian cystic follicles and ewes with normal follicles, to investigate alterations of the fecal bacterial community composition and metabolic parameters in relation to follicular cystogenesis. Ewes from the same feeding and management system were diagnosed with a follicular cyst (n = 6) or confirmed to have normal follicles (n = 6) by using a B-mode ultrasound scanner. Blood serum and fresh fecal samples of all ewes were collected and analyzed. The α-diversity of fecal microbiome did not differ significantly between follicular cyst ewes and normal follicle ewes. Three genera (Bacteroides, Anaerosporobacter, and Angelakisella) were identified and their balance differentiated between follicular cyst and normal follicle ewes. Alterations of several serum metabolite concentrations, belonging to lipids and lipid-like molecules, organic acids and derivatives, organic oxygen compounds, benzenoids, phenylpropanoids and polyketides, and organoheterocyclic compounds, were associated with the presence of a follicular cyst. Correlation analysis between fecal bacterial communities and serum metabolites indicated a positive correlation between Anaerosporobacter and several fatty acids, and a negative correlation between Bacteroides and L-proline. These observations provide new insights for the complex interactions of the gut microbiota and the host serum lipid profiles, and support gut microbiota as a potential strategy to treat and prevent follicular cysts in sheep.
Collapse
Affiliation(s)
- Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource, Oklahoma State University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hongxiang Ding
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource, Oklahoma State University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jing Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, China
| | - Wei Xu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource, Oklahoma State University, Beijing, China
| | - Ákos Kenéz
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| |
Collapse
|