1
|
Burbick CR, Lawhon SD, Bukouras B, Lazzerini G, Munson E. An update on novel taxa and revised taxonomic status of bacteria isolated from aquatic host species described in 2022-2023. J Clin Microbiol 2024:e0104324. [PMID: 39445811 DOI: 10.1128/jcm.01043-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The description of new taxa and nomenclature updates to currently known taxa from aquatic animal species continues. After a review of the literature from 2022 and 2023, multiple lists of bacteria, including members of Phylum Planctomycetota, were compiled. As with the previous review, most bacteria are oxidase-positive Gram-negative bacilli with familiar families including new taxa in Aeromonadaceae, Flavobacteriaceae, and Vibrionaceae. A number of Gram-positive bacilli are described including new taxa in the Nocardioides, Paenibacillus, and Streptomyces genera. Two anaerobic species are listed, and one new member of Family Planctomycetaceae is noted. Revised taxa are briefly mentioned. The majority of new and revised taxa are isolated from healthy aquatic animals, and therefore, the role of these new bacteria in health and disease is unknown. Bacteria with pathogenic association and potential production of bioactive substances are highlighted.
Collapse
Affiliation(s)
- Claire R Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Brittany Bukouras
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Giovanna Lazzerini
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Huang MH, Zhang DF, Wang HC, He W, Song XR. Description of Rhodobacter flavimaris sp. nov. and proposal of the genera Paenirhodobacter, Sedimentimonas, and Sinirhodobacter as synonyms of Rhodobacter. Int J Syst Evol Microbiol 2024; 74. [PMID: 39365647 DOI: 10.1099/ijsem.0.006540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Two Gram-stain-negative, aerobic, ovoid to short rod-shaped bacterial strains, designated as WL0062T and WL0115, were isolated from coastal zone of the Yellow Sea, Jiangsu Province, PR China, respectively. Strain WL0062T grew optimally at 28 °C, pH 7.0-8.0 and with 1.0-3.0% (w/v) NaCl. Strain WL0115 grew optimally at 28 °C, pH 6.0-7.0 and with 1.0-3.0% (w/v) NaCl. In the bac120 tree, strains WL0062T and WL0115 clustered together with Sedimentimonas flavescens B57T. The respiratory quinone of both strains was ubiquinone-10. The major polar lipids of both strains were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, glycolipid, phosphatidylmonomethylethanolamine, and one unidentified polar lipid. The major fatty acids of strain WL0062T were summed features 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The major fatty acids of strain WL0115 were summed features 8 (C18 : 1 ω6c and/or C18 : 1 ω7c), C18 : 0, iso-C17 : 1 ω5c and C20 : 4 ω6/9/12/15c (arachidonic acid). The G+C content of genomic DNA of strains WL0062T and WL0115 was 64.0 mol% in both of them. Combined with the analysis of average nucleotide identity, average amino acid identity, and digital DNA-DNA hybridization, strain WL0062T represents a novel species of the genus Rhodobacter, for which the name Rhodobacter flavimaris sp. nov is proposed. The type strain is WL0062T (=MCCC 1K06014T=JCM 34676T=GDMCC 1.2427T). Strain WL0115 (=MCCC 1K07531=JCM 35568=GDMCC 1.3088) should belong to the same species as Sedimentimonas flavescens B57T. In addition, on the basis of phylogenomic relationship and phenotypical characteristics, the genera Paenirhodobacter, Sedimentimonas, and Sinirhodobacter are proposed as synonyms of Rhodobacter.
Collapse
Affiliation(s)
- Meng-Han Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| | - Dao-Feng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| | - Hong-Chuan Wang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| | - Wei He
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| | - Xiao-Rui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| |
Collapse
|
3
|
Li YR, Zhang MJ, Yi YJ, Wang XC, San DM, Zhou YX. Roseobacter weihaiensis sp. nov., a cellulose-degrading bacterium isolated from intestinal content of Nipponacmea schrenckii collected from golden beach in Weihai, China. Antonie Van Leeuwenhoek 2024; 118:12. [PMID: 39340698 DOI: 10.1007/s10482-024-02009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/07/2024] [Indexed: 09/30/2024]
Abstract
A Gram-staining-negative, dark pink, rod-shaped, amastigote and cellulose-degrading strain, designated H9T, was isolated from intestinal contents of Nipponacmea schrenckii. The isolate was able to grow at 4-42 °C (optimum, 25 °C), at pH 6.5-9.0 (optimum, pH 7.0), and with 0.0-11.0% (w/v) NaCl (optimum, 3.0-5.0%). Phylogenetic analysis of the 16S rRNA gene sequence suggested that isolate H9T belongs to the genus Roseobacter, neighboring Roseobacter insulae YSTF-M11T, Roseobacter cerasinus AI77T and Roseobacter ponti MM-7 T, and the pairwise sequence showed the highest similarity of 99.1% to Roseobacter insulae YSTF-M11T. The major fatty acid was summed feature 8 (C18:1ω7c and/or C18:1ω6c; 81.08%). The predominant respiratory quinone was Q-10. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, an unknown lipid, and a small amount of an unknown phospholipid. The genome of strain H9T was 5,351,685 bp in length, and the DNA G + C content was 59.8%. The average amino acid identity (AAI), average nucleotide identity (ANI), and digital DNA hybridization (dDDH) values between strain H9T and closely related strains were 63.4-76.8%, 74.7-78.8%, and 13.4-19.7%, respectively. On the basis of the phenotypic, chemical taxonomic, and phylogenetic data, it is suggested that strain H9T should represent a novel species in the genus Roseobacter, for which the name Roseobacter weihaiensis sp. nov. is proposed. The type strain is H9T (= KCTC 82507 T = MCCC 1K04354T).
Collapse
Affiliation(s)
- Yu-Rui Li
- Marine College, Shandong University, Weihai, 264209, China
| | | | - Yan-Jun Yi
- Marine College, Shandong University, Weihai, 264209, China
| | - Xiao-Chen Wang
- Marine College, Shandong University, Weihai, 264209, China
| | - Dong-Mei San
- Marine College, Shandong University, Weihai, 264209, China
| | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
4
|
Kawano K, Awano T, Yoshinaga A, Sugiyama J, Sawayama S, Nakagawa S. Paralimibaculum aggregatum gen. nov. sp. nov. and Biformimicrobium ophioploci gen. nov. sp. nov., two novel heterotrophs from brittle star Ophioplocus japonicus. Int J Syst Evol Microbiol 2024; 74:006530. [PMID: 39325648 PMCID: PMC11426391 DOI: 10.1099/ijsem.0.006530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Two novel Gram-stain-negative, strictly aerobic, halophilic and non-motile bacterial strains, designated NKW23T and NKW57T, were isolated from a brittle star Ophioplocus japonicus collected from a tidal pool in Wakayama, Japan. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that NKW23T represented a member of the family Paracoccaceae, with Limibaculum halophilum CAU 1123T as its closest relative (94.4% sequence identity). NKW57T was identified as representing a member of the family Microbulbiferaceae, with up to 94.9% sequence identity with its closest relatives. Both strains displayed average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values below the species delimitation threshold against their closest relatives. Additionally, amino acid identity (AAI) values of both strains fell below the genus-defining threshold. Phylogenetic trees based on genome sequences indicated that NKW23T formed a novel lineage, branching deeply prior to the divergence of the genera Limibaculum and Thermohalobaculum, with an evolutionary distance (ED) of 0.31-0.32, indicative of genus-level differentiation. NKW57T similarly formed a distinct lineage separate from the species of the genus Microbulbifer. The major respiratory quinones of NKW23T and NKW57T were ubiquinone-10 (Q-10) and Q-8, respectively. The genomic DNA G+C contents of NKW23T and NKW57T were 71.4 and 58.8%, respectively. On the basis of the physiological and phylogenetic characteristics, it was proposed that these strains should be classified as novel species representing two novel genera: Paralimibaculum aggregatum gen. nov., sp. nov., with strain NKW23T (=JCM 36220T=KCTC 8062T) as the type strain, and Biformimicrobium ophioploci gen. nov., sp. nov., with strain NKW57T (=JCM 36221T=KCTC 8063T) as the type strain.
Collapse
Affiliation(s)
- Keisuke Kawano
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tatsuya Awano
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Arata Yoshinaga
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junji Sugiyama
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka 237-0061, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki 444-8787, Japan
| |
Collapse
|
5
|
Feng CY, He HH, Li S, Zheng ZH, Mo YJ, Lian WH, Lu CY, Zhang DY, Li WJ, Dong L. Desertibaculum subflavum gen. nov., sp. nov., a novel member of the family Sneathiellaceae isolated from the Kumtag Desert soil. Antonie Van Leeuwenhoek 2024; 117:108. [PMID: 39080041 DOI: 10.1007/s10482-024-02003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/15/2024] [Indexed: 10/16/2024]
Abstract
A novel rod-shaped bacterium, designated as strain SYSU D60015T that formed yellowish colonies was isolated from a sandy soil collected from the Kumtag Desert in Xinjiang, China. Cells were Gram-stain-negative, oxidase-positive, catalase-negative and motile with a single polar flagellum. Growth optimum occurred between 28 and 37 °C, pH 7.0 and with 0-0.5% (W/V) NaCl. The predominant cellular fatty acids (> 5%) were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C19:0 cyclo ω8c, C18:1 ω7c 11-methyl and C16:0. The polar lipid profile contained one phosphatidylethanolamine, one diphosphatidylglycerol, one phosphatidylglycerol, one unidentified phospholipid, three unidentified aminolipids, two unidentified aminophospholipids and seven unidentified lipids. The only respiratory quinone was ubiquinone-10. Based on 16S rRNA gene sequence phylogenetic analysis, strain SYSU D60015T was found to form a distinct linage within the family Sneathiellaceae, and had 16S rRNA gene sequence similarities of 90.8% to Taonella mepensis H1T, and 90.2% to Ferrovibrio denitrificans S3T. The genome of SYSU D60015T was 5.66 Mb in size with 68.2% of DNA G + C content. The low digital DNA-DNA hybridization (dDDH, 18.0%), average nucleotide identity (ANI, 77.5%) and amino acid identity (AAI, 56.0%) values between SYSU D60015T and Ferrovibrio terrae K5T indicated that SYSU D60015T might represent a distinct genus. Based on the phylogenetic, phenotypic, chemotaxonomic and genomic data, we propose Desertibaculum subflavum gen. nov., sp. nov. as a novel species of a new genus within the family Sneathiellaceae. The type strain is SYSU D60015T (= NBRC 112952T = CGMCC 1.16256T).
Collapse
Affiliation(s)
- Chu-Ying Feng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Huan-Huan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Zhuo-Huan Zheng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yi-Jun Mo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chun-Yan Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Dong-Ya Zhang
- Microbiome Research Center, Moon (Guangzhou) BiotechLtd., Guangzhou, 510700, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
6
|
Wu Z, Guo L, Wu Y, Yang M, Du S, Shao J, Zhang Z, Zhao Y. Novel phage infecting the Roseobacter CHUG lineage reveals a diverse and globally distributed phage family. mSphere 2024; 9:e0045824. [PMID: 38926906 PMCID: PMC11288001 DOI: 10.1128/msphere.00458-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteriophages play an essential role in shaping the diversity and metabolism of bacterial communities. Marine Roseobacter group is an abundant heterotrophic bacterial group that is involved in many major element cycles, especially carbon and sulfur. Members of the Roseobacter CHUG (Clade Hidden and Underappreciated Globally) lineage are globally distributed and are activated in pelagic marine environments. In this study, we isolated and characterized a phage, CRP-810, that infects the CHUG strain FZCC0198. The genome of CRP-810 was dissimilar to those of other known phages. Additionally, 251 uncultured viral genomes (UViGs) closely related to CRP-810 were obtained from the uncultivated marine viral contig databases. Comparative genomic and phylogenetic analyses revealed that CRP-810 and these related UViGs exhibited conserved genome synteny, representing a new phage family with at least eight subgroups. Most of the CRP-810-type phages contain an integrase gene, and CRP-810 can be integrated into the host genome. Further analysis revealed that three CRP-810-type members were prophages found in the genomes of marine SAR11, Poseidonocella, and Sphingomonadaceae. Finally, viromic read-mapping analysis showed that CRP-810-type phages were globally distributed and displayed distinct biogeographic patterns related to temperature and latitude. Many members with a lower G + C content were mainly distributed in the trade station, whereas members with a higher G + C content were mainly distributed in polar and westerlies station, indicating that the niche differentiation of phages was subject to host adaptation. Collectively, these findings identify a novel phage family and expand our understanding of phylogenetic diversity, evolution, and biogeography of marine phages. IMPORTANCE The Roseobacter CHUG lineage, affiliated with the Pelagic Roseobacter Cluster (PRC), is widely distributed in the global oceans and is active in oligotrophic seawater. However, knowledge of the bacteriophages that infect CHUG members is limited. In this study, a CHUG phage, CRP-810, that infects the CHUG strain FZCC0198, was isolated and shown to have a novel genomic architecture. In addition, 251 uncultured viral genomes closely related to CRP-810 were recovered and included in the analyses. Phylogenomic analyses revealed that the CRP-810-type phages represent a new phage family containing at least eight genus-level subgroups. Members of this family were predicted to infect various marine bacteria. We also demonstrated that the CRP-810-type phages are widely distributed in global oceans and display distinct biogeographic patterns related to latitude. Collectively, this study provides important insights into the genomic organization, diversity, and ecology of a novel phage family that infect ecologically important bacteria in the global ocean.
Collapse
Affiliation(s)
- Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luyuan Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabing Shao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Su Z, Xu Y, Xiao Y, Chen B, Qiu X, Ye J, Tang K. Mesobacterium hydrothermale sp. nov., isolated from shallow-sea hydrothermal systems off Kueishantao Island. Antonie Van Leeuwenhoek 2024; 117:93. [PMID: 38954062 DOI: 10.1007/s10482-024-01994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
A Gram-negative, rod-shaped, non-motile, aerobic bacterium, designated as strain TK19101T, was isolated from the intermediate seawater of yellow vent in the shallow-sea hydrothermal system located near Kueishantao Island. The strain was found to grow at 10-40 °C (optimum, 35 °C), at pH 6.0-8.0 (optimum, 7.0), and in 0-5% (w/v) NaCl (optimum, 1%). Strain TK19101T was catalase-positive and oxidase-positive. The predominant fatty acids (> 10%) in strain TK19101T cells were C16:0, summed feature 8 (C18:1 ω6c and/or C18:1 ω7c), and C18:0. The predominant isoprenoid quinone of strain TK19101T was ubiquinone-10. The polar lipids of strain TK19101T comprised phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phospholipid, and unknown polar lipid. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TK19101T belonged to the genus Mesobacterium. Strain TK19101T exhibited highest 16S rRNA gene sequence similarity value to Mesobacterium pallidum MCCC M24557T (97.48%). The estimated average nucleotide identity and digital DNA-DNA hybridization values between strain TK19101T and the closest related species Mesobacterium pallidum MCCC M24557T were 74.88% and 20.30%, respectively. The DNA G + C content was 63.49 mol%. On the basis of the analysis of 16S rRNA gene sequences, genotypic and phylogenetic data, strain TK19101T has a unique phylogenetic status and represents a novel species of genus Mesobacterium, for which the name Mesobacterium hydrothermale sp. nov. is proposed. The type strain is TK19101T (= MCCC 1K08936T = KCTC 8354T).
Collapse
Affiliation(s)
- Zhiyi Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Yue Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Yuhang Xiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Beihan Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xuanyun Qiu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Jianing Ye
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
8
|
Hahnke S, Giebel HA, Freese HM, Moraru C, Tindall BJ, Simon M, Brinkhoff T. Biogeography of Lentibacter algarum, description of a new strain isolated from the North Sea and emended genus and species descriptions. Int J Syst Evol Microbiol 2024; 74. [PMID: 39058551 DOI: 10.1099/ijsem.0.006472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
A new heterotrophic, aerobic alphaproteobacterium, designated strain SH36 (=DSM 23330=LMG 25292), was obtained from a seawater sample collected in the open North Sea during a phytoplankton bloom. Analysis of the 16S rRNA gene sequence revealed affiliation of strain SH36 to the species Lentibacter algarum (family Roseobacteraceae), showing 100 and 99.9 % sequence similarity to the 16S rRNA genes of the strains L. algarum ZXM098 and ZXM100T. Digital DNA-DNA hybridization of strain SH36 with the type strain of L. algarum showed 98.0 % relatedness, confirming that strain SH36 can be classified within the same species. All three L. algarum strains were compared by physiological, morphological, chemotaxonomic, and genotypic characteristics. The strains showed only minor differences in the composition of fatty acids and polar lipids, but considerable physiological differences. Comparison of the 16S rRNA gene sequence of SH36 with sequences present in GenBank revealed that phylotypes with ≥98.65 % sequence identity to the type strain of L. algarum were found at different marine and estuarine locations of temperate and subtropic regions. Furthermore, by using a specific PCR approach L. algarum was detected throughout annual cycles at the offshore station at Helgoland Roads in the German Bight, indicating that this species is a permanent member of the microbial community in the North Sea.
Collapse
Affiliation(s)
- Sarah Hahnke
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
- Present address: Department of Human Medicine, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
| | - Heike M Freese
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
- Present address: Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141 Essen, Germany
| | - Brian J Tindall
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
| |
Collapse
|
9
|
Isaac A, Mohamed AR, Amin SA. Rhodobacteraceae are key players in microbiome assembly of the diatom Asterionellopsis glacialis. Appl Environ Microbiol 2024; 90:e0057024. [PMID: 38809046 PMCID: PMC11218658 DOI: 10.1128/aem.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
The complex interactions between bacterioplankton and phytoplankton have prompted numerous studies that investigate phytoplankton microbiomes with the aim of characterizing beneficial or opportunistic taxa and elucidating core bacterial members. Oftentimes, this knowledge is garnered through 16S rRNA gene profiling of microbiomes from phytoplankton isolated across spatial and temporal scales, yet these studies do not offer insight into microbiome assembly and structuring. In this study, we aimed to identify taxa central to structuring and establishing the microbiome of the ubiquitous diatom Asterionellopsis glacialis. We introduced a diverse environmental bacterial community to A. glacialis in nutrient-rich or nutrient-poor media in a continuous dilution culture setup and profiled the bacterial community over 7 days. 16S rRNA amplicon sequencing showed that cyanobacteria (Coleofasciculaceae) and Rhodobacteraceae dominate the microbiome early on and maintain a persistent association throughout the experiment. Differential abundance, co-abundance networks, and differential association analyses revealed that specific members of the family Rhodobacteraceae, particularly Sulfitobacter amplicon sequence variants, become integral members in microbiome assembly. In the presence of the diatom, Sulfitobacter species and other Rhodobacteraceae developed positive associations with taxa that are typically in high abundance in marine ecosystems (Pelagibacter and Synechococcus), leading to restructuring of the microbiome compared to diatom-free controls. These positive associations developed predominantly under oligotrophic conditions, highlighting the importance of investigating phytoplankton microbiomes in as close to natural conditions as possible to avoid biases that develop under routine laboratory conditions. These findings offer further insight into phytoplankton-bacteria interactions and illustrate the importance of Rhodobacteraceae, not merely as phytoplankton symbionts but as key taxa involved in microbiome assembly. IMPORTANCE Most, if not all, microeukaryotic organisms harbor an associated microbial community, termed the microbiome. The microscale interactions that occur between these partners have global-scale consequences, influencing marine primary productivity, carbon cycling, and harmful algal blooms to name but a few. Over the last decade, there has been a growing interest in the study of phytoplankton microbiomes, particularly within the context of bloom dynamics. However, long-standing questions remain regarding the process of phytoplankton microbiome assembly. The significance of our research is to tease apart the mechanism of microbiome assembly with a particular focus on identifying bacterial taxa, which may not merely be symbionts but architects of the phytoplankton microbiome. Our results strengthen the understanding of the ecological mechanisms that underpin phytoplankton-bacteria interactions in order to accurately predict marine ecosystem responses to environmental perturbations.
Collapse
Affiliation(s)
- Ashley Isaac
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Amin R. Mohamed
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Shady A. Amin
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mubadala ACCESS Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Hu X, Yang F, Yang S, Guo W, Ren J, Liu S, Xiao X, Zhu L, Wei W. Roseinatronobacter alkalisoli sp. nov., an alkaliphilic bacterium isolated from soda soil, and genome-based reclassification of the genera Rhodobaca and Roseinatronobacter. Int J Syst Evol Microbiol 2024; 74. [PMID: 38832859 DOI: 10.1099/ijsem.0.006402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
The genera Rhodobaca and Roseinatronobacter are phylogenetically related genera within the family Paracoccaceae. Species of these genera were described using 16S rRNA gene-based phylogeny and phenotypic characteristics. However, the 16S rRNA gene identity and phylogeny reveal the controversy of the taxonomic status of these two genera. In this work, we examined the taxonomic positions of members of both genera using 16S rRNA gene phylogeny, phylogenomic analysis and further validated using overall genome-related indexes, including digital DNA-DNA hybridization, average nucleotide identity, average amino acid identity and percentage of conserved proteins. Based on phylogenetic and phylogenomic results, the current four species of the two genera clustered tightly into one clade with high bootstrap values, suggesting that the genus Rhodobaca should be merged with Roseinatronobacter. In addition, a novel species isolated from a soda soil sample collected from Anda City, PR China, and designated as HJB301T was also described. Phenotypic, chemotaxonomic, genomic and phylogenetic properties suggested that strain HJB301T (=CCTCC AB 2021113T=KCTC 82977T) represents a novel species of the genus Roseinatronobacter, for which the name Roseinatronobacter alkalisoli sp. nov. is proposed.
Collapse
Affiliation(s)
- Xinyu Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Fan Yang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, PR China
| | - Shujing Yang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, PR China
| | - Wenjun Guo
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jiangtao Ren
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, PR China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang Agriculture and Forestry University, Hangzhou, PR China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Wei Wei
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
11
|
Hahnke S, Berger M, Schlingloff A, Athale I, Wolf J, Neumann-Schaal M, Adenaya A, Poehlein A, Daniel R, Petersen J, Brinkhoff T. Roseobacter fucihabitans sp. nov., isolated from the brown alga Fucus spiralis. Int J Syst Evol Microbiol 2024; 74. [PMID: 38861315 DOI: 10.1099/ijsem.0.006403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
A Gram-negative, aerobic, pink-pigmented, and bacteriochlorophyll a-containing bacterial strain, designated B14T, was isolated from the macroalga Fucus spiralis sampled from the southern North Sea, Germany. Based on 16S rRNA gene sequences, species of the genera Roseobacter and Sulfitobacter were most closely related to strain B14T with sequence identities ranging from 98.15 % (Roseobacter denitrificans Och 114T) to 99.11 % (Roseobacter litoralis Och 149T), whereas Sulfitobacter mediterraneus CH-B427T exhibited 98.52 % sequence identity. Digital DNA-DNA hybridization and average nucleotide identity values between the genome of the novel strain and that of closely related Roseobacter and Sulfitobacter type strains were <20 % and <77 %, respectively. The novel strain contained ubiquinone-10 as the only respiratory quinone and C18 : 1 ω7c, C16 : 0, C18 : 0, C12 : 1 ω7c, C18 : 2 ω7,13c, and C10 : 0 3-OH as the major cellular fatty acids. The predominant polar lipids of strain B14T were phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The genome of strain B14T comprises a chromosome with a size of 4.5 Mbp, one chromid, and four plasmids. The genome contains the complete gene cluster for aerobic anoxygenic photosynthesis required for a photoheterotrophic lifestyle. The results of this study indicate that strain B14T (=DSM 116946T=LMG 33352T) represents a novel species of the genus Roseobacter for which the name Roseobacter fucihabitans sp. nov. is proposed.
Collapse
Affiliation(s)
- Sarah Hahnke
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Present address: Department of Human Medicine, University of Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Andrea Schlingloff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Isha Athale
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Jacqueline Wolf
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Adenike Adenaya
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
12
|
Yoon J. Polyphasic Investigation of Aliiroseovarius salicola sp. nov., Isolated from Seawater. Curr Microbiol 2024; 81:178. [PMID: 38758299 DOI: 10.1007/s00284-024-03715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
A novel Gram-stain-negative, strictly aerobic, short-rod-shaped, and chemo-organoheterotrophic bacterium, designated KMU-50T, was isolated from seawater gathered from Dadaepo Harbor in South Korea. The microorganism grew at 0-4.0% NaCl concentrations (w/v), pH 6.0-8.0, and 4-37 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain KMU-50T is a novel member of the family Roseobacteraceae and were greatly related to Aliiroseovarius crassostreae CV919-312T with sequence similarity of 98.3%. C18:1 ω7c was the main fatty acid and ubiquinone-10 was the only isoprenoid quinone. The dominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified phospholipids, an unidentified aminolipid, and an unidentified lipid. The genome size of strain KMU-50T was 3.60 Mbp with a DNA G+C content of 56.0%. The average nucleotide identity (ANI) and average amino acid identity (AAI) values between the genomes of strain KMU-50T and its closely related species were 76.0-81.2% and 62.2-81.5%, respectively. The digital DNA-DNA hybridization (dDDH) value of strain KMU-50T with the strain of A. crassostreae CV919-312T was 25.1%. The genome of the strain KMU-50T showed that it encoded many genes involved in the breakdown of bio-macromolecules, thus showing a high potential as a producer of industrially useful enzymes. Consequently, the strain is described as a new species in the genus Aliiroseovarius, for which the name Aliiroseovarius salicola sp. nov., is proposed with the type strain KMU-50T (= KCCM 90480T = NBRC 115482T).
Collapse
Affiliation(s)
- Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, South Korea.
| |
Collapse
|
13
|
Xu X, He M, Xue Q, Li X, Liu A. Genome-based taxonomic classification of the genus Sulfitobacter along with the proposal of a new genus Parasulfitobacter gen. nov. and exploring the gene clusters associated with sulfur oxidation. BMC Genomics 2024; 25:389. [PMID: 38649849 PMCID: PMC11034169 DOI: 10.1186/s12864-024-10269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The genus Sulfitobacter, a member of the family Roseobacteraceae, is widely distributed in the ocean and is believed to play crucial roles in the global sulfur cycle. However, gene clusters associated with sulfur oxidation in genomes of the type strains of this genus have been poorly studied. Furthermore, taxonomic errors have been identified in this genus, potentially leading to significant confusion in ecological and evolutionary interpretations in subsequent studies of the genus Sulfitobacter. This study aims to investigate the taxonomic status of this genus and explore the metabolism associated with sulfur oxidation. RESULTS This study suggests that Sulfitobacter algicola does not belong to Sulfitobacter and should be reclassified into a novel genus, for which we propose the name Parasulfitobacter gen. nov., with Parasulfitobacter algicola comb. nov. as the type species. Additionally, enzymes involved in the sulfur oxidation process, such as the sulfur oxidization (Sox) system, the disulfide reductase protein family, and the sulfite dehydrogenase (SoeABC), were identified in almost all Sulfitobacter species. This finding implies that the majority of Sulfitobacter species can oxidize reduced sulfur compounds. Differences in the modular organization of sox gene clusters among Sulfitobacter species were identified, along with the presence of five genes with unknown function located in some of the sox gene clusters. Lastly, this study revealed the presence of the demethylation pathway and the cleavage pathway used by many Sulfitobacter species to degrade dimethylsulfoniopropionate (DMSP). These pathways enable these bacteria to utilize DMSP as important source of sulfur and carbon or as a defence strategy. CONCLUSIONS Our findings contribute to interpreting the mechanism by which Sulfitobacter species participate in the global sulfur cycle. The taxonomic rearrangement of S. algicola into the novel genus Parasulfitobacter will prevent confusion in ecological and evolutionary interpretations in future studies of the genus Sulfitobacter.
Collapse
Affiliation(s)
- Xiaokun Xu
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China
| | - Mengdan He
- School of Basic Medical Sciences, Shandong Second Medical University, 261042, Weifang, Shandong, P. R. China
| | - Qingjie Xue
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China
| | - Xiuzhen Li
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China
| | - Ang Liu
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China.
| |
Collapse
|
14
|
He W, Wang HC, Wang L, Xue HP, Li YF, Zhang AH, Zhang DF. Ruegeria marisflavi sp. nov. and Ruegeria aquimaris sp. nov., isolated from seawater of the Yellow Sea. Int J Syst Evol Microbiol 2024; 74. [PMID: 38568051 DOI: 10.1099/ijsem.0.006323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Two novel Gram-stain-negative, aerobic, non-motile and rod-shaped bacteria, designated as WL0004T and XHP0148T, were isolated from seawater samples collected from the coastal areas of Nantong and Lianyungang, PR China, respectively. Both strains were found to grow at 10-42 °C (optimum, 37 °C) and with 2.0-5.0 % (w/v) NaCl (optimum, 3.0 %). Strain WL0004T grew at pH 6.0-9.0 (optimum, pH 7.0-8.0), while XHP0148T grew at pH 6.0-10.0 (optimum, pH 7.0-8.0). The major cellular fatty acids (>10 %) of both strains included summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). In addition, strain WL0004T contained 11-methyl C18 : 1 ω7c and strain XHP0148T contained C12 : 0 3-OH. The respiratory quinone of both strains was ubiquinone-10. The G+C content of genomic DNA of strains WL0004T and XHP0148T were 62.5 and 63.0 mol%, respectively. Strains WL0004T and XHP0148T showed the highest 16S rRNA gene sequence similarity to Ruegeria pomeroyi DSS-3T (99.4 and 99.0 %, respectively), and the 16S rRNA gene-based phylogenetic analysis indicated that the two strains were closely related to members of the genus Ruegeria. The average nucleotide identity and digital DNA-DNA hybridization values among the two strains and type strains of the genus Ruegeria were all below 95 and 70 %, respectively, and the phylogenetic tree reconstructed from the bac120 gene set indicated that the two strains are distinct from each other and the members of the genus Ruegeria. Based on this phenotypic and genotypic characterization, strains WL0004T (=MCCC 1K07523T=JCM 35565T=GDMCC 1.3083T) and XHP0148T (=MCCC 1K07543T=JCM 35569T=GDMCC 1.3089T) should be recognized as representing two novel species of the genus Ruegeria and the names Ruegeria marisflavi sp. nov. and Ruegeria aquimaris sp. nov. are proposed, respectively.
Collapse
Affiliation(s)
- Wei He
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing 210024, PR China
| | - Hong-Chuan Wang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing 210024, PR China
| | - Lu Wang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing 210024, PR China
| | - Hua-Peng Xue
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing 210024, PR China
| | - Yong-Fu Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing 210024, PR China
| | - Ai Hua Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing 210024, PR China
| | - Dao-Feng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing 210024, PR China
| |
Collapse
|
15
|
Tran DQ, Milke F, Niggemann J, Simon M. The diatom Thalassiosira rotula induces distinct growth responses and colonization patterns of Roseobacteraceae, Flavobacteria and Gammaproteobacteria. Environ Microbiol 2023; 25:3536-3555. [PMID: 37705313 DOI: 10.1111/1462-2920.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
Diatoms as important phytoplankton components interact with and are colonized by heterotrophic bacteria. This colonization has been studied extensively in the past but a distinction between the bacterial colonization directly on diatom cells or on the aggregated organic material, exopolymeric substances (EPS), was little addressed. Here we show that the diatom Thalassiosira rotula and EPS were differently colonized by strains of Roseobacteraceae and Flavobacteriaceae in two and tree partner treatments and an enriched natural bacterial community as inoculum. In two partner treatments, the algae and EPS were generally less colonized than in the three partner treatments. Two strains benefitted greatly from the presence of another partner as the proportions of their subpopulations colonizing the diatom cell and the EPS were much enhanced relative to their two partner treatments. Highest proportions of bacteria colonizing the diatom and EPS occurred in the treatment inoculated with the enriched natural bacterial community. Dissolved organic carbon, amino acids and carbohydrates produced by T. rotula were differently used by the bacteria in the two and three partner treatments and most efficiently by the enriched natural bacterial community. Our approach is a valid model system to study physico-chemical bacteria-diatom interactions with increasing complexity.
Collapse
Affiliation(s)
- Den Quoc Tran
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Felix Milke
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Jutta Niggemann
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
16
|
Huang J, Wang J, Li G, Lai Q, Zhu X, Wang S, Liu X, Shao Z, Wang L. Pseudodonghicola flavimaris sp. nov. and Sedimentitalea xiamensis sp. nov., two novel species belonging to the family Roseobacteraceae. Int J Syst Evol Microbiol 2023; 73. [PMID: 38050805 DOI: 10.1099/ijsem.0.006192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Two Gram-stain-negative, chemoheterotrophic, aerobic bacteria, designated IC7T and JM2-8T, were isolated from seawater of the Yellow Sea of China and rhizosphere soil of mangroves in Xiamen, Fujian, respectively. Phylogenetic analyses based on 16S rRNA gene and genome sequences showed that these two novel strains belonged to the family Roseobacteraceae. Strain IC7T formed a coherent lineage within the genus Pseudodonghicola, showing 98.05 % 16S rRNA gene sequence similarity to Pseudodonghicola xiamenensis Y-2T. Strain JM2-8T was most closely related to members of the genus Sedimentitalea, showing 96.51 and 96.73 % 16S rRNA gene sequence similarities to Sedimentitalea nanhaiensis NH52FT and Sedimentitalea todarodis KHS03T, respectively. The two novel strains contained Q-10 as the major quinone, and phosphatidylethanolamine, aminophospholipid, phosphatidylglycerol and phosphatidylcholine as the principal polar lipids. The main fatty acid of strain IC7T was C19 : 0 cyclo ω8c, while the fatty acid profile JM2-8T was dominated by summed feature 8 containing C18 : 1 ω7c and/or C18 : 1 ω6c. The average nucleotide identity and digital DNA-DNA hybridization values between these two novel isolates and their closely related species were below the cut-off values of 95-96 and 70 %, respectively. The combined genotypic and phenotypic data show that strain IC7T represents a novel species of the genus Pseudodonghicola, for which the name Pseudodonghicola flavimaris sp. nov. is proposed, with the type strain IC7T (=MCCC 1A02763T=KCTC 82844T), and strain JM2-8T represents a novel species of the genus Sedimentitalea, for which the name Sedimentitalea xiamensis sp. nov. is proposed, with the type strain JM2-8T (=MCCC 1A17756T=KCTC 82846T).
Collapse
Affiliation(s)
- Jiamei Huang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, PR China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, PR China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Jianning Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, PR China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Guangyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, PR China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, PR China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Xuying Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, PR China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Shanshan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, PR China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Xiupian Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, PR China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, PR China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| | - Liping Wang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, PR China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen, PR China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, PR China
| |
Collapse
|
17
|
Abe M, Kanaly RA, Mori JF. Genomic analysis of a marine alphaproteobacterium Sagittula sp. strain MA-2 that carried eight plasmids. Mar Genomics 2023; 72:101070. [PMID: 38008530 DOI: 10.1016/j.margen.2023.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 11/28/2023]
Abstract
Bacteria that belong to the family Roseobacteraceae in the Alphaproteobacteria class are widely distributed in marine environments with remarkable physiological diversity, which is considered to be attributed to their genomic plasticity. In this study, a novel isolate of the genus Sagittula within Roseobacteraceae, strain MA-2, was obtained from a coastal marine bacterial consortium enriched with aromatic hydrocarbons, and its complete genome was sequenced. The genome with a total size of 5.69 Mbp was revealed to consist of a 4.67-Mbp circular chromosome and eight circular plasmids ranging in size from 19.5 to 361.5 kbp. Further analyses of functional genes in the strain MA-2 genome identified homologous genes responsible for the biotransformation of gentisic acid, which were located on one of its plasmids and were not found in genomes of other Sagittula strains available from databases. This suggested that strain MA-2 had acquired these genes via horizontal gene transfers that enabled them to degrade and utilize gentisic acid as a growth substrate. This study provided the second complete genome sequence of the genus Sagittula and supports the hypothesis that acquisition of ecologically relevant genes in extrachromosomal replicons allows Roseobacteraceae to be highly adaptable to diverse lifestyles.
Collapse
Affiliation(s)
- Mayuko Abe
- Graduate School of Nanobiosciences, Yokohama City University, Japan
| | - Robert A Kanaly
- Graduate School of Nanobiosciences, Yokohama City University, Japan
| | - Jiro F Mori
- Graduate School of Nanobiosciences, Yokohama City University, Japan.
| |
Collapse
|
18
|
Liu Y, Brinkhoff T, Berger M, Poehlein A, Voget S, Paoli L, Sunagawa S, Amann R, Simon M. Metagenome-assembled genomes reveal greatly expanded taxonomic and functional diversification of the abundant marine Roseobacter RCA cluster. MICROBIOME 2023; 11:265. [PMID: 38007474 PMCID: PMC10675870 DOI: 10.1186/s40168-023-01644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster. RESULTS The total of 82 MAGs, plus five genomes of isolates, reveal an unexpected diversity and novel insights into the genomic features, the functional diversity, and greatly refined biogeographic patterns of the RCA cluster. This cluster is subdivided into three genera: Planktomarina, Pseudoplanktomarina, and the most deeply branching Candidatus Paraplanktomarina. Six of the eight Planktomarina species have larger genome sizes (2.44-3.12 Mbp) and higher G + C contents (46.36-53.70%) than the four Pseudoplanktomarina species (2.26-2.72 Mbp, 42.22-43.72 G + C%). Cand. Paraplanktomarina is represented only by one species with a genome size of 2.40 Mbp and a G + C content of 45.85%. Three novel species of the genera Planktomarina and Pseudoplanktomarina are validly described according to the SeqCode nomenclature for prokaryotic genomes. Aerobic anoxygenic photosynthesis (AAP) is encoded in three Planktomarina species. Unexpectedly, proteorhodopsin (PR) is encoded in the other Planktomarina and all Pseudoplanktomarina species, suggesting that this light-driven proton pump is the most important mode of acquiring complementary energy of the RCA cluster. The Pseudoplanktomarina species exhibit differences in functional traits compared to Planktomarina species and adaptations to more resource-limited conditions. An assessment of the global biogeography of the different species greatly expands the range of occurrence and shows that the different species exhibit distinct biogeographic patterns. They partially reflect the genomic features of the species. CONCLUSIONS Our detailed MAG-based analyses shed new light on the diversification, environmental adaptation, and global biogeography of a major lineage of pelagic bacteria. The taxonomic delineation and validation by the SeqCode nomenclature of prominent genera and species of the RCA cluster may be a promising way for a refined taxonomic identification of major prokaryotic lineages and sublineages in marine and other prokaryotic communities assessed by metagenomics approaches. Video Abstract.
Collapse
Affiliation(s)
- Yanting Liu
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, People's Republic of China.
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Sonja Voget
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl Von Ossietzky Str. 9-11, 26129, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstr. 231, 26129, Oldenburg, Germany.
| |
Collapse
|
19
|
Feng X, Xing P. Genomics of Yoonia sp. Isolates (Family Roseobacteraceae) from Lake Zhangnai on the Tibetan Plateau. Microorganisms 2023; 11:2817. [PMID: 38004828 PMCID: PMC10673129 DOI: 10.3390/microorganisms11112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the genomic differentiation between marine and non-marine aquatic microbes remains a compelling question in ecology. While previous research has identified several lacustrine lineages within the predominantly marine Roseobacteraceae family, limited genomic data have constrained our understanding of their ecological adaptation mechanisms. In this study, we isolated four novel Yoonia strains from a brackish lake on the Tibetan Plateau. These strains have diverged from their marine counterparts within the same genus, indicating a recent habitat transition event from marine to non-marine environments. Metabolic comparisons and ancestral genomic reconstructions in a phylogenetic framework reveal metabolic shifts in salinity adaptation, compound transport, aromatics degradation, DNA repair, and restriction systems. These findings not only corroborate the metabolic changes commonly observed in other non-marine Roseobacters but also unveil unique adaptations, likely reflecting the localized metabolic changes in responses to Tibetan Plateau environments. Collectively, our study expands the known genomic diversity of non-marine Roseobacteraceae lineages and enhances our understanding of microbial adaptations to lacustrine ecosystems.
Collapse
Affiliation(s)
- Xiaoyuan Feng
- Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518000, China;
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
20
|
Hameed A, Suchithra KV, Lin SY, Stothard P, Young CC. Genomic potential for inorganic carbon sequestration and xenobiotic degradation in marine bacterium Youngimonas vesicularis CC-AMW-E T affiliated to family Paracoccaceae. Antonie Van Leeuwenhoek 2023; 116:1247-1259. [PMID: 37740842 DOI: 10.1007/s10482-023-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Ecological studies on marine microbial communities largely focus on fundamental biogeochemical processes or the most abundant constituents, while minor biological fractions are frequently neglected. Youngimonas vesicularis CC-AMW-ET, isolated from coastal surface seawater in Taiwan, is an under-represented marine Paracoccaceae (earlier Rhodobacteraceae) member. The CC-AMW-ET genome was sequenced to gain deeper insights into its role in marine carbon and sulfur cycles. The draft genome (3.7 Mb) contained 63.6% GC, 3773 coding sequences and 51 RNAs, and displayed maximum relatedness (79.06%) to Thalassobius litoralis KU5D5T, a Roseobacteraceae member. While phototrophic genes were absent, genes encoding two distinct subunits of carbon monoxide dehydrogenases (CoxL, BMS/Form II and a novel form III; CoxM and CoxS), and proteins involved in HCO3- uptake and interconversion, and anaplerotic HCO3- fixation were found. In addition, a gene coding for ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, form II), which fixes atmospheric CO2 was found in CC-AMW-ET. Genes for complete assimilatory sulfate reduction, sulfide oxidation (sulfide:quinone oxidoreductase, SqrA type) and dimethylsulfoniopropionate (DMSP) cleavage (DMSP lyase, DddL) were also identified. Furthermore, genes that degrade aromatic hydrocarbons such as quinate, salicylate, salicylate ester, p-hydroxybenzoate, catechol, gentisate, homogentisate, protocatechuate, 4-hydroxyphenylacetic acid, N-heterocyclic aromatic compounds and aromatic amines were present. Thus, Youngimonas vesicularis CC-AMW-ET is a potential chemolithoautotroph equipped with genetic machinery for the metabolism of aromatics, and predicted to play crucial roles in the biogeochemical cycling of marine carbon and sulfur.
Collapse
Affiliation(s)
- Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India.
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Kokkarambath Vannadil Suchithra
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
21
|
Zhang DF, He W, Shao Z, Ahmed I, Zhang Y, Li WJ, Zhao Z. Phylotaxonomic assessment based on four core gene sets and proposal of a genus definition among the families Paracoccaceae and Roseobacteraceae. Int J Syst Evol Microbiol 2023; 73. [PMID: 37970897 DOI: 10.1099/ijsem.0.006156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
The families Paracoccaceae and
Roseobacteraceae
comprise metabolically, phenotypically and genotypically diverse members, and their descriptions rely heavily on 16S rRNA gene analysis. Hundreds of genera have been reported within the two families and misclassifications have been a reoccurring problem, even when the taxonomies have been established based on genome-scale phylogenetic reconstructions. In this study, we conducted a comprehensive phylotaxonomic assessment of the families Paracoccaceae and
Roseobacteraceae
based on four ubiquitous gene sets, bac120 (120 genes in Bacteria), rhodo268 (268 genes in ‘
Rhodobacteraceae
’, defined in this study), rp1 (16 ribosomal protein genes in Prokaryote) and rp2 (23 ribosomal protein genes in Prokaryote), using two tree-inferring applications and two approaches (supermatrix and consensus). The results suggested that the four supermatrix trees based on bac120 and rhodo268 shared a high proportion of common nodes (>88.4 %) and the topology was reproducible among all the trees within most of the genera. The evolutionary distance (ED) analysis showed significant overlapping between the intergeneric and intrageneric comparisons, implying that the proposal of some genera seemed to be unnecessary. In addition, the bac120 gene set and the FastTree program were found to be the most cost-effective way to conduct phylogenomic analysis of the families Paracoccaceae and
Roseobacteraceae
. An ED threshold of 0.21–0.23 based on either bac120 or rhodo268 was proposed as one standard for later genus delimitation in these families. A comprehensive phylogenetic framework is presented in this study and the proposed genus definition will help to establish a more reasonable taxonomy in the families Paracoccaceae and
Roseobacteraceae
.
Collapse
Affiliation(s)
- Dao-Feng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| | - Wei He
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| | - Zongze Shao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Iftikhar Ahmed
- National Agricultural Research Centre (NARC), Land Resources Research Institute (LRRI), National Culture Collection of Pakistan (NCCP), Islamabad, Pakistan
| | - Yuqin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China
| | - Wen-Jun Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, PR China
| |
Collapse
|
22
|
Yang P, Liang J, Yin Q, Li G, Zhang Y, Xu Y, Hao L. Pacificoceanicola onchidii gen. nov., sp. nov., isolated from a marine invertebrate from the South China Sea. Int J Syst Evol Microbiol 2023; 73. [PMID: 37888976 DOI: 10.1099/ijsem.0.006103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
A Gram-stain-negative, facultative anaerobic, non-flagellated and oval-shaped (0.77-0.98 µm wide and 0.74-1.21 µm long) bacterial strain, designated XY-301T, was isolated from a marine invertebrate collected from the South China Sea. Strain XY-301T grew at 15-37 °C (optimum, 30-35 °C) and at pH 7.0-8.5 (optimum, pH 8.0). The strain was slightly halophilic and it only grew in the presence of 0.5-6.5 % (w/v) NaCl (optimum, 2.5-3.5 %). Its predominant fatty acid (>10 %) was C18 : 1 ω7c. The predominant polar lipids of XY-301T were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, six unidentified aminolipids, three unidentified phospholipids and two unknown polar lipids. The respiratory quinone was Q-10. The genome of XY-301T was 4 979 779 bp in size, with a DNA G+C content of 61.3 mol%. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between XY-301T and Pseudoprimorskyibacter insulae SSK3-2T were 73.3, 14.5 and 53.5 %, respectively. Based on the results of phylogenetic, phenotypic, chemotaxonomic and genomic analyses, strain XY-301T is considered to represent a novel species and a new genus of the family Roseobacteraceae, for which the name Pacificoceanicola onchidii gen. nov., sp. nov. is proposed. The type strain is XY-301T (=KCTC 72212T=MCCC 1K03614T).
Collapse
Affiliation(s)
- Peng Yang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Avenue, Nanshan Section, Shenzhen 518060, PR China
| | - Jinyou Liang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Avenue, Nanshan Section, Shenzhen 518060, PR China
| | - Qi Yin
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Guanbin Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Avenue, Nanshan Section, Shenzhen 518060, PR China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Avenue, Nanshan Section, Shenzhen 518060, PR China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Avenue, Nanshan Section, Shenzhen 518060, PR China
| | - Lingyun Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Avenue, Nanshan Section, Shenzhen 518060, PR China
| |
Collapse
|
23
|
Zheng ZH, Lu CY, Lian WH, Han JR, Chen F, Zhou T, Li S, Dong L, Li WJ. Danxiaibacter flavus gen. nov., sp. nov., a novel bacterium of the family Chitinophagaceae isolated from forest soil on Danxia Mountain. Int J Syst Evol Microbiol 2023; 73. [PMID: 37791661 DOI: 10.1099/ijsem.0.006082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
A Gram-stain-negative, aerobic, short rod-shaped, yellow bacterium, designated SYSU DXS3180T, was isolated from forest soil of Danxia Mountain in PR China. Growth occurred at 15-37 °C (optimum, 28-30 °C), pH 6.0-10.0 (optimum, pH 7.0-8.0) and with 0-2.0 % NaCl (optimum, 0-0.5 %, w/v). Strain SYSU DXS3180T was positive for hydrolysis of Tween 20, Tween 60, Tween 80 and starch, but negative for urease, H2S production, nitrate reduction, Tween 40 and gelatin. Phylogenetic analysis based on 16S rRNA gene and genome sequences showed that SYSU DXS3180T belonged to the family Chitinophagaceae. The closely related members were Foetidibacter luteolus YG09T (94.2 %), Limnovirga soli KCS-6T (93.9 %) and Filimonas endophytica SR 2-06T (93.7 %). The genome of strain SYSU DXS3180T was 7287640 bp with 5782 protein-coding genes, and the genomic DNA G+C content was 41.4 mol%. The main respiratory quinone was MK-7 and the major fatty acids (>10 %) were iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G. The major polar lipids consisted of phosphatidylethanolamine, two unidentified aminolipids and two unidentified polar lipids. Based on the phylogenetic, phenotypic and chemotaxonomic characteristics, strain SYSU DXS3180T is proposed to represent a novel species of a novel genus named Danxiaibacter flavus gen. nov., sp. nov., within the family Chitinophagaceae. The type strain is SYSU DXS3180T (=KCTC 92895T=GDMCC 1.3825 T).
Collapse
Affiliation(s)
- Zhuo-Huan Zheng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Chun-Yan Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jia-Rui Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Fang Chen
- Administrative Commission of Danxiashan National Park, Shaoguan, 512300, PR China
| | - Ting Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| |
Collapse
|
24
|
Coe LSY, Fei C, Weston J, Amin SA. Phycobacter azelaicus gen. nov. sp. nov., a diatom symbiont isolated from the phycosphere of Asterionellopsis glacialis. Int J Syst Evol Microbiol 2023; 73. [PMID: 37889154 DOI: 10.1099/ijsem.0.006104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
A diatom-associated bacterium, designated as strain F10T, was isolated from a pure culture of the pennate diatom Asterionellopsis glacialis A3 and has since been used to characterize molecular mechanisms of symbiosis between phytoplankton and bacteria, including interactions using diatom-derived azelaic acid. Its origin from a hypersaline environment, combined with its capacity for quorum sensing, biofilm formation, and potential for dimethylsulfoniopropionate methylation/cleavage, suggest it is within the family Roseobacteraceae. Initial phylogenetic analysis of the 16S rRNA gene sequence placed this isolate within the Phaeobacter genus, but recent genomic and phylogenomic analyses show strain F10T is a separate lineage diverging from the genus Pseudophaeobacter. The genomic DNA G+C content is 60.0 mol%. The predominant respiratory quinone is Q-10. The major fatty acids are C18 : 1 ω7c and C16 : 0. Strain F10T also contains C10 : 03-OH and the furan-containing fatty acid 10,13-epoxy-11-methyl-octadecadienoate (9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid). The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Based on genomic, phylogenomic, phenotypic and chemotaxonomic characterizations, strain F10T represents a novel genus and species with the proposed name, Phycobacter azelaicus gen. nov. sp. nov. The type strain is F10T (=NCMA B37T=NCIMB 15470T=NRIC 2002T).
Collapse
Affiliation(s)
- Lisa S Y Coe
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - Cong Fei
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - James Weston
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
- Arabian Center for Climate and Environmental Sciences (ACCESS), New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| |
Collapse
|
25
|
Gattoni G, Di Costanzo F, de la Haba RR, Fernández AB, Guerrero-Flores S, Selem-Mojica N, Ventosa A, Corral P. Biosynthetic gene profiling and genomic potential of the novel photosynthetic marine bacterium Roseibaca domitiana. Front Microbiol 2023; 14:1238779. [PMID: 37860137 PMCID: PMC10584327 DOI: 10.3389/fmicb.2023.1238779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023] Open
Abstract
Shifting the bioprospecting targets toward underexplored bacterial groups combined with genome mining studies contributes to avoiding the rediscovery of known compounds by revealing novel, promising biosynthetic gene clusters (BGCs). With the aim of determining the biosynthetic potential of a novel marine bacterium, strain V10T, isolated from the Domitian littoral in Italy, a comparative phylogenomic mining study was performed across related photosynthetic bacterial groups from an evolutionary perspective. Studies on polyphasic and taxogenomics showed that this bacterium constitutes a new species, designated Roseibaca domitiana sp. nov. To date, this genus has only one other validly described species, which was isolated from a hypersaline Antarctic lake. The genomic evolutionary study linked to BGC diversity revealed that there is a close relationship between the phylogenetic distance of the members of the photosynthetic genera Roseibaca, Roseinatronobacter, and Rhodobaca and their BGC profiles, whose conservation pattern allows discriminating between these genera. On the contrary, the rest of the species related to Roseibaca domitiana exhibited an individual species pattern unrelated to genome size or source of isolation. This study showed that photosynthetic strains possess a streamlined content of BGCs, of which 94.34% of the clusters with biotechnological interest (NRPS, PKS, RRE, and RiPP) are completely new. Among these stand out T1PKS, exclusive of R. domitiana V10T, and RRE, highly conserved only in R. domitiana V10T and R. ekhonensis, both categories of BGCs involved in the synthesis of plant growth-promoting compounds and antitumoral compounds, respectively. In all cases, with very low homology with already patented molecules. Our findings reveal the high biosynthetic potential of infrequently cultured bacterial groups, suggesting the need to redirect attention to microbial minorities as a novel and vast source of bioactive compounds still to be exploited.
Collapse
Affiliation(s)
- Giuliano Gattoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Ana B. Fernández
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, Pamplona, Spain
- Research & Development Department, Bioinsectis SL, Navarre, Spain
| | - Shaday Guerrero-Flores
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México UNAM, Morelia, Mexico
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México UNAM, Morelia, Mexico
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
26
|
Wang YH, Liu JC, Du YH, Xu JH, Du ZJ, Ye MQ. Psychromarinibacter sediminicola sp. nov., a novel moderately halophilic, metabolically diverse bacterium isolated from a solar saltern sediment, and comparison between members of family Roseobacteraceae. Arch Microbiol 2023; 205:331. [PMID: 37698663 DOI: 10.1007/s00203-023-03672-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Known for its species abundance and evolutionary status complexity, family Roseobacteraceae is an important subject of many studies on the discovery, identification, taxonomic status, and ecological properties of marine bacteria. This study compared and analyzed the phylogenetic, genomic, biochemical, and chemo taxonomical properties of seven species from three genera (Psychromarinibacter, Lutimaribacter, and Maritimibacter) of the family Roseobacteraceae. Moreover, a novel strain, named C21-152T was isolated from solar saltern sediment in Weihai, China. The values of 16S rRNA gene sequence similarity, the average nucleotide identity (ANI), the average amino acid identity (AAI), and the digital DNA-DNA hybridization (dDDH) between genomes of the novel strain and Psychromarinibacter halotolerans MCCC 1K03203T were 97.19, 78.49, 73.45, and 21.90%, respectively. Genome sequencing of strain C21-152T revealed a complete Sox enzyme system related to thiosulfate oxidization as well as a complete pathway for the final conversion of hydroxyproline to α-ketoglutarate. In addition, strain C21-152T was resistant to many antibiotics and had the ability to survive below 13% salinity. This strain had versatile survival strategies in saline environments including salt-in, compatible solute production and compatible solute transport. Some of its physiological features enriched and complemented the knowledge of the characteristics of the genus Psychromarinibacter. Optimum growth of strain C21-152T occurred at 37 ℃, with 5-6% (w/v) NaCl and at pH 7.5. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic properties and genome analysis, strain C21-152T should represent a novel specie of the genus Psychromarinibacter, for which the name Psychromarinibacter sediminicola sp. nov. is proposed. The type strain is C21-152T (= MCCC 1H00808T = KCTC 92746T = SDUM1063002T).
Collapse
Affiliation(s)
- Yu-Hui Wang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Jun-Cheng Liu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Yi-Heng Du
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jin-Hao Xu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, 264209, People's Republic of China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, 264209, People's Republic of China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, Guangdong, People's Republic of China.
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, Shandong, People's Republic of China.
| |
Collapse
|
27
|
Ma T, Xue H, Piao C, Jiang N, Li Y. Genome-based analyses of family Oxalobacteraceae reveal the taxonomic classification. Res Microbiol 2023; 174:104076. [PMID: 37137377 DOI: 10.1016/j.resmic.2023.104076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Family Oxalobacteraceae is known for the indicator of bacterial diversity in the environment and many of which are important beneficial bacteria. Previous studies on the taxonomic structure of family Oxalobacteraceae mostly relied on 16S rRNA gene analysis, or core-genome phylogeny of a limited number of species and resulted in taxonomic confusion within several genera. Developments in sequencing technologies have allowed more genome sequences to be obtained, enabling the revision of family Oxalobacteraceae. Here, we report a comprehensive analysis of phylogenomic trees, concatenated protein and up-to-date bacterial core gene phylogenetic trees, and genomic metrics for genus demarcation on 135 genomes of Oxalobacteraceae species to elucidate their interrelationships. Following this framework for classification of species in family Oxalobacteraceae, all the proposed genera formed monophyletic lineages in the phylogenomic trees and could also be clearly separated from others in the genomic similarity indexes of average amino acid identity, percentage of conserved proteins and core-proteome average amino acid identity.
Collapse
Affiliation(s)
- Tengfei Ma
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
| | - Han Xue
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
| | - Chungen Piao
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
| | - Ning Jiang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
| | - Yong Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
28
|
Ma T, Xue H, Piao C, Jiang N, Li Y. Phylogenomic reappraisal of the family Rhizobiaceae at the genus and species levels, including the description of Ectorhizobium quercum gen. nov., sp. nov. Front Microbiol 2023; 14:1207256. [PMID: 37601364 PMCID: PMC10434624 DOI: 10.3389/fmicb.2023.1207256] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The family Rhizobiaceae contains 19 validly described genera including the rhizobia groups, many of which are important nitrogen-fixing bacteria. Early classification of Rhizobiaceae relied heavily on the poorly resolved 16S rRNA genes and resulted in several taxonomic conflicts. Although several recent studies illustrated the taxonomic status of many members in the family Rhizobiaceae, several para- and polyphyletic genera still needed to be elucidated. The rapidly increasing number of genomes in Rhizobiaceae has allowed for a revision of the taxonomic identities of members in Rhizobiaceae. In this study, we performed analyses of genome-based phylogeny and phylogenomic metrics to review the relationships of 155-type strains within the family Rhizobiaceae. The UBCG and concatenated protein phylogenetic trees, constructed based on 92 core genes and concatenated alignment of 170 single-copy orthologous proteins, demonstrated that the taxonomic inconsistencies should be assigned to eight novel genera, and 22 species should be recombined. All these reclassifications were also confirmed by pairwise cpAAI values, which separated genera within the family Rhizobiaceae with a demarcation threshold of ~86%. In addition, along with the phenotypic and chemotaxonomic analyses, a novel strain BDR2-2T belonging to a novel genus of the family Rhizobiaceae was also confirmed, for which the name Ectorhizobium quercum gen. nov., sp. nov. was proposed. The type strain is BDR2-2T (=CFCC 16492T = LMG 31717T).
Collapse
Affiliation(s)
| | | | | | | | - Yong Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
29
|
Hong YW, Jang GI, Kim SY, Choi JY, Kim BJ, Shin DY, Kang JK, Kim SK, Cho BC, Hwang CY. Roseovarius pelagicus sp. nov., a facultatively anaerobic bacterium with potential for degrading polypropylene, isolated from Arctic seawater. Int J Syst Evol Microbiol 2023; 73. [PMID: 37561014 DOI: 10.1099/ijsem.0.005999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
A Gram-stain-negative, facultatively anaerobic, non-motile, rod-shaped bacterial strain, designated HL-MP18T, was isolated from Arctic seawater after a prolonged incubation employing polypropylene as the sole carbon source. Phylogenetic analyses of the 16S rRNA gene sequence revealed that strain HL-MP18T was affiliated to the genus Roseovarius with close relatives Roseovarius carneus LXJ103T (96.8 %) and Roseovarius litorisediminis KCTC 32327T (96.5 %). The complete genome sequence of strain HL-MP18T comprised a circular chromosome of 3.86 Mbp and two circular plasmids of 0.17 and 0.24 Mbp. Genomic comparisons based on average nucleotide identity and digital DNA-DNA hybridization showed that strain HL-MP18T was consistently discriminated from its closely related taxa in the genus Roseovarius. Strain HL-MP18T showed optimal growth at 25 °C, pH 7.0 and 2.5 % (w/v) sea salts. The major cellular fatty acids were C18 : 1 ω6c and/or C18 : 1 ω7c (49.6 %), C19 : 0 cyclo ω8c (13.5 %), and C16 : 0 (12.8 %). The major respiratory quinone was ubiquinone-10. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid and three unidentified lipids. The genomic DNA G+C content of the strain was 59.2 mol%. The phylogenetic, genomic, phenotypic and chemotaxonomic results indicate that strain HL-MP18T is distinguishable from the recognized species of the genus Roseovarius. Therefore, we propose that strain HL-MP18T represents a novel species belonging to the genus Roseovarius, for which the name Roseovarius pelagicus sp. nov. is proposed. The type strain is HL-MP18T (=KCCM 90405T=JCM 35639T).
Collapse
Affiliation(s)
- Yeon Woo Hong
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwang Il Jang
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, Busan 46083, Republic of Korea
| | - Soo Yoon Kim
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jy Young Choi
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bok Jin Kim
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Young Shin
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Kyeong Kang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Kyu Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Byung Cheol Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
- Saemangeum Environmental Research Center, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Chung Yeon Hwang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
30
|
Oren A, Göker M. Notification of changes in taxonomic opinion previously published outside the IJSEM. List of Changes in Taxonomic Opinion no. 38. Int J Syst Evol Microbiol 2023; 73. [PMID: 37526965 DOI: 10.1099/ijsem.0.005923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
31
|
Hardies SC, Cho BC, Jang GI, Wang Z, Hwang CY. Identification of Structural and Morphogenesis Genes of Sulfitobacter Phage ΦGT1 and Placement within the Evolutionary History of the Podoviruses. Viruses 2023; 15:1475. [PMID: 37515163 PMCID: PMC10386132 DOI: 10.3390/v15071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
ΦGT1 is a lytic podovirus of an alphaproteobacterial Sulfitobacter species, with few closely matching sequences among characterized phages, thus defying a useful description by simple sequence clustering methods. The history of the ΦGT1 core structure module was reconstructed using timetrees, including numerous related prospective prophages, to flesh out the evolutionary lineages spanning from the origin of the ejectosomal podovirus >3.2 Gya to the present genes of ΦGT1 and its closest relatives. A peculiarity of the ΦGT1 structural proteome is that it contains two paralogous tubular tail A (tubeA) proteins. The origin of the dual tubeA arrangement was traced to a recombination between two more ancient podoviral lineages occurring ~0.7 Gya in the alphaproteobacterial order Rhizobiales. Descendants of the ancestral dual A recombinant were tracked forward forming both temperate and lytic phage clusters and exhibiting both vertical transmission with patchy persistence and horizontal transfer with respect to host taxonomy. The two ancestral lineages were traced backward, making junctions with a major metagenomic podoviral family, the LUZ24-like gammaproteobacterial phages, and Myxococcal phage Mx8, and finally joining near the origin of podoviruses with P22. With these most conservative among phage genes, deviations from uncomplicated vertical and nonrecombinant descent are numerous but countable. The use of timetrees allowed conceptualization of the phage's evolution in the context of a sequence of ancestors spanning the time of life on Earth.
Collapse
Affiliation(s)
- Stephen C Hardies
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Byung Cheol Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
- Saemangeum Environmental Research Center, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Gwang Il Jang
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, Busan 46083, Republic of Korea
| | - Zhiqing Wang
- National Cryo-EM Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Chung Yeon Hwang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
32
|
Jiang Y, Li Z. Identification and genomic analysis of Pseudosulfitobacter koreense sp. nov. isolated from toxin-producing dinoflagellate Alexandrium pacificum. Arch Microbiol 2023; 205:245. [PMID: 37209217 DOI: 10.1007/s00203-023-03583-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
The bacterial strain AP-MA-4T isolated from the marine dinoflagellate Alexandrium pacificum (KCTC AG60911), was subjected to a taxonomic analysis. Cells of strain AP-MA-4T were Gram-stain-negative, aerobic, rod-shaped, optimum growth at 20 °C, pH 7.0, in the presence of 5% (w/v) NaCl. Strain AP-MA-4T shared the highest 16S rRNA gene sequence similarity to Pseudosulfitobacter pseudonitzschiae DSM 26824T (98.5%), followed by Ascidiaceihabitans donghaensis RSS1-M3T (96.3%), Pseudoseohaeicola caenipelagi BS-W13T (95.7%), and Sulfitobacter pontiacus CHLG 10T (95.3%). Based on 16S rRNA phylogeny, strain AP-MA-4T is phylogenetically closely related to Pseudosulfitobacter pseudonitzschiae (type species of Pseudosulfitobacter) and could be distinguished from the type species based on their phenotypic properties. The genome length of strain AP-MA-4T was 3.48 Mbp with a 62.9% G + C content. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain AP-MA-4 T and its closely related type strains were 72.2-83.3 and 18.2-27.6%, respectively. Summed feature 8 (C18:1ω7c and/or C18:1ω6c) was identified the major fatty acids (> 10%). Phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phospholipid (PL) were demonstrated as the major polar lipids. The major respiratory quinone is ubiquinone-10 (Q-10). Based on genotypic and phenotypic features, strain AP-MA-4T (= KCTC 92289T = GDMCC 1.3585T) represents a new Pseudosulfitobacter species, in which the name Pseudosulfitobacter koreense sp. nov. is proposed.
Collapse
Affiliation(s)
- Yue Jiang
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Zhun Li
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
33
|
Su X, Cui H, Zhang W. Copiotrophy in a Marine-Biofilm-Derived Roseobacteraceae Bacterium Can Be Supported by Amino Acid Metabolism and Thiosulfate Oxidation. Int J Mol Sci 2023; 24:ijms24108617. [PMID: 37239957 DOI: 10.3390/ijms24108617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Copiotrophic bacteria that respond rapidly to nutrient availability, particularly high concentrations of carbon sources, play indispensable roles in marine carbon cycling. However, the molecular and metabolic mechanisms governing their response to carbon concentration gradients are not well understood. Here, we focused on a new member of the family Roseobacteraceae isolated from coastal marine biofilms and explored the growth strategy at different carbon concentrations. When cultured in a carbon-rich medium, the bacterium grew to significantly higher cell densities than Ruegeria pomeroyi DSS-3, although there was no difference when cultured in media with reduced carbon. Genomic analysis showed that the bacterium utilized various pathways involved in biofilm formation, amino acid metabolism, and energy production via the oxidation of inorganic sulfur compounds. Transcriptomic analysis indicated that 28.4% of genes were regulated by carbon concentration, with increased carbon concentration inducing the expression of key enzymes in the EMP, ED, PP, and TCA cycles, genes responsible for the transformation of amino acids into TCA intermediates, as well as the sox genes for thiosulfate oxidation. Metabolomics showed that amino acid metabolism was enhanced and preferred in the presence of a high carbon concentration. Mutation of the sox genes decreased cell proton motive force when grown with amino acids and thiosulfate. In conclusion, we propose that copiotrophy in this Roseobacteraceae bacterium can be supported by amino acid metabolism and thiosulfate oxidation.
Collapse
Affiliation(s)
- Xiaoyan Su
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Han Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
34
|
Yoon J. Thetidibacter halocola gen. nov., sp. nov., a novel member within the family Roseobacteraceae isolated from seawater. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01832-1. [PMID: 37133556 DOI: 10.1007/s10482-023-01832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
A Gram-staining-negative, strictly aerobic, dark beige-colored, rod-shaped, chemoorganoheterotrophic, and catalase- and oxidase-positive bacterium, designated as KMU-90T, was isolated from coastal seawater in the Republic of Korea, and subjected to a polyphasic study. The novel isolate was able to grow at 0-6.0% NaCl concentrations (w/v), pH 6.5-9.5, and 4-45 °C. The 16S rRNA gene sequences-based phylogeny revealed that the novel marine isolate belongs to the family Roseobacteraceae of class Alphaproteobacteria and that it shared the greatest sequence similarity (97.3%) with Aestuariicoccus marinus NAP41T. The novel strain could be distinguished phenotypically from related representatives of the family Roseobacteraceae. The major (> 10%) fatty acids of strain KMU-90T were C18:1 ω7c and C18:1 ω7c 11-methyl and the only respiratory quinone was ubiquinone-10 (Q-10). Strain KMU-90T contained phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, two unidentified aminolipids, an unidentified phospholipid, and three unidentified glycolipids as polar lipids. The assembled draft genome size of strain KMU-90T was 4.84 Mbp with a DNA G + C content of 66.5%. The average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values between the genomes of strain KMU-90T and its closely related representatives were 77.0-79.0%, 14.6-20.0%, and 60.0-69.9%, respectively. From the polyphasic taxonomic results obtained, the strain is considered to represent a novel genus and a new species of the family Roseobacteraceae, for which the name Thetidibacter halocola gen. nov., sp. nov. is proposed. The type species is T. halocola, with the type strain KMU-90T (= KCCM 90287T = NBRC 113375T).
Collapse
Affiliation(s)
- Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
35
|
Ding W, Wang S, Qin P, Fan S, Su X, Cai P, Lu J, Cui H, Wang M, Shu Y, Wang Y, Fu HH, Zhang YZ, Li YX, Zhang W. Anaerobic thiosulfate oxidation by the Roseobacter group is prevalent in marine biofilms. Nat Commun 2023; 14:2033. [PMID: 37041201 PMCID: PMC10090131 DOI: 10.1038/s41467-023-37759-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Thiosulfate oxidation by microbes has a major impact on global sulfur cycling. Here, we provide evidence that bacteria within various Roseobacter lineages are important for thiosulfate oxidation in marine biofilms. We isolate and sequence the genomes of 54 biofilm-associated Roseobacter strains, finding conserved sox gene clusters for thiosulfate oxidation and plasmids, pointing to a niche-specific lifestyle. Analysis of global ocean metagenomic data suggests that Roseobacter strains are abundant in biofilms and mats on various substrates, including stones, artificial surfaces, plant roots, and hydrothermal vent chimneys. Metatranscriptomic analysis indicates that the majority of active sox genes in biofilms belong to Roseobacter strains. Furthermore, we show that Roseobacter strains can grow and oxidize thiosulfate to sulfate under both aerobic and anaerobic conditions. Transcriptomic and membrane proteomic analyses of biofilms formed by a representative strain indicate that thiosulfate induces sox gene expression and alterations in cell membrane protein composition, and promotes biofilm formation and anaerobic respiration. We propose that bacteria of the Roseobacter group are major thiosulfate-oxidizers in marine biofilms, where anaerobic thiosulfate metabolism is preferred.
Collapse
Affiliation(s)
- Wei Ding
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| | - Shougang Wang
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Peng Qin
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shen Fan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Su
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Peiyan Cai
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| | - Jie Lu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Han Cui
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Meng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yi Shu
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yongming Wang
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Hui-Hui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| |
Collapse
|
36
|
Sreya P, Suresh G, Rai A, Ria B, Vighnesh L, Agre VC, Jagadeeshwari U, Sasikala C, Ramana CV. Revisiting the taxonomy of the genus Rhodopirellula with the proposal for reclassification of the genus to Rhodopirellula sensu stricto, Aporhodopirellula gen. nov., Allorhodopirellula gen. nov. and Neorhodopirellula gen. nov. Antonie Van Leeuwenhoek 2023; 116:243-264. [PMID: 36547858 DOI: 10.1007/s10482-022-01801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
The current genus Rhodopirellula consists of marine bacteria which belong to the family Pirellulaceae of the phylum Planctomycetota. Members of the genus Rhodopirellula are aerobic, mesophiles and chemoheterotrophs. The here conducted analysis built on 16S rRNA gene sequence and multi-locus sequence analysis based phylogenomic trees suggested that the genus is subdivided into four clades. Existing Rhodopirellula species were studied extensively based on phenotypic, genomic and chemotaxonomic parameters. The heterogeneity was further confirmed by overall genome-related indices (OGRI) including digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), average amino acid identity (AAI), and percentage of conserved proteins (POCP). AAI and POCP values between the clades of the genus Rhodopirellula were 62.2-69.6% and 49.5-62.5%, respectively. Comparative genomic approaches like pan-genome analysis and conserved signature indels (CSIs) also support the division of the clades. The genomic incoherence of the members of the genus is further supported by variations in phenotypic characteristics. Thus, with the here applied integrated comparative genomic and polyphasic approaches, we propose the reclassification of the genus Rhodopirellula to three new genera: Aporhodopirellula gen. nov., Allorhodopirellula gen. nov., and Neorhodopirellula gen. nov.
Collapse
Affiliation(s)
- Pannikurungottu Sreya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Gandham Suresh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Anusha Rai
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Biswas Ria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Lakshmanan Vighnesh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Vaibhav Chandrakant Agre
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Uppada Jagadeeshwari
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad, 500 085, India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad, 500 085, India.
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India.
| |
Collapse
|
37
|
Liu L, Chen X, Ye J, Ma X, Han Y, He Y, Tang K. Sulfoquinovose is a widespread organosulfur substrate for Roseobacter clade bacteria in the ocean. THE ISME JOURNAL 2023; 17:393-405. [PMID: 36593260 PMCID: PMC9938184 DOI: 10.1038/s41396-022-01353-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023]
Abstract
Sulfoquinovose (SQ) is one of the most abundant organosulfur compounds in the biosphere, and its biosynthesis and degradation can represent an important contribution to the sulfur cycle. To data, in marine environments, the microorganisms capable of metabolising SQ have remained unidentified and the sources of SQ are still uncertain. Herein, the marine Roseobacter clade bacteria (RCB) Dinoroseobacter shibae DFL 12 and Roseobacter denitrificans OCh 114 were found to grow using SQ as the sole source of carbon and energy. In the presence of SQ, we identified a set of highly up-regulated proteins encoded by gene clusters in these two organisms, of which four homologues to proteins in the SQ monooxygenase pathway of Agrobacterium fabrum C58 may confer the ability to metabolise SQ to these marine bacteria. The sulfite released from SQ desulfonation by FMN-dependent SQ monooxygenase (SmoC) may provide bacteria with reduced sulfur for assimilation, while proteins associated with sulfite production via assimilatory sulfate reduction were significantly down-regulated. Such SQ catabolic genes are restricted to a limited number of phylogenetically diverse bacterial taxa with the predominate genera belonging to the Roseobacter clade (Roseobacteraceae). Moreover, transcript analysis of Tara Oceans project and coastal Bohai Sea samples provided additional evidence for SQ metabolism by RCB. SQ was found to be widely distributed in marine phytoplankton and cyanobacteria with variable intracellular concentrations ranging from micromolar to millimolar levels, and the amounts of SQ on particulate organic matter in field samples were, on average, lower than that of dimethylsulfoniopropionate (DMSP) by one order of magnitude. Together, the phototroph-derived SQ actively metabolised by RCB represents a previously unidentified link in the marine sulfur cycle.
Collapse
Affiliation(s)
- Le Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiaofeng Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jianing Ye
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiaoyi Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yu Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yajie He
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
38
|
Mayers KMJ, Kuhlisch C, Basso JTR, Saltvedt MR, Buchan A, Sandaa RA. Grazing on Marine Viruses and Its Biogeochemical Implications. mBio 2023; 14:e0192121. [PMID: 36715508 PMCID: PMC9973340 DOI: 10.1128/mbio.01921-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Viruses are the most abundant biological entities in the ocean and show great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host cell lysis to release their progeny and thereby redirect nutrients from higher to lower trophic levels. Studies continue to show that marine viruses can be ingested by nonhost organisms. However, not much is known about the role of viral particles as a nutrient source and whether they possess a nutritional value to the grazing organisms. This review seeks to assess the elemental composition and biogeochemical relevance of marine viruses, including roseophages, which are a highly abundant group of bacteriophages in the marine environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of the largest viral particles in the marine plankton that are well in the size range of prey for marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon and energy sources, which further increases their nutritional value. Marine viruses may thus be an important nutritional component of the marine plankton, which can be reintegrated into the classical food web by nonhost organism grazing, a process that we coin the "viral sweep." Possibilities for future research to resolve this process are highlighted and discussed in light of current technological advancements.
Collapse
Affiliation(s)
- Kyle M. J. Mayers
- Environment and Climate Division, NORCE Norwegian Research Centre, Bergen, Norway
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonelle T. R. Basso
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Ruth-Anne Sandaa
- Department of Microbiology, University of Bergen, Bergen, Norway
| |
Collapse
|
39
|
Koteska D, Marter P, Huang S, Pradella S, Petersen J, Schulz S. Volatiles of the Apicomplexan Alga Chromera velia and Associated Bacteria. Chembiochem 2023; 24:e202200530. [PMID: 36416092 PMCID: PMC10107727 DOI: 10.1002/cbic.202200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Volatiles released by the apicomplexan alga Chromera velia CCAP1602/1 and their associated bacteria have been investigated. A metagenome analysis allowed the identification of the most abundant heterotrophic bacteria of the phycosphere, but the isolation of additional strains showed that metagenomics underestimated the complexity of the algal microbiome, However, a culture-independent approach revealed the presence of a planctomycete that likely represents a novel bacterial family. We analysed algal and bacterial volatiles by open-system-stripping analysis (OSSA) on Tenax TA desorption tubes, followed by thermodesorption, cryofocusing and GC-MS-analysis. The analyses of the alga and the abundant bacterial strains Sphingopyxis litoris A01A-101, Algihabitans albus A01A-324, "Coraliitalea coralii" A01A-333 and Litoreibacter sp. A01A-347 revealed sulfur- and nitrogen-containing compounds, ketones, alcohols, aldehydes, aromatic compounds, amides and one lactone, as well as the typical algal products, apocarotenoids. The compounds were identified by gas chromatographic retention indices, comparison of mass spectra and syntheses of reference compounds. A major algal metabolite was 3,4,4-trimethylcyclopent-2-en-1-one, an apocarotenoid indicating the presence of carotenoids related to capsanthin, not reported from algae so far. A low overlap in volatiles bouquets between C. velia and the bacteria was found, and the xenic algal culture almost exclusively released algal components.
Collapse
Affiliation(s)
- Diana Koteska
- Institut für Organische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Pia Marter
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Sixing Huang
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Silke Pradella
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7B38124BraunschweigGermany
| | - Stefan Schulz
- Institut für Organische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
40
|
Wei TT, Fan XB, Quan ZX. Abyssibius alkaniclasticus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae, isolated from the Mariana Trench. Int J Syst Evol Microbiol 2023; 73. [PMID: 36790414 DOI: 10.1099/ijsem.0.005715] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A Gram-stain-negative bacterium with rod-shaped or irregular cells approximately 0.5-0.9×2.0-3.8 µm in size, designated as 960558T, was isolated from sediment sampled in the Mariana Trench. Strain 960558T grows at 4-37 °C (optimum, 28 °C), pH 6-7 (optimum, pH 7) and in the presence of 1-5 % (w/v) NaCl (optimum, 3 %). Strain 960558T utilizes tetradecane or hexadecane as a sole carbon and energy source, respectively. Phylogenetic trees based on 16S rRNA gene sequences and phylogenomic reconstruction revealed a close phylogenetic relationship between strain 960558T and members of the family Rhodobacteraceae by forming a separate branch within the type species of closely related genera. The validly published species that is most closely related to strain 960558T is Planktotalea lamellibrachiae JAM 119T, which has the highest 16S rRNA gene sequence similarity (93.47 %). Ubiquinone 10 is the predominant ubiquinone, while C16 : 0, 11-methyl C18 : 1 ω7c and C18 : 1 ω7c and/or C18 : 1 ω6c are the predominant fatty acids (>10 %). Additionally, phosphatidylglycerol, glycolipids, diphosphatidylglycerol, unidentified polar lipids and unidentified aminolipids are the major polar lipids. The DNA G+C content of strain 960558T is 61 %. Average nucleotide identity and digital DNA-DNA hybridization results of strain 960558T with other type strains are <70.2 and 22.1 %, respectively. Based on its phylogenetic, chemotaxonomic and other phenotypic properties, strain 960558T is considered to represent a novel genus and species within the family Rhodobacteraceae, for which the name Abyssibius alkaniclasticus gen. nov., sp. nov. is proposed. The type strain of Abyssibius alkaniclasticus is 960558T (=KCTC 82619T=MCCC 1K04727T).
Collapse
Affiliation(s)
- Ting-Ting Wei
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Xi-Bei Fan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Zhe-Xue Quan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, PR China
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, PR China
| |
Collapse
|
41
|
Dunn AK. Alternative oxidase in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148929. [PMID: 36265564 DOI: 10.1016/j.bbabio.2022.148929] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
While alternative oxidase (AOX) was discovered in bacteria in 2003, the expression, function, and evolutionary history of this protein in these important organisms is largely unexplored. To date, expression and functional analysis is limited to studies in the Proteobacteria Novosphingobium aromaticivorans and Vibrio fischeri, where AOX likely plays roles in maintenance of cellular energy homeostasis and supporting responses to cellular stress. This review describes the history of the study of AOX in bacteria, details current knowledge of the predicted biochemical and structural characteristics, distribution, and function of bacterial AOX, and highlights interesting areas for the future study of AOX in bacteria.
Collapse
Affiliation(s)
- Anne K Dunn
- Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
42
|
Göker M. Filling the gaps: missing taxon names at the ranks of class, order and family. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748602 DOI: 10.1099/ijsem.0.005638] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The International Code of Nomenclature of Prokaryotes (ICNP) recently underwent some major modifications regarding the higher taxonomic ranks. On the one hand, the phylum category was introduced into the ICNP, which rapidly led to the valid publication of more than forty names of phyla. On the other hand, a decision on the retroactivity of Rule 8 regarding the names of classes was made, which removed most of the nomenclatural uncertainty that had affected those names during the last decade. However, it turned out that a number of names at the ranks of class, order and family are either not validly published or are validly published but illegitimate, although these names occur in the literature and are based on the type genus of a phylum with a validly published name. A closer examination of the literature for these and similar cases indicates that the names are unavailable under the ICNP either because of minor formal errors in the original descriptions, because another name should have been adopted for the taxon when the name was proposed, because of taxonomic uncertainties that were settled in the meantime, or because the names were placed on the list of rejected names. The purpose of this article is to fill the gaps by providing the missing formal descriptions and to ensure that the resulting taxon names are attributed to the original authors who did the taxonomic work.
Collapse
Affiliation(s)
- Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| |
Collapse
|
43
|
Deng Y, Mauri M, Vallet M, Staudinger M, Allen RJ, Pohnert G. Dynamic Diatom-Bacteria Consortia in Synthetic Plankton Communities. Appl Environ Microbiol 2022; 88:e0161922. [PMID: 36300970 PMCID: PMC9680611 DOI: 10.1128/aem.01619-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022] Open
Abstract
Microalgae that form phytoplankton live and die in a complex microbial consortium in which they co-exist with bacteria and other microorganisms. The dynamics of species succession in the plankton depends on the interplay of these partners. Bacteria utilize substrates produced by the phototrophic algae, while algal growth can be supported by bacterial exudates. Bacteria might also use chemical mediators with algicidal properties to attack algae. To elucidate whether specific bacteria play universal or context-specific roles in the interaction with phytoplankton, we investigated the effect of cocultured bacteria on the growth of 8 microalgae. An interaction matrix revealed that the function of a given bacterium is highly dependent on the cocultured partner. We observed no universally algicidal or universally growth-promoting bacteria. The activity of bacteria can even change during the aging of an algal culture from inhibitory to stimulatory or vice versa. We further established a synthetic phytoplankton/bacteria community with the centric diatom, Coscinodiscus radiatus, and 4 phylogenetically distinctive bacterial isolates, Mameliella sp., Roseovarius sp., Croceibacter sp., and Marinobacter sp. Supported by a Lotka-Volterra model, we show that interactions within the consortium are specific and that the sum of the pairwise interactions can explain algal and bacterial growth in the community. No synergistic effects between bacteria in the presence of the diatom was observed. Our survey documents highly species-specific interactions that are dependent on algal fitness, bacterial metabolism, and community composition. This species specificity may underly the high complexity of the multi-species plankton communities observed in nature. IMPORTANCE The marine food web is fueled by phototrophic phytoplankton. These algae are central primary producers responsible for the fixation of ca. 40% of the global CO2. Phytoplankton always co-occur with a diverse bacterial community in nature. This diversity suggests the existence of ecological niches for the associated bacteria. We show that the interaction between algae and bacteria is highly species-specific. Furthermore, both, the fitness stage of the algae and the community composition are relevant in determining the effect of bacteria on algal growth. We conclude that bacteria should not be sorted into algicidal or growth supporting categories; instead, a context-specific function of the bacteria in the plankton must be considered. This functional diversity of single players within a consortium may underly the observed diversity in the plankton.
Collapse
Affiliation(s)
- Yun Deng
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Marco Mauri
- Theoretical Microbial Ecology Group, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Marine Vallet
- Phytoplankton Community Interactions Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Mona Staudinger
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Rosalind J. Allen
- Theoretical Microbial Ecology Group, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Phytoplankton Community Interactions Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
44
|
Slobodkina G, Ratnikova N, Merkel A, Kevbrin V, Kuchierskaya A, Slobodkin A. Lithoautotrophic lifestyle of the widespread genus Roseovarius revealed by physiological and genomic characterization of Roseovarius autotrophicus sp. nov. FEMS Microbiol Ecol 2022; 98:6724241. [PMID: 36166357 DOI: 10.1093/femsec/fiac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022] Open
Abstract
The genus Roseovarius, a member of the ecologically important Roseobacter-clade, is widespread throughout the world. A facultatively anaerobic lithoautotrophic bacterium (strain SHN287T), belonging to the genus Roseovarius, was isolated with molecular hydrogen as an electron donor and nitrate as an electron acceptor from a terrestrial mud volcano. Strain SHN287T possessed metabolic features not reported for Roseovarius such as chemolithoautotrophic growth with oxidation of molecular hydrogen or sulfur compounds, anaerobic growth and denitrification. Based on the phenotypic and phylogenetic characteristics, the new isolate is considered to represent a novel species of the genus Roseovarius, for which the name Roseovarius autotrophicus sp. nov. is proposed. The type strain is SHN287T (= KCTC 15916T = VKM B-3404T). An amended description of the genus Roseovarius is provided. Comparison of 46 Roseovarius genomes revealed that (i) a full set of genes for the Calvin-Benson cycle is present only in two strains: SHN287T and Roseovarius salinarum; (ii) respiratory H2-uptake [NiFe] hydrogenases are specific for a phylogenetically distinct group, including SHN287T-related strains; (iii) the Sox enzymatic complex is encoded in most of the studied genomes; and (iv) denitrification genes are widespread and randomly distributed among the genus. The metabolic characteristics found in R. autotrophicus sp. nov. expand the ecological role of the genus Roseovarius.
Collapse
Affiliation(s)
- Galina Slobodkina
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - Nataliya Ratnikova
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - Alexander Merkel
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - Vadim Kevbrin
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | | | - Alexander Slobodkin
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| |
Collapse
|
45
|
The Sixth Element: a 102-kb RepABC Plasmid of Xenologous Origin Modulates Chromosomal Gene Expression in Dinoroseobacter shibae. mSystems 2022; 7:e0026422. [PMID: 35920548 PMCID: PMC9426580 DOI: 10.1128/msystems.00264-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The model organism Dinoroseobacter shibae and many other marine Rhodobacterales (Roseobacteraceae, Alphaproteobacteria) are characterized by a multipartite genome organization. Here, we show that the original isolate (Dshi-6) contained six extrachromosomal replicons (ECRs), whereas the strain deposited at the DSMZ (Dshi-5) lacked a 102-kb plasmid. To determine the role of the sixth plasmid, we investigated the genomic and physiological differences between the two strains. Therefore, both genomes were (re)sequenced, and gene expression, growth, and substrate utilization were examined. For comparison, we included additional plasmid-cured strains in the analysis. In the Dshi-6 population, the conjugative 102-kb RepABC-9 plasmid was present in only about 50% of the cells, irrespective of its experimentally validated stability. In the presence of the sixth plasmid, copy number changes of other ECRs, in particular, a decrease of the 86-kb plasmid, were observed. The most conspicuous finding was the strong influence of plasmids on chromosomal gene expression, especially the repression of the CtrA regulon and the activation of the denitrification gene cluster. Expression is inversely controlled by either the presence of the 102-kb plasmid or the absence of the 86-kb plasmid. We identified regulatory genes on both plasmids, i.e., a sigma 70 factor and a quorum sensing synthase, that might be responsible for these major changes. The tremendous effects that were probably even underestimated challenge the current understanding of the relevance of volatile plasmids not only for the original host but also for new recipients after conjugation. IMPORTANCE Plasmids are small DNA molecules that replicate independently of the bacterial chromosome. The common view of the role of plasmids is dominated by the accumulation of resistance genes, which is responsible for the antibiotic crisis in health care and livestock breeding. Beyond rapid adaptations to a changing environment, no general relevance for the host cell’s regulome was attributed to these volatile ECRs. The current study shows for the model organism D. shibae that its chromosomal gene expression is strongly influenced by two plasmids. We provide evidence that the gain or loss of plasmids not only results in minor alterations of the genetic repertoire but also can have tremendous effects on bacterial physiology. The central role of some plasmids in the regulatory network of the host could also explain their persistence despite fitness costs, which has been described as the “plasmid paradox.”
Collapse
|
46
|
Du J, Liu Y, Pei T, Li A, Zhu H. Ruegeria alba sp. nov., Isolated from a Tidal Flat Sediment. Curr Microbiol 2022; 79:267. [PMID: 35881206 DOI: 10.1007/s00284-022-02968-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
A novel Gram-staining-negative, aerobic, rod-shaped, and white-colored bacterium designated as 1NDH52CT was isolated from a tidal flat sediment and its taxonomic position was determined using a polyphasic taxonomic approach. The microorganism was found to grow at 10-37 °C, pH 6.0-9.0, and in the presence of 0-2% (w/v) NaCl, and to hydrolyze gelatin and aesculin. The major cellular fatty acid of strain 1NDH52CT was summed feature 8 (C19:1 ω7c and/or C18:1 ω6c); the polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an aminolipid, and a lipid; the respiratory quinone was ubiquinone-10. The 16S rRNA gene-based phylogenetic analysis showed that strain 1NDH52CT was closely related to members of the genus Ruegeria with the identity of 98.2% to the type strain Ruegeria pomeroyi DSM 15711T. The genome DNA G + C content of strain 1NDH52CT was 63.6%. The phylogenomic analysis indicated that strain 1NDH52CT formed an independent branch distinct from reference type strains of species within this genus. Digital DNA-DNA hybridization and average nucleotide identity values between strain 1NDH52CT and reference strains were, respectively, 19.1-41.5% and 78.3-91.3%, which are far below the thresholds of 70% and 95-96% for species definition, respectively, indicating that strain 1NDH52CT represents a novel genospecies of the genus Ruegeria. Based on phenotypic and genotypic data, strain 1NDH52CT is concluded to represent a novel species of the genus Ruegeria, for which the name Ruegeria alba sp. nov., is proposed. The type strain of the species is 1NDH52CT (= GDMCC 1.2382T = KCTC 82664T).
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Yang Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Tao Pei
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Anzhang Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.
| |
Collapse
|
47
|
Sedimentimonas flavescens gen. nov., sp. nov., isolated from sediment of Clam Island, Liaoning Province. Antonie Van Leeuwenhoek 2022; 115:979-994. [PMID: 35672593 DOI: 10.1007/s10482-022-01754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
A novel Gram-stain negative, aerobic and ovoid to short rod shaped bacterium with a single polar flagellum, named strain B57T, was isolated from sediment of Clam Island, Liaoning Province, China. The optimal growth of this strain was found to occur at 37 °C, pH 6-6.5, and in the presence of 2% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B57T forms a distinct lineage within the family Rhodobacteraceae, sharing high 16S rRNA gene sequence similarity with Sinirhodobacter populi sk2b1T (97.4%). The average amino acid identity of B57T and the closely related species were lower than the threshold level for genus delineation. The dominant respiratory quinone of strain B57T was identified as Q-10. The major fatty acids were found to be Summed Feature 8 (C18:1ω7c and/or C18:1ω6c), Summed Feature 3 (C16:1ω7c and/or C16:1ω6c) and C16: 0. The polar lipids were identified as phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, diphosphatidylglycerol, two unidentified phospholipids, one unidentified glycolipid, and one unidentified lipid. The DNA G + C content of strain B57T was determined to be 64.1 mol%. Based on the biochemical, phylogenetic and chemotaxonomic analysis, strain B57T is concluded to represent a novel species of a novel genus, for which the name Sedimentimonas flavescens gen. nov., sp. nov.is proposed. The type strain is B57T (= CGMCC1.19488T = KCTC 92053T).
Collapse
|
48
|
Guan Y, Jiang Y, Kim YM, Yu SY, Choi SH, Choe H, Li Z, Lee MK. Pseudophaeobacter flagellatus sp. nov., isolated from coastal water. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, motile, rod-shaped novel bacterial strain, designated as MA21411-1T, was isolated from the Korean coast. The colonies were white-yellow-coloured, smooth, convex and entire, spherical and 1.0–1.8 mm in diameter. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain MA21411-1T is closely related to species of the genus
Pseudophaeobacter
. The 16S rRNA gene sequence similarities between strain MA21411-1T and
Pseudophaeobacter arcticus
DSM 23566T,
Phaeobacter porticola
DSM 103148T and
Pseudophaeobacter leonis
DSM 25627T were 98.31, 97.80 and 97.28 %, respectively. Strain MA21411-1T has a draft genome size of 4 294 042 bp, annotated with 4125 protein-coding genes, and 53 tRNA, three rRNA and one tmRNA genes. The genomic DNA G+C content was 59.2 mol%. Comparative genome analysis revealed that the average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity values among strain MA21411-1T and other related species were below the cut-off levels of 95, 70 and 95.5 %, respectively. The growth temperature range for growth was 15–28 °C (optimum, 25 °C), pH range was 6.0–9.0 (optimum, pH 6.0), and salt tolerance range was 0.5–4 % (optimum 0.5 %). Ubiquinone-10 was the sole quinone present in MA21411-1T and all three closely related strains. The major cellular fatty acid (>10 %) of the strain was summed feature 8 (C18 : 1
ω7c and/or C18 : 1
ω6c). The polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and four unidentified polar lipids. Based on the phylogenetic tree, as well as phenotypic, chemotaxonomic and genomic features, strain MA21411-1T represents a novel species of the genus
Pseudophaeobacter
, for which the name Pseudophaeobacter flagellatus sp. nov. is proposed. The type strain is MA21411-1T (=KCTC 92095T=GDMCC 1.2988T).
Collapse
Affiliation(s)
- Yong Guan
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yue Jiang
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Young-Min Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung Yeob Yu
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Seung-Hyeon Choi
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Hanna Choe
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Zhun Li
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Mi-Kyung Lee
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| |
Collapse
|
49
|
Shaw DK, Sekar J, Ramalingam PV. Recent insights into oceanic dimethylsulfoniopropionate biosynthesis and catabolism. Environ Microbiol 2022; 24:2669-2700. [PMID: 35611751 DOI: 10.1111/1462-2920.16045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination 'pathway-' in some marine bacteria and algae, a Met-methylation 'pathway-' in angiosperms and bacteria and a decarboxylation 'pathway-' in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.
Collapse
Affiliation(s)
- Deepak Kumar Shaw
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Jegan Sekar
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Prabavathy Vaiyapuri Ramalingam
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| |
Collapse
|
50
|
Pontibrevibacter nitratireducens gen. nov., sp. nov., a member of the family Rhodobacteraceae isolated from seawater of the Indian Ocean and intertidal zone. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, facultatively anaerobic, non-motile, rod-shaped bacteria, strains h42T and ALG8, were isolated individually from the Indian Ocean and intertidal zone of Zhoushan, China. The results of 16S rRNA gene sequence analysis showed that the sequence similarity between strains h42T and ALG8 was 99.7 %, and the closest related strains were
Monaibacterium marinum
C7T (97.77 and 97.62 %) and
Pontivivens insulae
GYSW-23T (95.31 and 95.45 %). Phylogenetic analysis based on 16S rRNA gene sequences shows that these two novel strains belong to a distinct new lineage of the family
Rhodobacteraceae
in the order
Rhodobacterales
. The average nucleotide identity and in silico DNA–DNA hybridization values between the two novel strains and
M. marinum
C7T and
P. insulae
GYSW-23T were 72.73–78.15 % and 19.70–20.80 %, respectively. The DNA G+C content of strains h42T and ALG8 was 62.36 % and 62.17 mol %. The major fatty acids (>10 %) in strain h42T were C18 : 0, C19 : 0 cyclo ω8c and summed feature 8 (C18 : 1
ω6c and/or C18 : 1
ω7c), and in strain ALG8 were C19 : 0 cyclo ω8c and summed feature 8 (C18 : 1ω6c and/or C18 : 1
ω7c). The predominant isoprenoid ubiquinone of the two novel strains was Q-10; their major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified glycolipids, an unidentified aminoglycolipid, an unidentified phospholipid and an unidentified lipid. Based on the results of the morphological, physiological, chemotaxonomic and phylogenetic analysis of these two strains, a novel species of a new genus in the family
Rhodobacteraceae
is proposed, named as Pontibrevibacter nitratireducens gen. nov., sp. nov. The type strain and non-type strain of P. nitratireducens are h42T (=KCTC 72875T=CGMCC 1.17849T=MCCC 1K04735T) and ALG8 (=KCTC 82194=MCCC 1K04733).
Collapse
|