1
|
Fei L, Hafeez R, Zhang J, Fu S, Xu Y, Hao L. Investigation of the mechanisms involved in the biocontrol activities of natural products from a marine soil bacterium against rice blast. PEST MANAGEMENT SCIENCE 2025. [PMID: 39895525 DOI: 10.1002/ps.8684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/31/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Rice blast, caused by Pyricularia oryzae, is a devastating fungal disease threatening global rice production. Overreliance on chemical fungicides has raised environmental concerns and led to resistant strains, necessitating the development of sustainable alternatives. This study integrated marine microbiology and natural antifungal compounds to create eco-friendly alternatives to chemical fungicides for disease management. RESULTS We identified Pseudomonas aeruginosa R64 with broad-spectrum antimicrobial activity from mangrove soil in the Mai Po Nature Reserve. The R64 fermentation extract (RFE) exhibited multifaceted inhibition of P. oryzae, suppressing mycelial growth, conidiation, conidial germination and appressorial formation, while disturbing cell wall and membrane function. It also attenuated virulence by impairing appressorial penetration and invasive growth. Further chemical analysis identified phenazines and quinolines as the primary compounds in RFE, corroborated by PCR detection of corresponding phenazine biosynthetic gene clusters. Comparative bioassays with two main bioactive components of RFE, phenazine-1-carboxamide (PCN) and phenazine-1-carboxylic acid (PCA), against P. oryzae implicated PCN as the principal antifungal effector. RFE and PCN had higher efficacy than tricyclazole in P. oryzae growth inhibition, but were less effective than isoprothiolane. Furthermore, RFE and PCN displayed lower acute ecotoxicity to an environmental indicator organism than isoprothiolane, suggesting their potential as sustainable biopesticides for rice blast management. CONCLUSION Natural products from mangrove soil bacterium P. aeruginosa R64 inhibited key developmental and infection processes of P. oryzae, effectively reducing rice blast development. The promising disease inhibition and low ecotoxicity of mangrove-associated bacteria highlight their untapped potential for innovative, eco-friendly fungicide mining for sustainable agriculture. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Liwang Fei
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Rahila Hafeez
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Junliang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shiquan Fu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lingyun Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Jena B, Singh SS, Chakrabortty S, Behera SK, Tripathy SK, Lundborg CS, Kumar R, Ali Khan M, Jeon BH, Mishra A. Understanding the antibacterial mechanism of a phytochemical derived from Urginea indica against Methicillin-Resistant Staphylococcus aureus: A phytochemical perspective to impede antibiotics resistance. J IND ENG CHEM 2024; 139:213-224. [DOI: 10.1016/j.jiec.2024.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Zhou GJ, Xiong WJ, Xu W, Dou ZR, Liu BC, Li XL, Du H, Li HF, Zhang YZ, Jiang B, Wang KL. Diversity and Anti-Infectious Components of Cultivable Rhizosphere Fungi Derived from Three Species of Astragalus Plants in Northwestern Yunnan, China. J Fungi (Basel) 2024; 10:736. [PMID: 39590656 PMCID: PMC11595489 DOI: 10.3390/jof10110736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 11/28/2024] Open
Abstract
Astragalus, a group of legume plants, has a pronounced rhizosphere effect. Many species of Astragalus with limited resource reserves are distributed in the high-altitude area of northern Yunnan, China. Although some of these plants have high medicinal value, the recognition of them is still at a low level. The aim of this research is to explore the species diversity of cultivable rhizofungi derived from Astragalus acaulis, A. forrestii and A. ernestii growing in a special high-cold environment of northwest Yunnan and discover anti-infective components from these fungi. A total of 93 fungal strains belonging to 38 species in 18 genera were isolated and identified. Antibacterial and antimalarial screening yielded 10 target strains. Among them, the ethyl acetate crude extract of the fermented substrate of the rhizofungus Aspergillus calidoustus AA12 derived from the plant A. acaulis showed broad-spectrum antibacterial activity and the best antimalarial activity. Further chemical investigation led to the first discovery of seven compounds from the species A. calidoustus, including sesterterpine 6-epi-ophiobolin G; three sesquiterpenes, penicisochroman A, pergillin and 7-methyl-2-(1-methylethylethlidene)-furo [3,2-H]isoquinoline-3-one; and three polyketides, trypacidin, 1,2-seco-trypacidin and questin. Among them, the compound 6-epi-ophiobolin G exhibited moderate to strong antibacterial activity against six Gram-positive pathogens with the minimum inhibitory concentration (MIC) ranging from 25 to 6.25 μg/mL and a prominent inhibitory effect on the biofilm of Streptococcus agalactiae at an MIC value of 3.125 μg/mL. This compound also displayed potent antimalarial activity against Plasmodium falciparum strains 3D7 and chloroquine-resistant Dd2 at the half-maximal inhibitory concentration (IC50) values of 3.319 and 4.340 µmol/L at 72 h, respectively. This study contributed to our understanding of the cultivable rhizofungi from characteristic Astragalus plants in special high-cold environments and further increased the library of fungi available for natural anti-infectious product screening.
Collapse
Affiliation(s)
- Guo-Jun Zhou
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (G.-J.Z.); (W.-J.X.); (W.X.); (B.-C.L.); (X.-L.L.); (H.D.); (H.-F.L.); (Y.-Z.Z.); (B.J.)
| | - Wei-Jia Xiong
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (G.-J.Z.); (W.-J.X.); (W.X.); (B.-C.L.); (X.-L.L.); (H.D.); (H.-F.L.); (Y.-Z.Z.); (B.J.)
| | - Wei Xu
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (G.-J.Z.); (W.-J.X.); (W.X.); (B.-C.L.); (X.-L.L.); (H.D.); (H.-F.L.); (Y.-Z.Z.); (B.J.)
| | - Zheng-Rong Dou
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Bo-Chao Liu
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (G.-J.Z.); (W.-J.X.); (W.X.); (B.-C.L.); (X.-L.L.); (H.D.); (H.-F.L.); (Y.-Z.Z.); (B.J.)
| | - Xue-Li Li
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (G.-J.Z.); (W.-J.X.); (W.X.); (B.-C.L.); (X.-L.L.); (H.D.); (H.-F.L.); (Y.-Z.Z.); (B.J.)
| | - Hao Du
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (G.-J.Z.); (W.-J.X.); (W.X.); (B.-C.L.); (X.-L.L.); (H.D.); (H.-F.L.); (Y.-Z.Z.); (B.J.)
| | - Hai-Feng Li
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (G.-J.Z.); (W.-J.X.); (W.X.); (B.-C.L.); (X.-L.L.); (H.D.); (H.-F.L.); (Y.-Z.Z.); (B.J.)
| | - Yong-Zeng Zhang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (G.-J.Z.); (W.-J.X.); (W.X.); (B.-C.L.); (X.-L.L.); (H.D.); (H.-F.L.); (Y.-Z.Z.); (B.J.)
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (G.-J.Z.); (W.-J.X.); (W.X.); (B.-C.L.); (X.-L.L.); (H.D.); (H.-F.L.); (Y.-Z.Z.); (B.J.)
| | - Kai-Ling Wang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (G.-J.Z.); (W.-J.X.); (W.X.); (B.-C.L.); (X.-L.L.); (H.D.); (H.-F.L.); (Y.-Z.Z.); (B.J.)
| |
Collapse
|
4
|
Chan YL, Tang SN, Osman CP, Chee CF, Tay ST. Exploring naphthoquinone and anthraquinone derivatives as antibiotic adjuvants against Staphylococcus aureus biofilms: Synergistic effects of menadione. Microb Pathog 2024; 195:106886. [PMID: 39182855 DOI: 10.1016/j.micpath.2024.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Given the ability of Staphylococcus aureus to form biofilms and produce persister cells, making infections difficult to treat with antibiotics alone, there is a pressing need for an effective antibiotic adjuvant to address this public health threat. In this study, a series of quinone derivatives were evaluated for their antimicrobial and antibiofilm activities against methicillin-susceptible and methicillin-resistant S. aureus reference strains. Following analyses using broth microdilution, growth curve analysis, checkerboard assay, time-kill experiments, and confocal laser scanning microscopy, menadione was identified as a hit compound. Menadione exhibited a notable antibacterial profile (minimum inhibitory concentration, MIC = 4-16 μg/ml; minimum bactericidal concentration, MBC = 256 μg/ml) against planktonic S. aureus and its biofilms (minimum biofilm inhibitory concentration, MBIC50 = 0.0625-0.25 μg/ml). When combined with oxacillin, erythromycin, and vancomycin, menadione exhibited a synergistic or additive effect against planktonic cells and biofilms of two S. aureus reference strains and six clinical isolates, highlighting its potential as a suitable adjuvant for further development against S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Yun Li Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo Nee Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Che Puteh Osman
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Yang Z, Li X, Liu W, Wang G, Ma J, Jiang L, Yu D, Ding Y, Li Y. One-Step Organic Synthesis of 18β-Glycyrrhetinic Acid-Anthraquinone Ester Products: Exploration of Antibacterial Activity and Structure-Activity Relationship, Toxicity Evaluation in Zebrafish. Chem Biol Drug Des 2024; 104:e14631. [PMID: 39317695 DOI: 10.1111/cbdd.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
To combine the activity characteristics of 18β-glycyrrhetinic acid (18β-GA) and anthraquinone compounds (rhein and emodin), reduce toxicity, and explore the structure-activity relationship (SAR) of anthraquinones, 18β-GA-anthraquinone ester compounds were synthesized by one-step organic synthesis. The products were separated and purified by HPLC and characterized by NMR and EI-MS. It was finally determined as di-18β-GA-3-rhein ester (1, New), GA dimer (2, known), 18β-GA-3-emodin ester (3, known), and di-18β-GA-1-emodin ester (4, new). The MIC of three reactants and four products against Escherichia coli and Staphylococcus aureus were detected in vitro. Its developmental toxicity and cardiotoxicity were assessed using zebrafish embryos. The experimental results showed that rhein had the best antibacterial activity against Staphylococcus aureus with MIC50 of 2.4 mM, and it was speculated that -COOH, -OH, and intramolecular hydrogen bonds in anthraquinone compounds would enhance the antibacterial effect, while the presence of-CH3 might weaken the antibacterial activity. Product 1 increased the hatching rate and survival rate of zebrafish embryos and reduced the malformation rate and cardiomyocyte apoptosis. This experiment lays the foundation for further studying the SAR of anthraquinones and providing new drug candidates.
Collapse
Affiliation(s)
- Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyan Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Health and Welfare, Changchun Humanities and Sciences College, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Denghui Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
6
|
Muniyasamy R, Manjubala I. Synergistic combination of baicalein and rifampicin against Staphylococcus aureus biofilms. Front Microbiol 2024; 15:1458267. [PMID: 39165570 PMCID: PMC11333347 DOI: 10.3389/fmicb.2024.1458267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Staphylococcus aureus, a Gram-positive bacterium, is a predominant pathogen associated with various infections. The rapid emergence of antibiotic resistance has intensified the challenge of managing fracture-related infections in severe osteoporotic patients. Rifampicin, a potent antimicrobial agent employed against fracture and implant-related infections, necessitates combination therapies due to its susceptibility to antibiotic resistance. In this study, we explored the potential of baicalein, a bioactive flavonoid from Oroxylum indicum and Scutellaria baicalensis, in combination with rifampicin against S. aureus biofilms invitro. The minimum inhibitory concentration of baicalein and rifampicin were determined as 500 μg/mL and 12.5 ng/mL respectively. The synergistic activity of baicalein and rifampicin was determined by the fractional inhibitory concentration index (FICI) using checkerboard assay. The results showed the FICI of baicalein and rifampicin was lesser than 0.5, demonstrating synergistic effect. Furthermore, the efficacy of baicalein and rifampicin, both individually and in combination, was evaluated for biofilm inhibition and eradication. Scanning electron microscopy and confocal laser microscopy also confirmed that the synergistic combinations effectively removed most of the biofilms and partially killed pre-formed biofilms. In conclusion, the findings demonstrate that baicalein is as effective as rifampicin in inhibiting and eradicating S. aureus biofilms. Their combination exhibits synergistic effect, enhancing their bactericidal effect in completely eradicating S. aureus biofilms. The findings of this research underscore the research potential of combining baicalein and rifampicin as a novel therapeutic strategy against S. aureus biofilms, offering a promising direction for future research in the treatment of fracture-related S. aureus infections.
Collapse
Affiliation(s)
| | - I. Manjubala
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
7
|
Liu Y, Qi L, Xu M, Li W, Liu N, He X, Zhang Y. Anti- Agrobacterium tumefactions sesquiterpene derivatives from the marine-derived fungus Trichoderma effusum. Front Microbiol 2024; 15:1446283. [PMID: 39155986 PMCID: PMC11327026 DOI: 10.3389/fmicb.2024.1446283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Agrobacterium tumefaciens can harm various fruit trees, leading to significant economic losses in agricultural production. It is urgent to develop new pesticides to effectively treat this bacterial disease. In this study, four new sesquiterpene derivatives, trichoderenes A-D (1-4), along with six known compounds (5-10), were obtained from the marine-derived fungus Trichoderma effusum. The structures of 1-4 were elucidated by extensive spectroscopic analyses, and the calculated ECD, ORD, and NMR methods. Structurally, the hydrogen bond formed between the 1-OH group and the methoxy group enabled 1 to adopt a structure resembling that of resorcylic acid lactones, thereby producing the ECD cotton effect. Compound 3 represents the first example of C12 nor-sesquiterpene skeleton. Compounds 1-10 were tested for their antimicrobial activity against A. tumefactions. Among them, compounds 1-3 and 8-10 exhibited inhibitory activity against A. tumefactions with MIC values of 3.1, 12.5, 12.5, 6.2, 25.0, and 12.5 μg/mL, respectively.
Collapse
Affiliation(s)
- Yunfeng Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- College of Life Sciences, Hebei University, Baoding, China
| | - Lu Qi
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Minghui Xu
- College of Life Sciences, Hebei University, Baoding, China
| | - Wanyun Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Na Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding, China
| | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Jiang S, Xie D, Hu Z, Song H, Tang P, Jin Y, Xia J, Ji Y, Xiao Y, Chen S, Fu Q, Dai J. Enhanced diabetic wound healing with injectable hydrogel containing self-assembling nanozymes. J Control Release 2024; 372:265-280. [PMID: 38906418 DOI: 10.1016/j.jconrel.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
To build a smart system in response to the variable microenvironment in infected diabetic wounds, a multifunctional wound dressing was constructed by co-incorporating glucose oxidase (GOx) and a pH-responsive self-assembly Cu2-xSe-BSA nanozyme into a dual-dynamic bond cross-linked hydrogel (OBG). This composite hydrogel (OBG@CG) can adhere to the wound site and respond to the acidic inflammatory environment, initiating the GOx-catalyzed generation of H2O2 and the self-assembly activated peroxidase-like property of Cu2-xSe-BSA nanozymes, resulting in significant hydroxyl radical production to attack the biofilm during the acute infection period and alleviate the high-glucose microenvironment for better wound healing. During the wound recovery phase, Cu2-xSe-BSA aggregates disassembled owing to the elevated pH, terminating catalytic reactive oxygen species generation. Simultaneously, Cu2+ released from the Cu2-xSe-BSA not only promotes the production of mature collagen but also enhances the migration and proliferation of endothelial cells. RNA-seq analysis demonstrated that OBG@CG exerted its antibacterial property by damaging the integrity of the biofilm by inducing radicals and interfering with the energy supply, along with destroying the defense system by disturbing thiol metabolism and reducing transporter activities. This work proposes an innovative glucose consumption strategy for infected diabetic wound management, which may inspire new ideas in the exploration of smart wound dressing.
Collapse
Affiliation(s)
- Sicheng Jiang
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Dingqi Xie
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Zehui Hu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Honghai Song
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Pan Tang
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Yang Jin
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Jiechao Xia
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Yinwen Ji
- The Children's Hospital, National Clinical Research Center for Child Health, Medical College of Zhejiang University, Hangzhou 310052, China
| | - Ying Xiao
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Shuai Chen
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China.
| | - Qinrui Fu
- Institute for Translational Medicine, Medicine College of Qingdao University, Qingdao 266021, China.
| | - Jiayong Dai
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
9
|
Maimone NM, Apaza-Castillo GA, Quecine MC, de Lira SP. Accessing the specialized metabolome of actinobacteria from the bulk soil of Paullinia cupana Mart. on the Brazilian Amazon: a promising source of bioactive compounds against soybean phytopathogens. Braz J Microbiol 2024; 55:1863-1882. [PMID: 38421597 PMCID: PMC11153476 DOI: 10.1007/s42770-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
The Amazon rainforest, an incredibly biodiverse ecosystem, has been increasingly vulnerable to deforestation. Despite its undeniable importance and potential, the Amazonian microbiome has historically received limited study, particularly in relation to its unique arsenal of specialized metabolites. Therefore, in this study our aim was to assess the metabolic diversity and the antifungal activity of actinobacterial strains isolated from the bulk soil of Paullinia cupana, a native crop, in the Brazilian Amazon Rainforest. Extracts from 24 strains were subjected to UPLC-MS/MS analysis using an integrative approach that relied on the Chemical Structural and Compositional Similarity (CSCS) metric, GNPS molecular networking, and in silico dereplication tools. This procedure allowed the comprehensive understanding of the chemical space encompassed by these actinobacteria, which consists of features belonging to known bioactive metabolite classes and several unannotated molecular families. Among the evaluated strains, five isolates exhibited bioactivity against a panel of soybean fungal phytopathogens (Rhizoctonia solani, Macrophomina phaseolina, and Sclerotinia sclerotiorum). A focused inspection led to the annotation of pepstatins, oligomycins, hydroxamate siderophores and dorrigocins as metabolites produced by these bioactive strains, with potentially unknown compounds also comprising their metabolomes. This study introduces a pragmatic protocol grounded in established and readily available tools for the annotation of metabolites and the prioritization of strains to optimize further isolation of specialized metabolites. Conclusively, we demonstrate the relevance of the Amazonian actinobacteria as sources for bioactive metabolites useful for agriculture. We also emphasize the importance of preserving this biome and conducting more in-depth studies on its microbiota.
Collapse
Affiliation(s)
- Naydja Moralles Maimone
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Gladys Angélica Apaza-Castillo
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Maria Carolina Quecine
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Simone Possedente de Lira
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
10
|
Belik AR, Zakalyukina YV, Alferova VA, Buyuklyan YA, Osterman IA, Biryukov MV. Streptomyces phaeochromogenes BV-204, K-1115A Anthraquinone-Producing Strain: A New Protein Biosynthesis Inhibitor. Acta Naturae 2024; 16:30-39. [PMID: 38698962 PMCID: PMC11062104 DOI: 10.32607/actanaturae.27315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
In the search for new antibiotics, it is a common occurrence that already known molecules are "rediscovered" while new promising ones remain unnoticed. A possible solution to this problem may be the so-called "target-oriented" search, using special reporter microorganisms that combine increased antibiotic sensitivity with the ability to identify a molecule's damaging effect. The use of such test organisms makes it possible to discover new promising properties even in known metabolites. In this study, we used a high-throughput screening method based on the pDualrep2 dual reporter system, which combines high sensitivity through the use of modified strains of test organisms and makes it possible to easily and accurately identify the interaction mechanisms of a substance and a bacterial cell at the initial stages of screening. This reporter system is unknown in Russia and is significantly superior to its global analogues. In the system, translation inhibition induces the expression of the fluorescent protein Katushka2s, while DNA damage is induced by TurboRFP. Using pDualrep2, we have isolated and described BV-204, an S. phaeochromogenes strain producing K-1115A, the biologically active substance that we have previously described. In our study, K-1115A for the first time has demonstrated antibiotic activity and an ability to inhibit bacterial translation, which was confirmed in vitro in a cell-free translation system for FLuc mRNA. K-1115A's antibacterial activity was tested and confirmed for S. aureus (MRSA) and B. subtilis, its cytotoxicity measured against that for the HEK293 cell line. Its therapeutic index amounted to 2 and 8, respectively. The obtained results open up prospects for further study of K-1115A; so, this can be regarded as the basis for the production of semi-synthetic derivatives with improved therapeutic properties to be manufactured in dosage forms.
Collapse
Affiliation(s)
- A. R. Belik
- Sirius University of Science and Technology, Sochi, 354340 Russian Federation
| | - Yu. V. Zakalyukina
- Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| | - V. A. Alferova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| | - Y. A. Buyuklyan
- Sirius University of Science and Technology, Sochi, 354340 Russian Federation
| | - I. A. Osterman
- Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
| | - M. V. Biryukov
- Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| |
Collapse
|
11
|
Amorim J, Vásquez V, Cabrera A, Martínez M, Carpio J. In Silico and In Vitro Identification of 1,8-Dihydroxy-4,5-dinitroanthraquinone as a New Antibacterial Agent against Staphylococcus aureus and Enterococcus faecalis. Molecules 2023; 29:203. [PMID: 38202786 PMCID: PMC10779913 DOI: 10.3390/molecules29010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Increasing rates of bacterial resistance to antibiotics are a growing concern worldwide. The search for potential new antibiotics has included several natural products such as anthraquinones. However, comparatively less attention has been given to anthraquinones that exhibit functional groups that are uncommon in nature. In this work, 114 anthraquinones were evaluated using in silico methods to identify inhibitors of the enzyme phosphopantetheine adenylyltransferase (PPAT) of Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli. Virtual screenings based on molecular docking and the pharmacophore model, molecular dynamics simulations, and free energy calculations pointed to 1,8-dihydroxy-4,5-dinitroanthraquinone (DHDNA) as the most promising inhibitor. In addition, these analyses highlighted the contribution of the nitro group to the affinity of this anthraquinone for the nucleotide-binding site of PPAT. Furthermore, DHDNA was active in vitro towards Gram-positive bacteria with minimum inhibitory concentration (MIC) values of 31.25 µg/mL for S. aureus and 62.5 µg/mL for E. faecalis against both antibiotic-resistant isolates and reference strains but was ineffective against E. coli. Experiments on kill-time kinetics indicated that, at the tested concentrations, DHDNA produced bacteriostatic effects on both Gram-positive bacteria. Overall, our results present DHDNA as a potential PPAT inhibitor, showing antibacterial activity against antibiotic-resistant isolates of S. aureus and E. faecalis, findings that point to nitro groups as key to explaining these results.
Collapse
Affiliation(s)
| | | | | | | | - Juan Carpio
- Unidad de Salud y Bienestar, Facultad de Bioquímica y Farmacia, Universidad Católica de Cuenca, Av. Las Américas, Cuenca 010105, Ecuador
| |
Collapse
|
12
|
Sy K, Chevalier C, Maton M, Mokbel I, Mahieux S, Houcke I, Neut C, Grosgogeat B, Deveaux E, Gritsch K, Agossa K. Therapeutic Potential of Chlorhexidine-Loaded Calcium Hydroxide-Based Intracanal Medications in Endo-Periodontal Lesions: An Ex Vivo and In Vitro Study. Antibiotics (Basel) 2023; 12:1416. [PMID: 37760713 PMCID: PMC10525524 DOI: 10.3390/antibiotics12091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Endo-periodontal lesions are challenging clinical situations where both the supporting tissues and the root canal of the same tooth are infected. In the present study, chlorhexidine (CHX)-loaded calcium hydroxide (CH) pastes were used as intracanal medications (ICMs). They were prepared and tested on pathogens found in both the root canal and the periodontal pocket. Exposure to 0.5% and 1% CHX-loaded ICMs decreased the growth of Porphyromonas gingivalis and was effective in eradicating or inhibiting an Enterococcus faecalis biofilm. CH was injected into the root canal of extracted human teeth immersed in deionized water. CHX-loaded ICMs resulted in the transradicular diffusion of active components outside the tooth through the apex and the lateral dentinal tubules, as shown by the release of CHX (from 3.99 µg/mL to 51.28 µg/mL) and changes in pH (from 6.63 to 8.18) and calcium concentrations (from 2.42 ppm to 14.67 ppm) after 7 days. The 0.5% CHX-loaded ICM was non-toxic and reduced the release of IL-6 by periodontal cells stimulated by P. gingivalis lipopolysaccharides. Results indicate that the root canal may serve as a reservoir for periodontal drug delivery and that CHX-based ICMs can be an adjuvant for the control of infections and inflammation in endo-periodontal lesions.
Collapse
Affiliation(s)
- Kadiatou Sy
- U1008, Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (M.M.); (E.D.); (K.A.)
- Faculté d’Odontologie, Hospices Civils de Lyon, Pôle d′Odontologie, Université Lyon 1, Université de Lyon, 69372 Lyon Cedex 08, France; (B.G.); (K.G.)
| | - Charlène Chevalier
- UMR CNRS 5615 Laboratoire des Multimatériaux et Interfaces, Université Lyon 1, 69100 Villeurbanne, France; (C.C.); (I.M.)
| | - Mickaël Maton
- U1008, Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (M.M.); (E.D.); (K.A.)
| | - Ilham Mokbel
- UMR CNRS 5615 Laboratoire des Multimatériaux et Interfaces, Université Lyon 1, 69100 Villeurbanne, France; (C.C.); (I.M.)
| | - Séverine Mahieux
- U1286 Infinite, Institute for Translational Research in Inflammation, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (S.M.); (I.H.); (C.N.)
| | - Isabelle Houcke
- U1286 Infinite, Institute for Translational Research in Inflammation, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (S.M.); (I.H.); (C.N.)
| | - Christel Neut
- U1286 Infinite, Institute for Translational Research in Inflammation, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (S.M.); (I.H.); (C.N.)
| | - Brigitte Grosgogeat
- Faculté d’Odontologie, Hospices Civils de Lyon, Pôle d′Odontologie, Université Lyon 1, Université de Lyon, 69372 Lyon Cedex 08, France; (B.G.); (K.G.)
| | - Etienne Deveaux
- U1008, Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (M.M.); (E.D.); (K.A.)
| | - Kerstin Gritsch
- Faculté d’Odontologie, Hospices Civils de Lyon, Pôle d′Odontologie, Université Lyon 1, Université de Lyon, 69372 Lyon Cedex 08, France; (B.G.); (K.G.)
| | - Kevimy Agossa
- U1008, Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (M.M.); (E.D.); (K.A.)
| |
Collapse
|
13
|
Fu C, Xu Y, Zheng H, Ling X, Zheng C, Tian L, Gu X, Cai J, Yang J, Li Y, Wang P, Liu Y, Lou Y, Zheng M. In vitro antibiofilm and bacteriostatic activity of diacerein against Enterococcus faecalis. AMB Express 2023; 13:85. [PMID: 37573278 PMCID: PMC10423188 DOI: 10.1186/s13568-023-01594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Enterococcus faecalis is one of the main pathogens that causes hospital-acquired infections because it is intrinsically resistant to some antibiotics and often is capable of biofilm formation, which plays a critical role in resisting the external environment. Therefore, attacking biofilms is a potential therapeutic strategy for infections caused by E. faecalis. Current research indicates that diacerein used in the treatment of osteoarthritis showed antimicrobial activity on strains of gram-positive cocci in vitro. In this study, we tested the MICs of diacerein using the broth microdilution method, and successive susceptibility testing verified that E. faecalis is unlikely to develop resistance to diacerein. In addition, we obtained a strain of E. faecalis HE01 with strong biofilm-forming ability from an eye hospital environment and demonstrated that diacerein affected the biofilm development of HE01 in a dose-dependent manner. Then, we explored the mechanism by which diacerein inhibits biofilm formation through qRT-PCR, extracellular protein assays, hydrophobicity assays and transcriptomic analysis. The results showed that biofilm formation was inhibited at the initial adhesion stage by inhibition of the expression of the esp gene, synthesis of bacterial surface proteins and reduction in cell hydrophobicity. In addition, transcriptome analysis showed that diacerein not only inhibited bacterial growth by affecting the oxidative phosphorylation process and substance transport but also inhibited biofilm formation by affecting secondary metabolism, biosynthesis, the ribosome pathway and luxS expression. Thus, our findings provide compelling evidence for the substantial therapeutic potential of diacerein against E. faecalis biofilms.
Collapse
Affiliation(s)
- Chunyan Fu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuxi Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hao Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Ling
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chengzhi Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Leihao Tian
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaobin Gu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiabei Cai
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jing Yang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Li
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peiyu Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuan Liu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meiqin Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
14
|
Sagurna L, Heinrich S, Kaufmann LS, Rückert-Reed C, Busche T, Wolf A, Eickhoff J, Klebl B, Kalinowski J, Bandow JE. Characterization of the Antibacterial Activity of Quinone-Based Compounds Originating from the Alnumycin Biosynthetic Gene Cluster of a Streptomyces Isolate. Antibiotics (Basel) 2023; 12:1116. [PMID: 37508212 PMCID: PMC10376017 DOI: 10.3390/antibiotics12071116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bacteria of the genus Streptomyces produce various specialized metabolites. Single biosynthetic gene clusters (BGCs) can give rise to different products that can vary in terms of their biological activities. For example, for alnumycin and the shunt product K115, antimicrobial activity was described, while no antimicrobial activity was detected for the shunt product 1,6-dihydro 8-propylanthraquinone. To investigate the antibacterial activity of 1,6-dihydro 8-propylanthraquinone, we produced alnumycin and 1,6-dihydro 8-propylanthraquinone from a Streptomyces isolate containing the alnumycin BGC. The strain was cultivated in liquid glycerol-nitrate-casein medium (GN), and both compounds were isolated using an activity and mass spectrometry-guided purification. The structures were validated via nuclear magnetic resonance (NMR) spectroscopy. A minimal inhibitory concentration (MIC) test revealed that 1,6-dihydro 8-propylanthraquinone exhibits antimicrobial activity against E. coli ΔtolC, B. subtilis, an S. aureus type strain, and a vancomycin intermediate-resistance S. aureus strain (VISA). Activity of 1,6-dihydro 8-propylanthraquinone against E. coli ΔtolC was approximately 10-fold higher than that of alnumycin. We were unable to confirm gyrase inhibition for either compound and believe that the modes of action of both compounds are worth reinvestigating.
Collapse
Affiliation(s)
- Leonie Sagurna
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Sascha Heinrich
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Lara-Sophie Kaufmann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Christian Rückert-Reed
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | | | - Jan Eickhoff
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Jörn Kalinowski
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
15
|
Lin L, Zhuo Y, Dong Q, Yang C, Cheng C, Liu T. Plasma activated Ezhangfeng Cuji as innovative antifungal agent and its inactivation mechanism. AMB Express 2023; 13:65. [PMID: 37368076 DOI: 10.1186/s13568-023-01571-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Candida albicans is a highly drug-resistant fungus for which new treatments are urgently needed due to the lack of clinically effective options. In this study, we evaluated the antifungal activity and mechanism of plasma-activated Ezhangfeng Cuji (PAEC) against Candida albicans and compared it with physiological saline (PS), plasma-activated physiological saline (PAPS) and Ezhangfeng Cuji (EC). After dielectric barrier discharge (DBD) plasma treatment with EC for 20 min followed by a 10 min immersion of Candida albicans, the fungus was reduced by approximately 3 orders of magnitude. High performance liquid chromatography (HPLC) results showed an increase of 41.18% and 129.88% in the concentration of oxymatrine and rhein, respectively, after plasma-treated EC. The concentrations of reactive species (RS), such as H2O2, [Formula: see text], and O3, were found to be higher and the pH value was getting lower in PS after plasma treatment. Detailed analysis of intracellular material leakage, reactive oxygen species (ROS), apoptosis for Candida albicans and observation by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) demonstrated that PAPS, EC and PAEC disrupt the morphological structure of Candida albicans to varying degrees.Additionally, specific analyses on Candida albicans virulence factors, such as adhesion to tissue surfaces, cell surface hydrophobicity (CSH), the transition of yeast-phase cells to mycelium-phase cells, and the secretion of hydrolytic enzymes for Candida albicans were conducted and found to be inhibited after PAPS/EC/PAEC treatment. In our investigation, the inhibitory effects on Candida albicans were ranked from strong to weak as follows: PAEC, EC, PAPS, and PS.
Collapse
Affiliation(s)
- Lin Lin
- The Postgraduate School of Anhui, University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Yue Zhuo
- Department of Dermatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qiran Dong
- Department of Dermatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Chunjun Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Cheng Cheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Taofeng Liu
- Department of Dermatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
16
|
Li RJ, Xu JY, Wang X, Liao LJ, Wei X, Xie P, Xu WY, Xu ZY, Xie SH, Jiang YY, Huang L, Wang LY, Huang GR, Huang YQ. Therapeutic effect of demethylated hydroxylated phillygenin derivative on Helicobacter pylori infection. Front Microbiol 2023; 14:1071603. [PMID: 37275170 PMCID: PMC10235509 DOI: 10.3389/fmicb.2023.1071603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Modifying and transforming natural antibacterial products is a novel idea for developing new efficacious compounds. Phillygenin has an inhibitory effect on H. pylori. The aim of the present study was to prepare a phillygenin derivative (PHI-Der) through demethylation and hydroxylation. The minimum inhibitory concentration of 18 strains of H. pylori from different sources was 8-32 μg/mL in vitro, and the activity increased 2-8 times than that of phillygenin. PHI-Der could significantly inhibit the colonization of H. pylori in vivo, reduce the inflammatory response, and promote the repair of inflammatory damage. Further, we used SwissTargetPrediction to predict that its main targets are ALOX5, MCL1, and SLC6A4, and find that it can inhibit bacterial biofilm formation and reduce bacterial infection of cells. It can enhance the intracellular oxidative capacity of H. pylori to inhibit H. pylori growth. Further, it could prevent the oxidation of H. pylori-infected cells and reduce the inflammatory response, which plays a role in protection. In conclusion, compared to phillygenin, PHI-Der had better antibacterial activity and was more effective in treating H. pylori infection. It has characteristics of high safety, specificity, resistance to drug resistance and better antibacterial activity than phillygenin, it's a good antioxidant for host cells.
Collapse
Affiliation(s)
- Ru-Jia Li
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
- Clinical Laboratory of 980 Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, China
| | - Jia-yin Xu
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Xue Wang
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Li-juan Liao
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Xian Wei
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Ping Xie
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Wen-yan Xu
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Zhen-yi Xu
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Shuo-hua Xie
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Yu-ying Jiang
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Liang Huang
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Lu-yao Wang
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Gan-rong Huang
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Yan-Qiang Huang
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| |
Collapse
|
17
|
Nissi JS, Vyaishnavi S, Sivaranjanee R, Sekar MP, Sundaramurthi D, Vadivel V. Development and characterization of Morinda tinctoria incorporated electrospun PHBV fiber mat for wound healing application. Macromol Res 2023. [DOI: 10.1007/s13233-023-00149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Raghuveer D, Pai VV, Murali TS, Nayak R. Exploring Anthraquinones as Antibacterial and Antifungal agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Dhanush Raghuveer
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - V. Varsha Pai
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - Thokur Sreepathy Murali
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| | - Roopa Nayak
- Department of Biotechnology Manipal School of Life Sciences Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
19
|
Villanueva X, Zhen L, Ares JN, Vackier T, Lange H, Crestini C, Steenackers HP. Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gram-negative and Gram-positive bacteria. Front Microbiol 2023; 13:987164. [PMID: 36687646 PMCID: PMC9853077 DOI: 10.3389/fmicb.2022.987164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/18/2022] [Indexed: 01/08/2023] Open
Abstract
Background Tannins have demonstrated antibacterial and antibiofilm activity, but there are still unknown aspects on how the chemical properties of tannins affect their biological properties. We are interested in understanding how to modulate the antibiofilm activity of tannins and in delineating the relationship between chemical determinants and antibiofilm activity. Materials and methods The effect of five different naturally acquired tannins and their chemical derivatives on biofilm formation and planktonic growth of Salmonella Typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was determined in the Calgary biofilm device. Results Most of the unmodified tannins exhibited specific antibiofilm activity against the assayed bacteria. The chemical modifications were found to alter the antibiofilm activity level and spectrum of the tannins. A positive charge introduced by derivatization with higher amounts of ammonium groups shifted the anti-biofilm spectrum toward Gram-negative bacteria, and derivatization with lower amounts of ammonium groups and acidifying derivatization shifted the spectrum toward Gram-positive bacteria. Furthermore, the quantity of phenolic OH-groups per molecule was found to have a weak impact on the anti-biofilm activity of the tannins. Conclusion We were able to modulate the antibiofilm activity of several tannins by specific chemical modifications, providing a first approach for fine tuning of their activity and antibacterial spectrum.
Collapse
Affiliation(s)
- Xabier Villanueva
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Lili Zhen
- Department of Chemical Science and Technologies, University of Rome ‘Tor Vergata’, Rome, Italy,CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy
| | - José Nunez Ares
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Heverlee, Belgium
| | - Thijs Vackier
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Heiko Lange
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Claudia Crestini
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
| | - Hans P. Steenackers
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium,*Correspondence: Hans P. Steenackers,
| |
Collapse
|
20
|
Kim S, Lee JH, Kim YG, Tan Y, Lee J. Hydroquinones Inhibit Biofilm Formation and Virulence Factor Production in Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms231810683. [PMID: 36142597 PMCID: PMC9506180 DOI: 10.3390/ijms231810683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is one of the major pathogens responsible for antimicrobial resistance-associated death. S. aureus can secrete various exotoxins, and staphylococcal biofilms play critical roles in antibiotic tolerance and the persistence of chronic infections. Here, we investigated the inhibitory effects of 18 hydroquinones on biofilm formation and virulence factor production by S. aureus. It was found that 2,5-bis(1,1,3,3-tetramethylbutyl) hydroquinone (TBHQ) at 1 µg/mL efficiently inhibits biofilm formation by two methicillin-sensitive and two methicillin-resistant S. aureus strains with MICs of 5 µg/mL, whereas the backbone compound hydroquinone did not (MIC > 400 µg/mL). In addition, 2,3-dimethylhydroquinone and tert-butylhydroquinone at 50 µg/mL also exhibited antibiofilm activity. TBHQ at 1 µg/mL significantly decreased the hemolytic effect and lipase production by S. aureus, and at 5−50 µg/mL was non-toxic to the nematode Caenorhabditis elegans and did not adversely affect Brassica rapa seed germination or growth. Transcriptional analyses showed that TBHQ suppressed the expression of RNAIII (effector of quorum sensing). These results suggest that hydroquinones, particularly TBHQ, are potentially useful for inhibiting S. aureus biofilm formation and virulence.
Collapse
Affiliation(s)
- Sanghun Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: ; Tel.: +82-53-810-2533
| |
Collapse
|
21
|
Lee JH, Kim YG, Park S, Hu L, Lee J. Phytopigment Alizarin Inhibits Multispecies Biofilm Development by Cutibacterium acnes, Staphylococcus aureus, and Candida albicans. Pharmaceutics 2022; 14:pharmaceutics14051047. [PMID: 35631633 PMCID: PMC9143108 DOI: 10.3390/pharmaceutics14051047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Acne vulgaris is a common chronic inflammatory skin disease involving Cutibacterium acnes with other skin commensals such as Staphylococcus aureus and Candida albicans in the anaerobic and lipid-rich conditions of pilosebaceous units. These microbes readily form multispecies biofilms that are tolerant of traditional antibiotics as well as host immune systems. The phytopigment alizarin was previously found to prevent biofilm formation by S. aureus and C. albicans strains under aerobic conditions. Hence, we hypothesized that alizarin might control C. acnes and multispecies biofilm development. We found that under anaerobic conditions, alizarin efficiently inhibited single biofilm formation and multispecies biofilm development by C. acnes, S. aureus, and C. albicans without inhibiting planktonic cell growth. Alizarin increased the hydrophilicities of S. aureus and C. albicans cells, decreased lipase production by S. aureus, diminished agglutination by C. acnes, and inhibited the aggregation of C. albicans cells. Furthermore, the co-administration of alizarin and antibiotics enhanced the antibiofilm efficacies of alizarin against C. acnes. A transcriptomic study showed that alizarin repressed the transcriptions of various biofilm-related genes such as lipase, hyaluronate lyase, adhesin/invasion-related, and virulence-related genes of C. acnes. Furthermore, alizarin at 100 µg/mL prevented C. acnes biofilm development on porcine skin. Our results show that alizarin inhibits multispecies biofilm development by acne-causing microbes and suggest it might be a useful agent for treating or preventing C. acnes-causing skin diseases.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Sunyoung Park
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
| | - Liangbin Hu
- School of Food & Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; (J.-H.L.); (Y.-G.K.); (S.P.)
- Correspondence: ; Tel.: +82-53-810-2533; Fax: +82-53-810-4631
| |
Collapse
|
22
|
Ganesh P, Veena K, Senthil R, Iswamy K, Ponmalar EM, Mariappan V, Girija ASS, Vadivelu J, Nagarajan S, Challabathula D, Shankar EM. Biofilm-Associated Agr and Sar Quorum Sensing Systems of Staphylococcus aureus Are Inhibited by 3-Hydroxybenzoic Acid Derived from Illicium verum. ACS OMEGA 2022; 7:14653-14665. [PMID: 35557687 PMCID: PMC9088959 DOI: 10.1021/acsomega.1c07178] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 05/10/2023]
Abstract
Biofilm-producing Staphylococcus aureus (S. aureus) is less sensitive to conventional antibiotics than free-living planktonic cells. Here, we evaluated the antibiofilm activity of Illicium verum (I. verum) and one of its constituent compounds 3-hydroxybenzoic acid (3-HBA) against multi-drug-resistant S. aureus. We performed gas chromatography-mass spectroscopy (GC-MS) to identify the major constituents in the methanolic extract of I. verum. Ligand-receptor interactions were studied by molecular docking, and in vitro investigations were performed using crystal violet assay, spreading assay, hemolysis, proteolytic activity, and growth curve analysis. The methanolic extract of I. verum inhibited S. aureus at 4.8 mg/mL, and GC-MS analysis revealed anethole, m-methoxybenzaldehyde, and 3-HBA as the major constituents. Molecular docking attributed the antibiofilm activity to an active ligand present in 3-HBA, which strongly interacted with the active site residues of AgrA and SarA of S. aureus. At a subinhibitory concentration of 2.4 mg/mL, the extract showed biofilm inhibition. Similarly, 3-HBA inhibited biofilm activity at 25 μg/mL (90.34%), 12.5 μg/mL (77.21%), and 6.25 μg/mL (62.69%) concentrations. Marked attrition in bacterial spreading was observed at 2.4 mg/mL (crude extract) and 25 μg/mL (3-HBA) concentrations. The methanol extract of I. verum and 3-HBA markedly inhibited β-hemolytic and proteolytic activities of S. aureus. At the lowest concentration, the I. verum extract (2.4 mg/mL) and 3-HBA (25 μg/mL) did not inhibit bacterial growth. Optical microscopy and SEM analysis confirmed that I. verum and 3-HBA significantly reduced biofilm dispersion without disturbing bacterial growth. Together, we found that the antibiofilm activity of I. verum and 3-HBA strongly targeted the Agr and Sar systems of S. aureus.
Collapse
Affiliation(s)
- Pitchaipillai
Sankar Ganesh
- Department
of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, PH Road, Chennai 600077, Tamilnadu, India
| | - Krishnamurthy Veena
- Infection
Biology, Department of Life Sciences, Central
University of Tamil Nadu, Neelakudi, Tiruvarur 610005, Tamilnadu, India
| | - Renganathan Senthil
- Department
of Bioinformatics, Marudupandiyar College, Vallam, Thanjavur 613403, Tamilnadu, India
| | - Koneti Iswamy
- Infection
Biology, Department of Life Sciences, Central
University of Tamil Nadu, Neelakudi, Tiruvarur 610005, Tamilnadu, India
| | - Esaki Muthu Ponmalar
- Sri
Sairam Siddha Medical College and Research Centre, West Tambaram, Chennai 600044, Tamilnadu, India
| | - Vanitha Mariappan
- Center
for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - A. S. Smiline Girija
- Department
of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, PH Road, Chennai 600077, Tamilnadu, India
| | - Jamuna Vadivelu
- Department
of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Samuthira Nagarajan
- Department
of Chemistry, Central University of Tamil
Nadu, Neelakudi, Tiruvarur 610005, Tamil Nadu, India
| | - Dinakar Challabathula
- Department
of Life Sciences, Central University of
Tamil Nadu, Neelakudi, Tiruvarur 610005, Tamil Nadu, India
| | - Esaki Muthu Shankar
- Infection
Biology, Department of Life Sciences, Central
University of Tamil Nadu, Neelakudi, Tiruvarur 610005, Tamilnadu, India
| |
Collapse
|
23
|
Kommerein N, Vierengel N, Groß J, Opatz T, Al-Nawas B, Müller-Heupt LK. Antiplanktonic and Antibiofilm Activity of Rheum palmatum against Streptococcus oralis and Porphyromonas gingivalis. Microorganisms 2022; 10:965. [PMID: 35630409 PMCID: PMC9143743 DOI: 10.3390/microorganisms10050965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 01/27/2023] Open
Abstract
Periodontitis and peri-implantitis are inflammatory conditions with a high global prevalence. Oral pathogens such as Porphyromonas gingivalis play a crucial role in the development of dysbiotic biofilms associated with both diseases. The aim of our study was to identify plant-derived substances which mainly inhibit the growth of "disease promoting bacteria", by comparing the effect of Rheum palmatum root extract against P. gingivalis and the commensal species Streptococcus oralis. Antiplanktonic activity was determined by measuring optical density and metabolic activity. Antibiofilm activity was quantified using metabolic activity assays and live/dead fluorescence staining combined with confocal laser scanning microscopy. At concentrations of 3.9 mg/L, R. palmatum root extract selectively inhibited planktonic growth of the oral pathogen P. gingivalis, while not inhibiting growth of S. oralis. Selective effects also occurred in mature biofilms, as P. gingivalis was significantly more stressed and inhibited than S. oralis. Our studies show that low concentrations of R. palmatum root extract specifically inhibit P. gingivalis growth, and offer a promising approach for the development of a potential topical agent to prevent alterations in the microbiome due to overgrowth of pathogenic P. gingivalis.
Collapse
Affiliation(s)
- Nadine Kommerein
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Nina Vierengel
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, 55128 Mainz, Germany; (N.V.); (J.G.); (T.O.)
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, 55128 Mainz, Germany; (N.V.); (J.G.); (T.O.)
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, 55128 Mainz, Germany; (N.V.); (J.G.); (T.O.)
| | - Bilal Al-Nawas
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
| | - Lena Katharina Müller-Heupt
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
| |
Collapse
|
24
|
Wang KL, Dou ZR, Gong GF, Li HF, Jiang B, Xu Y. Anti-Larval and Anti-Algal Natural Products from Marine Microorganisms as Sources of Anti-Biofilm Agents. Mar Drugs 2022; 20:90. [PMID: 35200620 PMCID: PMC8876061 DOI: 10.3390/md20020090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Bacteria growing inside biofilms are more resistant to hostile environments, conventional antibiotics, and mechanical stresses than their planktonic counterparts. It is estimated that more than 80% of microbial infections in human patients are biofilm-based, and biofouling induced by the biofilms of some bacteria causes serious ecological and economic problems throughout the world. Therefore, exploring highly effective anti-biofilm compounds has become an urgent demand for the medical and marine industries. Marine microorganisms, a well-documented and prolific source of natural products, provide an array of structurally distinct secondary metabolites with diverse biological activities. However, up to date, only a handful of anti-biofilm natural products derived from marine microorganisms have been reported. Meanwhile, it is worth noting that some promising antifouling (AF) compounds from marine microbes, particularly those that inhibit settlement of fouling invertebrate larvae and algal spores, can be considered as potential anti-biofilm agents owing to the well-known knowledge of the correlations between biofilm formation and the biofouling process of fouling organisms. In this review, a total of 112 anti-biofilm, anti-larval, and anti-algal natural products from marine microbes and 26 of their synthetic analogues are highlighted from 2000 to 2021. These compounds are introduced based on their microbial origins, and then categorized into the following different structural groups: fatty acids, butenolides, terpenoids, steroids, phenols, phenyl ethers, polyketides, alkaloids, flavonoids, amines, nucleosides, and peptides. The preliminary structure-activity relationships (SAR) of some important compounds are also briefly discussed. Finally, current challenges and future research perspectives are proposed based on opinions from many previous reviews.
Collapse
Affiliation(s)
- Kai-Ling Wang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zheng-Rong Dou
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Gao-Fen Gong
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Hai-Feng Li
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|