1
|
Bohórquez JA, Jagannath C, Xu H, Wang X, Yi G. T Cell Responses during Human Immunodeficiency Virus/ Mycobacterium tuberculosis Coinfection. Vaccines (Basel) 2024; 12:901. [PMID: 39204027 PMCID: PMC11358969 DOI: 10.3390/vaccines12080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Coinfection with Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) is a significant public health concern. Individuals infected with Mtb who acquire HIV are approximately 16 times more likely to develop active tuberculosis. T cells play an important role as both targets for HIV infection and mediators of the immune response against both pathogens. This review aims to synthesize the current literature and provide insights into the effects of HIV/Mtb coinfection on T cell populations and their contributions to immunity. Evidence from multiple in vitro and in vivo studies demonstrates that T helper responses are severely compromised during coinfection, leading to impaired cytotoxic responses. Moreover, HIV's targeting of Mtb-specific cells, including those within granulomas, offers an explanation for the severe progression of the disease. Herein, we discuss the patterns of differentiation, exhaustion, and transcriptomic changes in T cells during coinfection, as well as the metabolic adaptations that are necessary for T cell maintenance and functionality. This review highlights the interconnectedness of the immune response and the pathogenesis of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
2
|
Asia LK, Van Vuren EJ, Lindeque Z, Williams ME. A pilot investigation of the association between HIV-1 Vpr amino acid sequence diversity and the tryptophan-kynurenine pathway as a potential mechanism for neurocognitive impairment. Virol J 2024; 21:47. [PMID: 38395987 PMCID: PMC10893664 DOI: 10.1186/s12985-024-02313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
HIV infection compromises both the peripheral and central immune systems due to its pathogenic and neuropathogenic features. The mechanisms driving HIV-1 pathogenesis and neuropathogenesis involve a series of events, including metabolic dysregulation. Furthermore, HIV-subtype-specific variations, particularly alterations in the amino acid sequences of key viral proteins, are known to influence the severity of clinical outcomes in people living with HIV. However, the impact of amino acid sequence variations in specific viral proteins, such as Viral protein R (Vpr), on metabolites within the Tryptophan (Trp)-kynurenine (Kyn) pathway in people living with HIV remains unclear. Our research aimed to explore the relationship between variations in the Vpr amino acid sequence (specifically at positions 22, 41, 45, and 55, as these have been previously linked to neurocognitive function) and peripheral Trp-Kyn metabolites. Additionally, we sought to clarify the systems biology of Vpr sequence variation by examining the link between Trp-Kyn metabolism and peripheral inflammation, as a neuropathogenic mechanism. In this preliminary study, we analyzed a unique cohort of thirty-two (n = 32) South African cART naïve people living with HIV. We employed Sanger sequencing to ascertain blood-derived Vpr amino acid sequence variations and a targeted LC-MS/MS metabolomics platform to assess Trp-Kyn metabolites, such as Trp, Kyn, kynurenic acid (KA), and quinolinic acid (QUIN). Particle-enhanced turbidimetric assay and Enzyme-linked immunosorbent assays were used to measure immune markers, hsCRP, IL-6, suPAR, NGAL and sCD163. After applying Bonferroni corrections (p =.05/3) and adjusting for covariates (age and sex), only the Vpr G41 and A55 groups was nearing significance for higher levels of QUIN compared to the Vpr S41 and T55 groups, respectively (all p =.023). Multiple regression results revealed that Vpr amino acid variations at position 41 (adj R2 = 0.049, β = 0.505; p =.023), and 55 (adj R2 = 0.126, β = 0.444; p =.023) displayed significant associations with QUIN after adjusting for age and sex. Lastly, the higher QUIN levels observed in the Vpr G41 group were found to be correlated with suPAR (r =.588, p =.005). These results collectively underscore the importance of specific Vpr amino acid substitutions in influencing QUIN and inflammation (specifically suPAR levels), potentially contributing to our understanding of their roles in the pathogenesis and neuropathogenesis of HIV-1.
Collapse
Affiliation(s)
| | - Esmé Jansen Van Vuren
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- South African Medical Research Council, Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
3
|
Zhang SS, Yang X, Zhang WX, Zhou Y, Wei TT, Cui N, Du J, Liu W, Lu QB. Metabolic alterations in urine among the patients with severe fever with thrombocytopenia syndrome. Virol J 2024; 21:11. [PMID: 38191404 PMCID: PMC10775654 DOI: 10.1186/s12985-024-02285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The pathogenesis of severe fever with thrombocytopenia syndrome (SFTS) remained unclear. We aimed to profile the metabolic alterations in urine of SFTS patients and provide new evidence for its pathogenesis. METHODS A case-control study was conducted in the 154th hospital in China. Totally 88 cases and 22 controls aged ≥ 18 years were enrolled. The cases were selected from laboratory-confirmed SFTS patients. The controls were selected among SFTSV-negative population. Those with diabetes, cancer, hepatitis and other sexually transmitted diseases were excluded in both groups. Fatal cases and survival cases were 1:1 matched. Inter-group differential metabolites and pathways were obtained, and the inter-group discrimination ability was evaluated. RESULTS Tryptophan metabolism and phenylalanine metabolism were the top one important metabolism pathway in differentiating the control and case groups, and the survival and fatal groups, respectively. The significant increase of differential metabolites in tryptophan metabolism, including 5-hydroxyindoleacetate (5-HIAA), L-kynurenine (KYN), 5-hydroxy-L-tryptophan (5-HTP), 3-hydroxyanthranilic acid (3-HAA), and the increase of phenylpyruvic acid and decrease of hippuric acid in phenylalanine metabolism indicated the potential metabolic alterations in SFTSV infection. The increase of 5-HIAA, KYN, 5-HTP, phenylpyruvic acid and hippuric acid were involved in the fatal progress of SFTS patients. CONCLUSIONS Tryptophan metabolism and phenylalanine metabolism might be involved in the pathogenesis of SFTSV infection. These findings provided new evidence for the pathogenesis and treatment of SFTS.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xin Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wan-Xue Zhang
- Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Yiguo Zhou
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
| | - Ting-Ting Wei
- Department of Laboratorial of Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, 100191, China
| | - Ning Cui
- Department of Infectious Diseases, The 154th Hospital, Xinyang, China
| | - Juan Du
- Department of Laboratorial of Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, 100191, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qing-Bin Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
- Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China.
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China.
- Department of Laboratorial of Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| |
Collapse
|
4
|
Zhang J, Chen Y, Wang M, Zhong L, Li L, Yuan Z, Zou S. Amino acid metabolism dysregulation associated with inflammation and insulin resistance in HIV-infected individuals with metabolic disorders. Amino Acids 2023; 55:1545-1555. [PMID: 37726575 DOI: 10.1007/s00726-023-03325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Amino acid metabolic profile, particularly its association with clinical characteristics, remains unclear in patients with human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS) combined with metabolic disorders. In this study, we performed targeted metabolomic analyses on 64 patients with HIV/AIDS and 21 healthy controls. Twenty-four amino acids and selected intermediate metabolites in the serum were quantitatively detected using high-performance liquid chromatography-tandem mass spectrometry, and characteristic changes and metabolic pathways were analyzed in HIV-infected patients with different degrees of abnormal glucose and lipid metabolism. Spearman's partial correlation was used to analyze the association between amino acids, biochemical parameters, and inflammatory cytokines. The results showed that the main metabolic pathways of the eighteen differential metabolites involved were arginine biosynthesis and metabolism, methionine cycle, and tryptophan metabolism. Fourteen differential amino acid metabolites were positively correlated with nine inflammatory cytokines, including TNF-α, C-reactive protein, IL-1β, and galectin-3 (FDR < 0.1). Kynurenine, ornithine, and homocysteine were positively correlated with fasting blood glucose and insulin resistance index (FDR < 0.1). Our study revealed a multi-pathway imbalance in amino acid metabolism in patients with HIV/AIDS, which was significantly correlated with inflammation and insulin resistance.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8#, Huaying Street, Guangzhou, 518067, Guangdong, China
| | - Yanfang Chen
- Department of Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8#, Huaying Street, Guangzhou, 518067, Guangdong, China
| | - Mingli Wang
- Department of Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8#, Huaying Street, Guangzhou, 518067, Guangdong, China
| | - Liuting Zhong
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, 510150, Guangdong, China
| | - Linghua Li
- Department of Infection, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8#, Huaying Street, Guangzhou, 518067, Guangdong, China.
| | - Zhongwen Yuan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, 510150, Guangdong, China.
| | - Shangrong Zou
- Department of Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8#, Huaying Street, Guangzhou, 518067, Guangdong, China.
| |
Collapse
|
5
|
Ardiansyah E, Avila-Pacheco J, Nhat LTH, Dian S, Vinh DN, Hai HT, Bullock K, Alisjahbana B, Netea MG, Estiasari R, Tram TTB, Donovan J, Heemskerk D, Chau TTH, Bang ND, Ganiem AR, Ruslami R, Koeken VACM, Hamers RL, Imran D, Maharani K, Kumar V, Clish CB, van Crevel R, Thwaites G, van Laarhoven A, Thuong NTT. Tryptophan metabolism determines outcome in tuberculous meningitis: a targeted metabolomic analysis. eLife 2023; 12:e85307. [PMID: 37158692 PMCID: PMC10181821 DOI: 10.7554/elife.85307] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
Background Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism. Methods We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography-mass spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins. Results CSF tryptophan was associated with 60-day mortality from TBM (hazard ratio [HR] = 1.16, 95% confidence interval [CI] = 1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and -positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95% CI = 1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis. Conclusions TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of death. These findings may reveal new targets for host-directed therapy. Funding This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).
Collapse
Affiliation(s)
- Edwin Ardiansyah
- Research Center for Care and Control of Infectious Diseases, Universitas PadjadjaranBandungIndonesia
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
| | | | | | - Sofiati Dian
- Research Center for Care and Control of Infectious Diseases, Universitas PadjadjaranBandungIndonesia
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas PadjadjaranBandungIndonesia
| | - Dao Nguyen Vinh
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Hoang Thanh Hai
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Kevin Bullock
- The Broad Institute of MIT and HarvardCambridgeUnited States
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Diseases, Universitas PadjadjaranBandungIndonesia
- Department of Internal Medicine, Hasan Sadikin Hospital, Faculty of Medicine, Universitas PadjadjaranBandungIndonesia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
| | - Riwanti Estiasari
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas IndonesiaJakartaIndonesia
| | | | - Joseph Donovan
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Dorothee Heemskerk
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical CentreAmsterdamNetherlands
| | - Tran Thi Hong Chau
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Hospital for Tropical DiseasesHo Chi Minh CityViet Nam
| | - Nguyen Duc Bang
- Pham Ngoc Thach Hospital for Tuberculosis and Lung DiseaseHo Chi Minh CityViet Nam
| | - Ahmad Rizal Ganiem
- Research Center for Care and Control of Infectious Diseases, Universitas PadjadjaranBandungIndonesia
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas PadjadjaranBandungIndonesia
| | - Rovina Ruslami
- Research Center for Care and Control of Infectious Diseases, Universitas PadjadjaranBandungIndonesia
- Department of Biomedical Science, Faculty of Medicine, Universitas PadjadjaranBandungIndonesia
| | - Valerie ACM Koeken
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH)HanoverGermany
| | - Raph L Hamers
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas IndonesiaJakartaIndonesia
| | - Darma Imran
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas IndonesiaJakartaIndonesia
| | - Kartika Maharani
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas IndonesiaJakartaIndonesia
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
| | - Clary B Clish
- The Broad Institute of MIT and HarvardCambridgeUnited States
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
| | - Guy Thwaites
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
6
|
Ardiansyah E, Pacheco JA, Nhat LTH, Dian S, Vinh DN, Hai HT, Bullock K, Alisjahbana B, Netea MG, Estiasari R, Tram TTB, Donovan J, Heemskerk D, Chau TTH, Bang ND, Ganiem AR, Ruslami R, Koeken VA, Hamers RL, Imran D, Maharani K, Kumar V, Clish CB, van Crevel R, Thwaites G, van Laarhoven A, Thuong NTT. Tryptophan metabolism determines outcome in tuberculous meningitis: a targeted metabolomic analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.08.23284316. [PMID: 36711829 PMCID: PMC9882445 DOI: 10.1101/2023.01.08.23284316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism. Methods We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography mass-spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins. Results CSF tryptophan was associated with 60-day mortality from tuberculous meningitis (HR=1.16, 95%CI=1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and HIV-positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95%CI=1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis. Conclusion TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of mortality. These findings may reveal new targets for host-directed therapy. Funding This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).
Collapse
Affiliation(s)
- Edwin Ardiansyah
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Sofiati Dian
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Dao Nguyen Vinh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Hoang Thanh Hai
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Kevin Bullock
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Riwanti Estiasari
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia
| | | | - Joseph Donovan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- London School of Hygiene and Tropical Medicine, Keppel St, London, United Kingdom
| | - Dorothee Heemskerk
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Tran Thi Hong Chau
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Duc Bang
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, District 5, Ho Chi Minh City, Vietnam
| | - Ahmad Rizal Ganiem
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Neurology, Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Valerie Acm Koeken
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Raph L Hamers
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia
| | - Darma Imran
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia
| | - Kartika Maharani
- Department of Neurology, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Clary B Clish
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Yuan Z, Gan H, Jin H, Feng X, Wang M, Zhou H, Zhang J. Evaluation of characteristic metabolites of aromatic amino acids in patients with HIV infection at different stages of disease. J Clin Lab Anal 2022; 37:e24795. [PMID: 36464783 PMCID: PMC9833958 DOI: 10.1002/jcla.24795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Acquired immune deficiency syndrome (AIDS), human immunodeficiency virus (HIV) infection, and antiretroviral therapy are usually associated with metabolic disorders. Screening for biomarkers to evaluate the progression of metabolic disorders is important for the diagnosis and treatment of HIV infection. This study aimed to establish and validate a method to quantify serum aromatic amino acid (AAA) metabolites as biomarkers of metabolic disorders in patients with HIV. METHODS The AAAs and metabolites were analyzed using high-performance liquid chromatography-tandem mass spectrometry. Pearson's correlation, heatmap, and receiver operating characteristic curve analyses were used for statistical analysis. RESULTS Under optimal detection conditions, the lower limits of phenylalanine (Phe), tryptophan (Trp), kynurenine (Kyn), tyrosine, phenylacetylglutamine (PAGln), and 5-hydroxytryptamine quantification reached 0.02, 0.02, 0.01, 0.02, 0.01, and 0.002 μg/ml, respectively, and the precision of intra- and inter-day was stay below 10.30%. Serum samples were stable for at least 6 months when stored at -80°C. The inter-group differences and associations between the biomarkers exhibited a particular volatility trend in PAGln, Trp, and Kyn metabolism in HIV-infected patients with metabolic syndrome. CONCLUSIONS The developed method can be used for rapid and sensitive quantification of the AAA metabolism profile in vivo to further appraise the process of HIV infection, evaluate intervening measures, conduct mechanistic investigations, and further study the utility of PAGln, a characteristic metabolite of AAA, as a biomarker of HIV infection coupled with metabolic syndrome.
Collapse
Affiliation(s)
- Zhong‐Wen Yuan
- Department of PharmacyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,Guangdong Provincial Key Laboratory of Major Obstetric DiseasesGuangzhou Medical UniversityGuangzhouChina,School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Hai‐Ling Gan
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Hong‐Liu Jin
- Department of PharmacyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,Guangdong Provincial Key Laboratory of Major Obstetric DiseasesGuangzhou Medical UniversityGuangzhouChina,School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Xiao‐Ying Feng
- Department of PharmacyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,Guangdong Provincial Key Laboratory of Major Obstetric DiseasesGuangzhou Medical UniversityGuangzhouChina,School of Pharmaceutical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Ming Wang
- Department of Pharmacy, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Hua‐Ping Zhou
- Department of Pharmacy, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Jing Zhang
- Department of Pharmacy, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
8
|
Hasankhani A, Bahrami A, Mackie S, Maghsoodi S, Alawamleh HSK, Sheybani N, Safarpoor Dehkordi F, Rajabi F, Javanmard G, Khadem H, Barkema HW, De Donato M. In-depth systems biological evaluation of bovine alveolar macrophages suggests novel insights into molecular mechanisms underlying Mycobacterium bovis infection. Front Microbiol 2022; 13:1041314. [PMID: 36532492 PMCID: PMC9748370 DOI: 10.3389/fmicb.2022.1041314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Objective Bovine tuberculosis (bTB) is a chronic respiratory infectious disease of domestic livestock caused by intracellular Mycobacterium bovis infection, which causes ~$3 billion in annual losses to global agriculture. Providing novel tools for bTB managements requires a comprehensive understanding of the molecular regulatory mechanisms underlying the M. bovis infection. Nevertheless, a combination of different bioinformatics and systems biology methods was used in this study in order to clearly understand the molecular regulatory mechanisms of bTB, especially the immunomodulatory mechanisms of M. bovis infection. Methods RNA-seq data were retrieved and processed from 78 (39 non-infected control vs. 39 M. bovis-infected samples) bovine alveolar macrophages (bAMs). Next, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules in non-infected control bAMs as reference set. The WGCNA module preservation approach was then used to identify non-preserved modules between non-infected controls and M. bovis-infected samples (test set). Additionally, functional enrichment analysis was used to investigate the biological behavior of the non-preserved modules and to identify bTB-specific non-preserved modules. Co-expressed hub genes were identified based on module membership (MM) criteria of WGCNA in the non-preserved modules and then integrated with protein-protein interaction (PPI) networks to identify co-expressed hub genes/transcription factors (TFs) with the highest maximal clique centrality (MCC) score (hub-central genes). Results As result, WGCNA analysis led to the identification of 21 modules in the non-infected control bAMs (reference set), among which the topological properties of 14 modules were altered in the M. bovis-infected bAMs (test set). Interestingly, 7 of the 14 non-preserved modules were directly related to the molecular mechanisms underlying the host immune response, immunosuppressive mechanisms of M. bovis, and bTB development. Moreover, among the co-expressed hub genes and TFs of the bTB-specific non-preserved modules, 260 genes/TFs had double centrality in both co-expression and PPI networks and played a crucial role in bAMs-M. bovis interactions. Some of these hub-central genes/TFs, including PSMC4, SRC, BCL2L1, VPS11, MDM2, IRF1, CDKN1A, NLRP3, TLR2, MMP9, ZAP70, LCK, TNF, CCL4, MMP1, CTLA4, ITK, IL6, IL1A, IL1B, CCL20, CD3E, NFKB1, EDN1, STAT1, TIMP1, PTGS2, TNFAIP3, BIRC3, MAPK8, VEGFA, VPS18, ICAM1, TBK1, CTSS, IL10, ACAA1, VPS33B, and HIF1A, had potential targets for inducing immunomodulatory mechanisms by M. bovis to evade the host defense response. Conclusion The present study provides an in-depth insight into the molecular regulatory mechanisms behind M. bovis infection through biological investigation of the candidate non-preserved modules directly related to bTB development. Furthermore, several hub-central genes/TFs were identified that were significant in determining the fate of M. bovis infection and could be promising targets for developing novel anti-bTB therapies and diagnosis strategies.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Shayan Mackie
- Faculty of Science, Earth Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Sairan Maghsoodi
- Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, AL-Balqa Applied University, AL-Huson University College, AL-Huson, Jordan
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhad Safarpoor Dehkordi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcos De Donato
- Regional Department of Bioengineering, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
9
|
Chen X, Yang C, Du C, Jiang G. Clinical analysis of alcoholic pellagra: A single-center retrospective study. J Cosmet Dermatol 2022; 21:4707-4713. [PMID: 35500141 DOI: 10.1111/jocd.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 02/18/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pellagra caused by niacin deficiency in alcoholics can be easily misdiagnosed because of similar symptoms to other alcohol-related diseases and the lack of the classical triad of signs. AIM This study aimed to define the clinical presentation of alcoholic pellagra for early diagnosis and timely treatment. METHODS The clinical data of 16 alcohol-dependent patients who had pellagra and treated in our hospital from January 2002 to December 2019 were retrospectively analyzed. The local medical ethics committee approval (Medical Ethics Committee of Affiliated Hospital of XuZhou Medical University, XYFY2020-KL247-02) for this study have been obtained. RESULTS The main complaints of the 16 patients were skin lesions (six cases), diarrhea (six cases), and mental disorders (four cases). Then, 13 cases had typical skin lesions, and 3 patients had a full spectrum of diarrhea, dementia, and dermatitis (3D). In terms of the main diagnosis, 2 patients had pellagra and Wernicke's encephalopathy, 3 patients had pellagra and alcohol-withdrawal syndrome, and the other patients had pellagra. After sufficient amounts of niacin and multivitamin B were given, clinical symptoms improved rapidly, and no sequelae were observed during follow-up. CONCLUSIONS Pellagra is rarely manifested as a full 3D spectrum, with only one or two characteristics, which lack diagnostic specificity, especially in individuals with alcoholism. Physicians should maintain a high degree of suspicion of niacin deficiency in alcoholics. Alcohol-dependent patients with pellagra may be accompanied by complications of Wernicke's encephalopathy and alcohol-withdrawal syndrome. Prompt identification and timely treatment with a sufficient amount of niacin in combination with other vitamins and a certain amount of Zn can achieve a good prognosis of pellagra.
Collapse
Affiliation(s)
- Xi Chen
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Department of Dermatology, Huzhou First People's Hospital, Zhejiang223002, China
| | - Chunsheng Yang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical University, The second peoples Hospital of Huai'an, Huai, 223002, China
| | - Chichi Du
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| |
Collapse
|
10
|
Liebenberg C, Luies L, Williams AA. Metabolomics as a Tool to Investigate HIV/TB Co-Infection. Front Mol Biosci 2021; 8:692823. [PMID: 34746228 PMCID: PMC8565463 DOI: 10.3389/fmolb.2021.692823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
The HIV/AIDS (human immunodeficiency virus/acquired immunodeficiency syndrome) and tuberculosis (TB) pandemics are perpetuated by a significant global burden of HIV/TB co-infection. The synergy between HIV and Mycobacterium tuberculosis (Mtb) during co-infection of a host is well established. While this synergy is known to be driven by immunological deterioration, the metabolic mechanisms thereof remain poorly understood. Metabolomics has been applied to study various aspects of HIV and Mtb infection separately, yielding insights into infection- and treatment-induced metabolic adaptations experienced by the host. Despite the contributions that metabolomics has made to the field, this approach has not yet been systematically applied to characterize the HIV/TB co-infected state. Considering that limited HIV/TB co-infection metabolomics studies have been published to date, this review briefly summarizes what is known regarding the HIV/TB co-infection synergism from a conventional and metabolomics perspective. It then explores metabolomics as a tool for the improved characterization of HIV/TB co-infection in the context of previously published human-related HIV infection and TB investigations, respectively as well as for addressing the gaps in existing knowledge based on the similarities and deviating trends reported in these HIV infection and TB studies.
Collapse
|