1
|
Li S, Peng L, Chen L, Que L, Kang W, Hu X, Ma J, Di Z, Liu Y. Discovery of Highly Bioactive Peptides through Hierarchical Structural Information and Molecular Dynamics Simulations. J Chem Inf Model 2024. [PMID: 39466714 DOI: 10.1021/acs.jcim.4c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Peptide drugs play an essential role in modern therapeutics, but the computational design of these molecules is hindered by several challenges. Traditional methods like molecular docking and molecular dynamics (MD) simulation, as well as recent deep learning approaches, often face limitations related to computational resource demands, complex binding affinity assessments, extensive data requirements, and poor model interpretability. Here, we introduce PepHiRe, an innovative methodology that utilizes the hierarchical structural information in peptide sequences and employs a novel strategy called Ladderpath, rooted in algorithmic information theory, to rapidly generate and enhance the efficiency and clarity of novel peptide design. We applied PepHiRe to develop BH3-like peptide inhibitors targeting myeloid cell leukemia-1, a protein associated with various cancers. By analyzing just eight known bioactive BH3 peptide sequences, PepHiRe effectively derived a hierarchy of subsequences used to create new BH3-like peptides. These peptides underwent screening through MD simulations, leading to the selection of five candidates for synthesis and subsequent in vitro testing. Experimental results demonstrated that these five peptides possess high inhibitory activity, with IC50 values ranging from 28.13 ± 7.93 to 167.42 ± 22.15 nM. Our study explores a white-box model driven technique and a structured screening pipeline for identifying and generating novel peptides with potential bioactivity.
Collapse
Affiliation(s)
- Shu Li
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Lu Peng
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Liuqing Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linjie Que
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Wenqingqing Kang
- Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China
| | - Xiaojun Hu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jun Ma
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Zengru Di
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| | - Yu Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
2
|
Wang XF, Tang JY, Sun J, Dorje S, Sun TQ, Peng B, Ji XW, Li Z, Zhang XE, Wang DB. ProT-Diff: A Modularized and Efficient Strategy for De Novo Generation of Antimicrobial Peptide Sequences by Integrating Protein Language and Diffusion Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406305. [PMID: 39319609 DOI: 10.1002/advs.202406305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/08/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial peptides (AMPs) are a promising solution for treating antibiotic-resistant pathogens. However, efficient generation of diverse AMPs without prior knowledge of peptide structures or sequence alignments remains a challenge. Here, ProT-Diff is introduced, a modularized deep generative approach that combines a pretrained protein language model with a diffusion model for the de novo generation of AMPs sequences. ProT-Diff generates thousands of AMPs with diverse lengths and structures within a few hours. After silico physicochemical screening, 45 peptides are selected for experimental validation. Forty-four peptides showed antimicrobial activity against both gram-positive or gram-negative bacteria. Among broad-spectrum peptides, AMP_2 exhibited potent antimicrobial activity, low hemolysis, and minimal cytotoxicity. An in vivo assessment demonstrated its effectiveness against a drug-resistant E. coli strain in acute peritonitis. This study not only introduces a viable and user-friendly strategy for de novo generation of antimicrobial peptides, but also provides potential antimicrobial drug candidates with excellent activity. It is believed that this study will facilitate the development of other peptide-based drug candidates in the future, as well as proteins with tailored characteristics.
Collapse
Affiliation(s)
- Xue-Fei Wang
- Precision Scientific (Beijing) Co. Ltd., Beijing, 100085, China
| | - Jing-Ya Tang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Jing Sun
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Biotechnology, School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Sonam Dorje
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Tian-Qi Sun
- Precision Scientific (Beijing) Co. Ltd., Beijing, 100085, China
| | - Bo Peng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xu-Wo Ji
- Precision Scientific (Beijing) Co. Ltd., Beijing, 100085, China
| | - Zhe Li
- Precision Scientific (Beijing) Co. Ltd., Beijing, 100085, China
| | - Xian-En Zhang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advances Technology, Shenzhen, 518055, China
| | - Dian-Bing Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Chung CR, Chien CY, Tang Y, Wu LC, Hsu JBK, Lu JJ, Lee TY, Bai C, Horng JT. An ensemble deep learning model for predicting minimum inhibitory concentrations of antimicrobial peptides against pathogenic bacteria. iScience 2024; 27:110718. [PMID: 39262770 PMCID: PMC11388163 DOI: 10.1016/j.isci.2024.110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
The rise of antibiotic resistance necessitates effective alternative therapies. Antimicrobial peptides (AMPs) are promising due to their broad inhibitory effects. This study focuses on predicting the minimum inhibitory concentration (MIC) of AMPs against whom-priority pathogens: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853. We developed a comprehensive regression model integrating AMP sequence-based and genomic features. Using eight AI-based architectures, including deep learning with protein language model embeddings, we created an ensemble model combining bi-directional long short-term memory (BiLSTM), convolutional neural network (CNN), and multi-branch model (MBM). The ensemble model showed superior performance with Pearson correlation coefficients of 0.756, 0.781, and 0.802 for the bacterial strains, demonstrating its accuracy in predicting MIC values. This work sets a foundation for future studies to enhance model performance and advance AMP applications in combating antibiotic resistance.
Collapse
Affiliation(s)
- Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Chung-Yu Chien
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Yun Tang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Li-Ching Wu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Justin Bo-Kai Hsu
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan City, Taiwan
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Biodevices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| |
Collapse
|
4
|
Alvarez JAE, Dean SN. TEMPRO: nanobody melting temperature estimation model using protein embeddings. Sci Rep 2024; 14:19074. [PMID: 39154093 PMCID: PMC11330463 DOI: 10.1038/s41598-024-70101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Single-domain antibodies (sdAbs) or nanobodies have received widespread attention due to their small size (~ 15 kDa) and diverse applications in bio-derived therapeutics. As many modern biotechnology breakthroughs are applied to antibody engineering and design, nanobody thermostability or melting temperature (Tm) is crucial for their successful utilization. In this study, we present TEMPRO which is a predictive modeling approach for estimating the Tm of nanobodies using computational methods. Our methodology integrates various nanobody biophysical features to include Evolutionary Scale Modeling (ESM) embeddings, NetSurfP3 structural predictions, pLDDT scores per sdAb region from AlphaFold2, and each sequence's physicochemical characteristics. This approach is validated with our combined dataset containing 567 unique sequences with corresponding experimental Tm values from a manually curated internal data and a recently published nanobody database, NbThermo. Our results indicate the efficacy of protein embeddings in reliably predicting the Tm of sdAbs with mean absolute error (MAE) of 4.03 °C and root mean squared error (RMSE) of 5.66 °C, thus offering a valuable tool for the optimization of nanobodies for various biomedical and therapeutic applications. Moreover, we have validated the models' performance using experimentally determined Tms from nanobodies not found in NbThermo. This predictive model not only enhances nanobody thermostability prediction, but also provides a useful perspective of using embeddings as a tool for facilitating a broader applicability of downstream protein analyses.
Collapse
Affiliation(s)
- Jerome Anthony E Alvarez
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA
| | - Scott N Dean
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, USA.
| |
Collapse
|
5
|
Medina-Ortiz D, Contreras S, Fernández D, Soto-García N, Moya I, Cabas-Mora G, Olivera-Nappa Á. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides. Int J Mol Sci 2024; 25:8851. [PMID: 39201537 PMCID: PMC11487388 DOI: 10.3390/ijms25168851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Peptides are bioactive molecules whose functional versatility in living organisms has led to successful applications in diverse fields. In recent years, the amount of data describing peptide sequences and function collected in open repositories has substantially increased, allowing the application of more complex computational models to study the relations between the peptide composition and function. This work introduces AMP-Detector, a sequence-based classification model for the detection of peptides' functional biological activity, focusing on accelerating the discovery and de novo design of potential antimicrobial peptides (AMPs). AMP-Detector introduces a novel sequence-based pipeline to train binary classification models, integrating protein language models and machine learning algorithms. This pipeline produced 21 models targeting antimicrobial, antiviral, and antibacterial activity, achieving average precision exceeding 83%. Benchmark analyses revealed that our models outperformed existing methods for AMPs and delivered comparable results for other biological activity types. Utilizing the Peptide Atlas, we applied AMP-Detector to discover over 190,000 potential AMPs and demonstrated that it is an integrative approach with generative learning to aid in de novo design, resulting in over 500 novel AMPs. The combination of our methodology, robust models, and a generative design strategy offers a significant advancement in peptide-based drug discovery and represents a pivotal tool for therapeutic applications.
Collapse
Affiliation(s)
- David Medina-Ortiz
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Santiago 8370456, Chile
| | - Seba Contreras
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Diego Fernández
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Nicole Soto-García
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Iván Moya
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
- Departamento de Ingeniería Química, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Gabriel Cabas-Mora
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Santiago 8370456, Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Santiago 8370456, Chile
| |
Collapse
|
6
|
Li C, Sutherland D, Richter A, Coombe L, Yanai A, Warren RL, Kotkoff M, Hof F, Hoang LMN, Helbing CC, Birol I. De novo synthetic antimicrobial peptide design with a recurrent neural network. Protein Sci 2024; 33:e5088. [PMID: 38988311 PMCID: PMC11237553 DOI: 10.1002/pro.5088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Antibiotic resistance is recognized as an imminent and growing global health threat. New antimicrobial drugs are urgently needed due to the decreasing effectiveness of conventional small-molecule antibiotics. Antimicrobial peptides (AMPs), a class of host defense peptides, are emerging as promising candidates to address this need. The potential sequence space of amino acids is combinatorially vast, making it possible to extend the current arsenal of antimicrobial agents with a practically infinite number of new peptide-based candidates. However, mining naturally occurring AMPs, whether directly by wet lab screening methods or aided by bioinformatics prediction tools, has its theoretical limit regarding the number of samples or genomic/transcriptomic resources researchers have access to. Further, manually designing novel synthetic AMPs requires prior field knowledge, restricting its throughput. In silico sequence generation methods are gaining interest as a high-throughput solution to the problem. Here, we introduce AMPd-Up, a recurrent neural network based tool for de novo AMP design, and demonstrate its utility over existing methods. Validation of candidates designed by AMPd-Up through antimicrobial susceptibility testing revealed that 40 of the 58 generated sequences possessed antimicrobial activity against Escherichia coli and/or Staphylococcus aureus. These results illustrate that AMPd-Up can be used to design novel synthetic AMPs with potent activities.
Collapse
Affiliation(s)
- Chenkai Li
- Canada's Michael Smith Genome Sciences CentreBC Cancer AgencyVancouverBritish ColumbiaCanada
- Bioinformatics Graduate ProgramUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Darcy Sutherland
- Canada's Michael Smith Genome Sciences CentreBC Cancer AgencyVancouverBritish ColumbiaCanada
- Public Health LaboratoryBritish Columbia Centre for Disease ControlVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Amelia Richter
- Canada's Michael Smith Genome Sciences CentreBC Cancer AgencyVancouverBritish ColumbiaCanada
- Public Health LaboratoryBritish Columbia Centre for Disease ControlVancouverBritish ColumbiaCanada
| | - Lauren Coombe
- Canada's Michael Smith Genome Sciences CentreBC Cancer AgencyVancouverBritish ColumbiaCanada
| | - Anat Yanai
- Canada's Michael Smith Genome Sciences CentreBC Cancer AgencyVancouverBritish ColumbiaCanada
- Public Health LaboratoryBritish Columbia Centre for Disease ControlVancouverBritish ColumbiaCanada
| | - René L. Warren
- Canada's Michael Smith Genome Sciences CentreBC Cancer AgencyVancouverBritish ColumbiaCanada
| | - Monica Kotkoff
- Canada's Michael Smith Genome Sciences CentreBC Cancer AgencyVancouverBritish ColumbiaCanada
| | - Fraser Hof
- Department of Chemistry and the Centre for Advanced Materials and Related TechnologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Linda M. N. Hoang
- Public Health LaboratoryBritish Columbia Centre for Disease ControlVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Caren C. Helbing
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences CentreBC Cancer AgencyVancouverBritish ColumbiaCanada
- Public Health LaboratoryBritish Columbia Centre for Disease ControlVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
7
|
Aguilera-Puga MDC, Plisson F. Structure-aware machine learning strategies for antimicrobial peptide discovery. Sci Rep 2024; 14:11995. [PMID: 38796582 PMCID: PMC11127937 DOI: 10.1038/s41598-024-62419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
Machine learning models are revolutionizing our approaches to discovering and designing bioactive peptides. These models often need protein structure awareness, as they heavily rely on sequential data. The models excel at identifying sequences of a particular biological nature or activity, but they frequently fail to comprehend their intricate mechanism(s) of action. To solve two problems at once, we studied the mechanisms of action and structural landscape of antimicrobial peptides as (i) membrane-disrupting peptides, (ii) membrane-penetrating peptides, and (iii) protein-binding peptides. By analyzing critical features such as dipeptides and physicochemical descriptors, we developed models with high accuracy (86-88%) in predicting these categories. However, our initial models (1.0 and 2.0) exhibited a bias towards α-helical and coiled structures, influencing predictions. To address this structural bias, we implemented subset selection and data reduction strategies. The former gave three structure-specific models for peptides likely to fold into α-helices (models 1.1 and 2.1), coils (1.3 and 2.3), or mixed structures (1.4 and 2.4). The latter depleted over-represented structures, leading to structure-agnostic predictors 1.5 and 2.5. Additionally, our research highlights the sensitivity of important features to different structure classes across models.
Collapse
Affiliation(s)
- Mariana D C Aguilera-Puga
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Guanajuato, Mexico
| | - Fabien Plisson
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
8
|
Goles M, Daza A, Cabas-Mora G, Sarmiento-Varón L, Sepúlveda-Yañez J, Anvari-Kazemabad H, Davari MD, Uribe-Paredes R, Olivera-Nappa Á, Navarrete MA, Medina-Ortiz D. Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides. Brief Bioinform 2024; 25:bbae275. [PMID: 38856172 PMCID: PMC11163380 DOI: 10.1093/bib/bbae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.
Collapse
Affiliation(s)
- Montserrat Goles
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Anamaría Daza
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Gabriel Cabas-Mora
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Lindybeth Sarmiento-Varón
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
| | - Julieta Sepúlveda-Yañez
- Facultad de Ciencias de la Salud, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Hoda Anvari-Kazemabad
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Roberto Uribe-Paredes
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Marcelo A Navarrete
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
- Escuela de Medicina, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - David Medina-Ortiz
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| |
Collapse
|
9
|
Zervou MA, Doutsi E, Pantazis Y, Tsakalides P. De Novo Antimicrobial Peptide Design with Feedback Generative Adversarial Networks. Int J Mol Sci 2024; 25:5506. [PMID: 38791544 PMCID: PMC11122239 DOI: 10.3390/ijms25105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial peptides (AMPs) are promising candidates for new antibiotics due to their broad-spectrum activity against pathogens and reduced susceptibility to resistance development. Deep-learning techniques, such as deep generative models, offer a promising avenue to expedite the discovery and optimization of AMPs. A remarkable example is the Feedback Generative Adversarial Network (FBGAN), a deep generative model that incorporates a classifier during its training phase. Our study aims to explore the impact of enhanced classifiers on the generative capabilities of FBGAN. To this end, we introduce two alternative classifiers for the FBGAN framework, both surpassing the accuracy of the original classifier. The first classifier utilizes the k-mers technique, while the second applies transfer learning from the large protein language model Evolutionary Scale Modeling 2 (ESM2). Integrating these classifiers into FBGAN not only yields notable performance enhancements compared to the original FBGAN but also enables the proposed generative models to achieve comparable or even superior performance to established methods such as AMPGAN and HydrAMP. This achievement underscores the effectiveness of leveraging advanced classifiers within the FBGAN framework, enhancing its computational robustness for AMP de novo design and making it comparable to existing literature.
Collapse
Affiliation(s)
- Michaela Areti Zervou
- Department of Computer Science, University of Crete, 700 13 Heraklion, Greece
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Greece;
| | - Effrosyni Doutsi
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Greece;
| | - Yannis Pantazis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Greece;
| | - Panagiotis Tsakalides
- Department of Computer Science, University of Crete, 700 13 Heraklion, Greece
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Greece;
| |
Collapse
|
10
|
Wu X, Lin H, Bai R, Duan H. Deep learning for advancing peptide drug development: Tools and methods in structure prediction and design. Eur J Med Chem 2024; 268:116262. [PMID: 38387334 DOI: 10.1016/j.ejmech.2024.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Peptides can bind challenging disease targets with high affinity and specificity, offering enormous opportunities for addressing unmet medical needs. However, peptides' unique features, including smaller size, increased structural flexibility, and limited data availability, pose additional challenges to the design process compared to proteins. This review explores the dynamic field of peptide therapeutics, leveraging deep learning to enhance structure prediction and design. Our exploration encompasses various facets of peptide research, ranging from dataset curation handling to model development. As deep learning technologies become more refined, we channel our efforts into peptide structure prediction and design, aligning with the fundamental principles of structure-activity relationships in drug development. To guide researchers in harnessing the potential of deep learning to advance peptide drug development, our insights comprehensively explore current challenges and future directions of peptide therapeutics.
Collapse
Affiliation(s)
- Xinyi Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Huitian Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Hongliang Duan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, PR China.
| |
Collapse
|
11
|
Dong Q, Wang S, Miao Y, Luo H, Weng Z, Yu L. Novel antimicrobial peptides against Cutibacterium acnes designed by deep learning. Sci Rep 2024; 14:4529. [PMID: 38402320 PMCID: PMC10894229 DOI: 10.1038/s41598-024-55205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
The increasing prevalence of antibiotic resistance in Cutibacterium acnes (C. acnes) requires the search for alternative therapeutic strategies. Antimicrobial peptides (AMPs) offer a promising avenue for the development of new treatments targeting C. acnes. In this study, to design peptides with the specific inhibitory activity against C. acnes, we employed a deep learning pipeline with generators and classifiers, using transfer learning and pretrained protein embeddings, trained on publicly available data. To enhance the training data specific to C. acnes inhibition, we constructed a phylogenetic tree. A panel of 42 novel generated linear peptides was then synthesized and experimentally evaluated for their antimicrobial selectivity and activity. Five of them demonstrated their high potency and selectivity against C. acnes with MIC of 2-4 µg/mL. Our findings highlight the potential of these designed peptides as promising candidates for anti-acne therapeutics and demonstrate the power of computational approaches for the rational design of targeted antimicrobial peptides.
Collapse
Affiliation(s)
- Qichang Dong
- Shanghai MetaNovas Biotech Co., Ltd, Shanghai, 200120, China
| | - Shaohua Wang
- Shanghai MetaNovas Biotech Co., Ltd, Shanghai, 200120, China
| | - Ying Miao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Heng Luo
- Shanghai MetaNovas Biotech Co., Ltd, Shanghai, 200120, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Lun Yu
- Metanovas Biotech Inc., Foster City, 94404, USA.
| |
Collapse
|
12
|
Purohit K, Reddy N, Sunna A. Exploring the Potential of Bioactive Peptides: From Natural Sources to Therapeutics. Int J Mol Sci 2024; 25:1391. [PMID: 38338676 PMCID: PMC10855437 DOI: 10.3390/ijms25031391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Bioactive peptides, specific protein fragments with positive health effects, are gaining traction in drug development for advantages like enhanced penetration, low toxicity, and rapid clearance. This comprehensive review navigates the intricate landscape of peptide science, covering discovery to functional characterization. Beginning with a peptidomic exploration of natural sources, the review emphasizes the search for novel peptides. Extraction approaches, including enzymatic hydrolysis, microbial fermentation, and specialized methods for disulfide-linked peptides, are extensively covered. Mass spectrometric analysis techniques for data acquisition and identification, such as liquid chromatography, capillary electrophoresis, untargeted peptide analysis, and bioinformatics, are thoroughly outlined. The exploration of peptide bioactivity incorporates various methodologies, from in vitro assays to in silico techniques, including advanced approaches like phage display and cell-based assays. The review also discusses the structure-activity relationship in the context of antimicrobial peptides (AMPs), ACE-inhibitory peptides (ACEs), and antioxidative peptides (AOPs). Concluding with key findings and future research directions, this interdisciplinary review serves as a comprehensive reference, offering a holistic understanding of peptides and their potential therapeutic applications.
Collapse
Affiliation(s)
- Kruttika Purohit
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
| | - Narsimha Reddy
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
- School of Science, Parramatta Campus, Western Sydney University, Penrith, NSW 2751, Australia
| | - Anwar Sunna
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
13
|
Aguilera-Puga MDC, Cancelarich NL, Marani MM, de la Fuente-Nunez C, Plisson F. Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence. Methods Mol Biol 2024; 2714:329-352. [PMID: 37676607 DOI: 10.1007/978-1-0716-3441-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Peptides modulate many processes of human physiology targeting ion channels, protein receptors, or enzymes. They represent valuable starting points for the development of new biologics against communicable and non-communicable disorders. However, turning native peptide ligands into druggable materials requires high selectivity and efficacy, predictable metabolism, and good safety profiles. Machine learning models have gradually emerged as cost-effective and time-saving solutions to predict and generate new proteins with optimal properties. In this chapter, we will discuss the evolution and applications of predictive modeling and generative modeling to discover and design safe and effective antimicrobial peptides. We will also present their current limitations and suggest future research directions, applicable to peptide drug design campaigns.
Collapse
Affiliation(s)
- Mariana D C Aguilera-Puga
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, Mexico
- CINVESTAV-IPN, Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, Mexico
| | - Natalia L Cancelarich
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Fabien Plisson
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, Mexico.
- CINVESTAV-IPN, Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
14
|
Chang DH, Lee MR, Wang N, Lynn DM, Palecek SP. Establishing Quantifiable Guidelines for Antimicrobial α/β-Peptide Design: A Partial Least-Squares Approach to Improve Antimicrobial Activity and Reduce Mammalian Cell Toxicity. ACS Infect Dis 2023; 9:2632-2651. [PMID: 38014670 PMCID: PMC10807133 DOI: 10.1021/acsinfecdis.3c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Antimicrobial peptides (AMPs) are promising candidates to combat pathogens that are resistant to conventional antimicrobial drugs because they operate through mechanisms that involve membrane disruption. However, the use of AMPs in clinical settings has been limited, at least in part, by their susceptibility to proteolytic degradation and their lack of selectivity toward pathogenic microbes vs mammalian cells. We recently reported on the design of α- and β-peptide oligomers structurally templated upon the naturally occurring α-helical AMP aurein 1.2. These α/β-peptide oligomers are more proteolytically stable than aurein 1.2 and have several other attributes that render them attractive as alternatives to conventional AMPs. This study describes the influence of peptide physicochemical properties on the broad-spectrum activity of aurein 1.2-based α/β-peptide mimics against nine bacterial, fungal, and mammalian cell lines. We used a partial least-squares regression (PLSR)-supervised machine learning model to quantify and visualize relationships between experimentally determined physicochemical properties (e.g., hydrophobicity, charge, and helicity) and experimentally measured cell-type-specific activities of 21 peptides in a 149-member α/β-peptide library. Using this approach, we identified several peptides that were predicted to exhibit enhanced broad-spectrum selectivity, a measure that evaluates antimicrobial activity relative to mammalian cell toxicity compared to aurein 1.2. Experimental validation demonstrated high model predictive performance, and characterization of compounds with the highest broad-spectrum selectivity revealed peptide hydrophobicity, helicity, and helical rigidity to be strong predictors of broad-spectrum selectivity. The most selective peptide identified from the model prediction has more than a 13-fold improvement in broad-spectrum selectivity than that of aurein 1.2, demonstrating the ability of using PLSR models to identify quantitative structure-function relationships for nonstandard amino acid-containing peptides. Overall, this work establishes quantifiable guidelines for the rational design of helical antimicrobial α/β-peptides and identifies promising new α/β-peptides with significantly reduced mammalian toxicities and improved antifungal and antibacterial activities relative to aurein 1.2.
Collapse
Affiliation(s)
- Douglas H. Chang
- Department of Chemical & Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Myung-Ryul Lee
- Department of Chemical & Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Nathan Wang
- Department of Chemical & Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - David M. Lynn
- Department of Chemical & Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Sean P. Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| |
Collapse
|
15
|
Szymczak P, Szczurek E. Artificial intelligence-driven antimicrobial peptide discovery. Curr Opin Struct Biol 2023; 83:102733. [PMID: 37992451 DOI: 10.1016/j.sbi.2023.102733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Antimicrobial peptides (AMPs) emerge as promising agents against antimicrobial resistance, providing an alternative to conventional antibiotics. Artificial intelligence (AI) revolutionized AMP discovery through both discrimination and generation approaches. The discriminators aid in the identification of promising candidates by predicting key peptide properties such as activity and toxicity, while the generators learn the distribution of peptides and enable sampling novel AMP candidates, either de novo or as analogs of a prototype peptide. Moreover, the controlled generation of AMPs with desired properties is achieved by discriminator-guided filtering, positive-only learning, latent space sampling, as well as conditional and optimized generation. Here we review recent achievements in AI-driven AMP discovery, highlighting the most exciting directions.
Collapse
Affiliation(s)
- Paulina Szymczak
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland.
| | - Ewa Szczurek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland.
| |
Collapse
|
16
|
Gallardo-Becerra L, Cervantes-Echeverría M, Cornejo-Granados F, Vazquez-Morado LE, Ochoa-Leyva A. Perspectives in Searching Antimicrobial Peptides (AMPs) Produced by the Microbiota. MICROBIAL ECOLOGY 2023; 87:8. [PMID: 38036921 PMCID: PMC10689560 DOI: 10.1007/s00248-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Changes in the structure and function of the microbiota are associated with various human diseases. These microbial changes can be mediated by antimicrobial peptides (AMPs), small peptides produced by the host and their microbiota, which play a crucial role in host-bacteria co-evolution. Thus, by studying AMPs produced by the microbiota (microbial AMPs), we can better understand the interactions between host and bacteria in microbiome homeostasis. Additionally, microbial AMPs are a new source of compounds against pathogenic and multi-resistant bacteria. Further, the growing accessibility to metagenomic and metatranscriptomic datasets presents an opportunity to discover new microbial AMPs. This review examines the structural properties of microbiota-derived AMPs, their molecular action mechanisms, genomic organization, and strategies for their identification in any microbiome data as well as experimental testing. Overall, we provided a comprehensive overview of this important topic from the microbial perspective.
Collapse
Affiliation(s)
- Luigui Gallardo-Becerra
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Melany Cervantes-Echeverría
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Luis E Vazquez-Morado
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico (UNAM), Avenida Universidad 2001, C.P. 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
17
|
Shin MK, Park HR, Hwang IW, Bu KB, Jang BY, Lee SH, Oh JW, Yoo JS, Sung JS. In Silico-Based Design of a Hybrid Peptide with Antimicrobial Activity against Multidrug-Resistant Pseudomonas aeruginosa Using a Spider Toxin Peptide. Toxins (Basel) 2023; 15:668. [PMID: 38133172 PMCID: PMC10747792 DOI: 10.3390/toxins15120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The escalating prevalence of antibiotic-resistant bacteria poses an immediate and grave threat to public health. Antimicrobial peptides (AMPs) have gained significant attention as a promising alternative to conventional antibiotics. Animal venom comprises a diverse array of bioactive compounds, which can be a rich source for identifying new functional peptides. In this study, we identified a toxin peptide, Lycotoxin-Pa1a (Lytx-Pa1a), from the transcriptome of the Pardosa astrigera spider venom gland. To enhance its functional properties, we employed an in silico approach to design a novel hybrid peptide, KFH-Pa1a, by predicting antibacterial and cytotoxic functionalities and incorporating the amino-terminal Cu(II)- and Ni(II) (ATCUN)-binding motif. KFH-Pa1a demonstrated markedly superior antimicrobial efficacy against pathogens, including multidrug-resistant (MDR) Pseudomonas aeruginosa, compared to Lytx-Pa1a. Notably, KFH-Pa1a exerted several distinct mechanisms, including the disruption of the bacterial cytoplasmic membrane, the generation of intracellular ROS, and the cleavage and inhibition of bacterial DNA. Additionally, the hybrid peptide showed synergistic activity when combined with conventional antibiotics. Our research not only identified a novel toxin peptide from spider venom but demonstrated in silico-based design of hybrid AMP with strong antimicrobial activity that can contribute to combating MDR pathogens, broadening the utilization of biological resources by incorporating computational approaches.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Hye-Ran Park
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - In-Wook Hwang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Kyung-Bin Bu
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Bo-Young Jang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Seung-Ho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Jung Sun Yoo
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea;
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| |
Collapse
|
18
|
Yang ZJ, Shao Q, Jiang Y, Jurich C, Ran X, Juarez RJ, Yan B, Stull SL, Gollu A, Ding N. Mutexa: A Computational Ecosystem for Intelligent Protein Engineering. J Chem Theory Comput 2023; 19:7459-7477. [PMID: 37828731 PMCID: PMC10653112 DOI: 10.1021/acs.jctc.3c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 10/14/2023]
Abstract
Protein engineering holds immense promise in shaping the future of biomedicine and biotechnology. This Review focuses on our ongoing development of Mutexa, a computational ecosystem designed to enable "intelligent protein engineering". In this vision, researchers will seamlessly acquire sequences of protein variants with desired functions as biocatalysts, therapeutic peptides, and diagnostic proteins through a finely-tuned computational machine, akin to Amazon Alexa's role as a versatile virtual assistant. The technical foundation of Mutexa has been established through the development of a database that combines and relates enzyme structures and their respective functions (e.g., IntEnzyDB), workflow software packages that enable high-throughput protein modeling (e.g., EnzyHTP and LassoHTP), and scoring functions that map the sequence-structure-function relationship of proteins (e.g., EnzyKR and DeepLasso). We will showcase the applications of these tools in benchmarking the convergence conditions of enzyme functional descriptors across mutants, investigating protein electrostatics and cavity distributions in SAM-dependent methyltransferases, and understanding the role of nonelectrostatic dynamic effects in enzyme catalysis. Finally, we will conclude by addressing the future steps and fundamental challenges in our endeavor to develop new Mutexa applications that assist the identification of beneficial mutants in protein engineering.
Collapse
Affiliation(s)
- Zhongyue J. Yang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data
Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Christopher Jurich
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Xinchun Ran
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Reecan J. Juarez
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Bailu Yan
- Department
of Biostatistics, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Sebastian L. Stull
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anvita Gollu
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ning Ding
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
19
|
Pandi A, Adam D, Zare A, Trinh VT, Schaefer SL, Burt M, Klabunde B, Bobkova E, Kushwaha M, Foroughijabbari Y, Braun P, Spahn C, Preußer C, Pogge von Strandmann E, Bode HB, von Buttlar H, Bertrams W, Jung AL, Abendroth F, Schmeck B, Hummer G, Vázquez O, Erb TJ. Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides. Nat Commun 2023; 14:7197. [PMID: 37938588 PMCID: PMC10632401 DOI: 10.1038/s41467-023-42434-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost. Here, we established a cell-free protein synthesis (CFPS) pipeline for the rapid and inexpensive production of antimicrobial peptides (AMPs) directly from DNA templates. To validate our platform, we used deep learning to design thousands of AMPs de novo. Using computational methods, we prioritized 500 candidates that we produced and screened with our CFPS pipeline. We identified 30 functional AMPs, which we characterized further through molecular dynamics simulations, antimicrobial activity and toxicity. Notably, six de novo-AMPs feature broad-spectrum activity against multidrug-resistant pathogens and do not develop bacterial resistance. Our work demonstrates the potential of CFPS for high throughput and low-cost production and testing of bioactive peptides within less than 24 h.
Collapse
Affiliation(s)
- Amir Pandi
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| | - David Adam
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Amir Zare
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Van Tuan Trinh
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Stefan L Schaefer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Marie Burt
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Björn Klabunde
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Elizaveta Bobkova
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Manish Kushwaha
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Yeganeh Foroughijabbari
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Peter Braun
- Bundeswehr Institute of Microbiology, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology, Infection and Pandemic Research, Munich, Germany
| | - Christoph Spahn
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps-University of Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps-University of Marburg, Marburg, Germany
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Chemistry, Chemical Biology, Philipps-University Marburg, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
- SYNMIKRO Center of Synthetic Microbiology, Marburg, Germany
| | - Heiner von Buttlar
- Bundeswehr Institute of Microbiology, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- SYNMIKRO Center of Synthetic Microbiology, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, Marburg, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Olalla Vázquez
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- SYNMIKRO Center of Synthetic Microbiology, Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO Center of Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
20
|
Romero-Romero S, Lindner S, Ferruz N. Exploring the Protein Sequence Space with Global Generative Models. Cold Spring Harb Perspect Biol 2023; 15:a041471. [PMID: 37848247 PMCID: PMC10626256 DOI: 10.1101/cshperspect.a041471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Recent advancements in specialized large-scale architectures for training images and language have profoundly impacted the field of computer vision and natural language processing (NLP). Language models, such as the recent ChatGPT and GPT-4, have demonstrated exceptional capabilities in processing, translating, and generating human language. These breakthroughs have also been reflected in protein research, leading to the rapid development of numerous new methods in a short time, with unprecedented performance. Several of these models have been developed with the goal of generating sequences in novel regions of the protein space. In this work, we provide an overview of the use of protein generative models, reviewing (1) language models for the design of novel artificial proteins, (2) works that use non-transformer architectures, and (3) applications in directed evolution approaches.
Collapse
Affiliation(s)
| | | | - Noelia Ferruz
- Barcelona Institute of Molecular Biology, 08028 Barcelona, Spain
| |
Collapse
|
21
|
Ahmad B, Achek A, Farooq M, Choi S. Accelerated NLRP3 inflammasome-inhibitory peptide design using a recurrent neural network model and molecular dynamics simulations. Comput Struct Biotechnol J 2023; 21:4825-4835. [PMID: 37854633 PMCID: PMC10579963 DOI: 10.1016/j.csbj.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Anomalous NLRP3 inflammasome responses have been linked to multiple health issues, including but not limited to atherosclerosis, diabetes, metabolic syndrome, cardiovascular disease, and neurodegenerative disease. Thus, targeting NLRP3 and modulating its associated immune response might be a promising strategy for developing new anti-inflammatory drugs. Herein, we report a computational method for de novo peptide design for targeting NLRP3 inflammasomes. The described method leverages a long-short-term memory (LSTM) network based on a recurrent neural network (RNN) to model a valuable latent space of molecules. The resulting classifiers are utilized to guide the selection of molecules generated by the model based on circular dichroism spectra and physicochemical features derived from high-throughput molecular dynamics simulations. Of the experimentally tested sequences, 60% of the peptides showed NLRP3-mediated inhibition of IL-1β and IL-18. One peptide displayed high potency against NLRP3-mediated IL-1β inhibition. However, NLRC4 and AIM2 inflammasome-mediated IL-1β secretion was uninterrupted by this peptide, demonstrating its selectivity toward the NLRP3 inflammasome. Overall, these results indicate that deep learning and molecular dynamics can accelerate the discovery of NLRP3 inhibitors with potent and selective activity.
Collapse
Affiliation(s)
- Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| | - Asma Achek
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- Technology Development Platform, Institut Pasteur Korea, Seongnam 13488, Soouth Korea
| | - Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- S&K Therapeutics, Ajou University, Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, South Korea
| |
Collapse
|
22
|
Alsaab FM, Dean SN, Bobde S, Ascoli GG, van Hoek ML. Computationally Designed AMPs with Antibacterial and Antibiofilm Activity against MDR Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:1396. [PMID: 37760693 PMCID: PMC10525135 DOI: 10.3390/antibiotics12091396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The discovery of new antimicrobials is necessary to combat multidrug-resistant (MDR) bacteria, especially those that infect wounds and form prodigious biofilms, such as Acinetobacter baumannii. Antimicrobial peptides (AMPs) are a promising class of new therapeutics against drug-resistant bacteria, including gram-negatives. Here, we utilized a computational AMP design strategy combining database filtering technology plus positional analysis to design a series of novel peptides, named HRZN, designed to be active against A. baumannii. All of the HRZN peptides we synthesized exhibited antimicrobial activity against three MDR A. baumannii strains with HRZN-15 being the most active (MIC 4 µg/mL). This peptide also inhibited and eradicated biofilm of A. baumannii strain AB5075 at 8 and 16 µg/mL, which is highly effective. HRZN-15 permeabilized and depolarized the membrane of AB5075 rapidly, as demonstrated by the killing kinetics. HRZN 13 and 14 peptides had little to no hemolysis activity against human red blood cells, whereas HRZN-15, -16, and -17 peptides demonstrated more significant hemolytic activity. HRZN-15 also demonstrated toxicity to waxworms. Further modification of HRZN-15 could result in a new peptide with an improved toxicity profile. Overall, we successfully designed a set of new AMPs that demonstrated activity against MDR A. baumannii using a computational approach.
Collapse
Affiliation(s)
- Fahad M. Alsaab
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA (S.B.)
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al Ahsa 36428, Saudi Arabia
| | - Scott N. Dean
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Shravani Bobde
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA (S.B.)
| | - Gabriel G. Ascoli
- Aspiring Scientist Summer Internship Program, George Mason University, Manassas, VA 20110, USA
| | - Monique L. van Hoek
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA (S.B.)
- Center for Infectious Disease Research, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
23
|
Yan J, Zhang B, Zhou M, Campbell-Valois FX, Siu SWI. A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against Escherichia coli using Multi-Branch-CNN and Attention. mSystems 2023; 8:e0034523. [PMID: 37431995 PMCID: PMC10506472 DOI: 10.1128/msystems.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a promising alternative to antibiotics to combat drug resistance in pathogenic bacteria. However, the development of AMPs with high potency and specificity remains a challenge, and new tools to evaluate antimicrobial activity are needed to accelerate the discovery process. Therefore, we proposed MBC-Attention, a combination of a multi-branch convolution neural network architecture and attention mechanisms to predict the experimental minimum inhibitory concentration of peptides against Escherichia coli. The optimal MBC-Attention model achieved an average Pearson correlation coefficient (PCC) of 0.775 and a root mean squared error (RMSE) of 0.533 (log μM) in three independent tests of randomly drawn sequences from the data set. This results in a 5-12% improvement in PCC and a 6-13% improvement in RMSE compared to 17 traditional machine learning models and 2 optimally tuned models using random forest and support vector machine. Ablation studies confirmed that the two proposed attention mechanisms, global attention and local attention, contributed largely to performance improvement. IMPORTANCE Antimicrobial peptides (AMPs) are potential candidates for replacing conventional antibiotics to combat drug resistance in pathogenic bacteria. Therefore, it is necessary to evaluate the antimicrobial activity of AMPs quantitatively. However, wet-lab experiments are labor-intensive and time-consuming. To accelerate the evaluation process, we develop a deep learning method called MBC-Attention to regress the experimental minimum inhibitory concentration of AMPs against Escherichia coli. The proposed model outperforms traditional machine learning methods. Data, scripts to reproduce experiments, and the final production models are available on GitHub.
Collapse
Affiliation(s)
- Jielu Yan
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Bob Zhang
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Mingliang Zhou
- School of Computer Science, Chongqing University, Shapingba, Chongqing, China
| | - François-Xavier Campbell-Valois
- Host-Microbe Interactions Laboratory, Center for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Shirley W. I. Siu
- Institute of Science and Environment, University of Saint Joseph, Macau, China
| |
Collapse
|
24
|
Cesaro A, Bagheri M, Torres MDT, Wan F, de la Fuente-Nunez C. Deep learning tools to accelerate antibiotic discovery. Expert Opin Drug Discov 2023; 18:1245-1257. [PMID: 37794737 PMCID: PMC10790350 DOI: 10.1080/17460441.2023.2250721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION As machine learning (ML) and artificial intelligence (AI) expand to many segments of our society, they are increasingly being used for drug discovery. Recent deep learning models offer an efficient way to explore high-dimensional data and design compounds with desired properties, including those with antibacterial activity. AREAS COVERED This review covers key frameworks in antibiotic discovery, highlighting physicochemical features and addressing dataset limitations. The deep learning approaches here described include discriminative models such as convolutional neural networks, recurrent neural networks, graph neural networks, and generative models like neural language models, variational autoencoders, generative adversarial networks, normalizing flow, and diffusion models. As the integration of these approaches in drug discovery continues to evolve, this review aims to provide insights into promising prospects and challenges that lie ahead in harnessing such technologies for the development of antibiotics. EXPERT OPINION Accurate antimicrobial prediction using deep learning faces challenges such as imbalanced data, limited datasets, experimental validation, target strains, and structure. The integration of deep generative models with bioinformatics, molecular dynamics, and data augmentation holds the potential to overcome these challenges, enhance model performance, and utlimately accelerate antimicrobial discovery.
Collapse
Affiliation(s)
- Angela Cesaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mojtaba Bagheri
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fangping Wan
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
25
|
Medvedeva A, Teimouri H, Kolomeisky AB. Predicting Antimicrobial Activity for Untested Peptide-Based Drugs Using Collaborative Filtering and Link Prediction. J Chem Inf Model 2023. [PMID: 37307501 DOI: 10.1021/acs.jcim.3c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increase of bacterial resistance to currently available antibiotics has underlined the urgent need to develop new antibiotic drugs. Antimicrobial peptides (AMPs), alone or in combination with other peptides and/or existing antibiotics, have emerged as promising candidates for this task. However, given that there are thousands of known AMPs and an even larger number can be synthesized, it is impossible to comprehensively test all of them using standard wet lab experimental methods. These observations stimulated an application of machine-learning methods to identify promising AMPs. Currently, machine learning studies combine very different bacteria without considering bacteria-specific features or interactions with AMPs. In addition, the sparsity of current AMP data sets disqualifies the application of traditional machine-learning methods or makes the results unreliable. Here, we present a new approach, featuring neighborhood-based collaborative filtering, to predict with high accuracy a given bacteria's response to untested AMPs based on similarities between bacterial responses. Furthermore, we also developed a complementary bacteria-specific link prediction approach that can be used to visualize networks of AMP-antibiotic combinations, enabling us to propose new combinations that are likely to be effective.
Collapse
Affiliation(s)
- Angela Medvedeva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Hamid Teimouri
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
26
|
Yang S, Yang Z, Ni X. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information. Anal Biochem 2023; 673:115196. [PMID: 37236434 DOI: 10.1016/j.ab.2023.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Antimicrobial peptides (AMPs) called host defense peptides have existed among all classes of life with 5-100 amino acids generally and can kill mycobacteria, envelop viruses, bacteria, fungi, cancerous cells and so on. Owing to the non-drug resistance of AMP, it has been a wonderful agent to find novel therapies. Therefore, it is urgent to identify AMPs and predict their function in a high-throughput way. In this paper, we propose a cascaded computational model to identify AMPs and their functional type based on sequence-derived and life language embedding, called AMPFinder. Compared with other state-of-the-art methods, AMPFinder obtains higher performance both on AMP identification and AMP function prediction. AMPFinder shows better performance with improvement of F1-score (1.45%-6.13%), MCC (2.92%-12.86%) and AUC (5.13%-8.56%) and AP (9.20%-21.07%) on an independent test dataset. And AMPFinder achieve lower bias of R2 on a public dataset by 10-fold cross-validation with an improvement of (18.82%-19.46%). The comparison with other state-of-the-art methods shows that AMP can accurately identify AMP and its function types. The datasets, source code and user-friendly application are available at https://github.com/abcair/AMPFinder.
Collapse
Affiliation(s)
- Sen Yang
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou, 213164, China; School of Computer Science and Artificial Intelligence Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, 213164, China
| | - Zexi Yang
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, 213164, China
| | - Xinye Ni
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou, 213164, China.
| |
Collapse
|
27
|
Thokkadam A, Do T, Ran X, Brynildsen MP, Yang ZJ, Link AJ. High-Throughput Screen Reveals the Structure-Activity Relationship of the Antimicrobial Lasso Peptide Ubonodin. ACS CENTRAL SCIENCE 2023; 9:540-550. [PMID: 36968541 PMCID: PMC10037499 DOI: 10.1021/acscentsci.2c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 06/16/2023]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of bacteria including opportunistic human pathogens. Immunocompromised individuals and cystic fibrosis patients are especially vulnerable to serious infections by these bacteria, motivating the search for compounds with antimicrobial activity against the Bcc. Ubonodin is a lasso peptide with promising activity against Bcc species, working by inhibiting RNA polymerase in susceptible bacteria. We constructed a library of over 90 000 ubonodin variants with 2 amino acid substitutions and used a high-throughput screen and next-generation sequencing to examine the fitness of the entire library, generating the most comprehensive data set on lasso peptide activity so far. This screen revealed information regarding the structure-activity relationship of ubonodin over a large sequence space. Remarkably, the screen identified one variant with not only improved activity compared to wild-type ubonodin but also a submicromolar minimum inhibitory concentration (MIC) against a clinical isolate of the Bcc member Burkholderia cenocepacia. Ubonodin and several of the variants identified in this study had lower MICs against certain Bcc strains than those of many clinically approved antibiotics. Finally, the large library size enabled us to develop DeepLasso, a deep learning model that can predict the RNAP inhibitory activity of an ubonodin variant.
Collapse
Affiliation(s)
- Alina Thokkadam
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Truc Do
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Xinchun Ran
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Mark P. Brynildsen
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhongyue J. Yang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data
Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - A. James Link
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
28
|
Szymczak P, Możejko M, Grzegorzek T, Jurczak R, Bauer M, Neubauer D, Sikora K, Michalski M, Sroka J, Setny P, Kamysz W, Szczurek E. Discovering highly potent antimicrobial peptides with deep generative model HydrAMP. Nat Commun 2023; 14:1453. [PMID: 36922490 PMCID: PMC10017685 DOI: 10.1038/s41467-023-36994-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Antimicrobial peptides emerge as compounds that can alleviate the global health hazard of antimicrobial resistance, prompting a need for novel computational approaches to peptide generation. Here, we propose HydrAMP, a conditional variational autoencoder that learns lower-dimensional, continuous representation of peptides and captures their antimicrobial properties. The model disentangles the learnt representation of a peptide from its antimicrobial conditions and leverages parameter-controlled creativity. HydrAMP is the first model that is directly optimized for diverse tasks, including unconstrained and analogue generation and outperforms other approaches in these tasks. An additional preselection procedure based on ranking of generated peptides and molecular dynamics simulations increases experimental validation rate. Wet-lab experiments on five bacterial strains confirm high activity of nine peptides generated as analogues of clinically relevant prototypes, as well as six analogues of an inactive peptide. HydrAMP enables generation of diverse and potent peptides, making a step towards resolving the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Paulina Szymczak
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097, Warsaw, Poland
| | - Marcin Możejko
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097, Warsaw, Poland
| | - Tomasz Grzegorzek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097, Warsaw, Poland
- NVIDIA, 2788 San Tomas Expressway, Santa Clara, CA, 95051, USA
| | - Radosław Jurczak
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097, Warsaw, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Karol Sikora
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Michał Michalski
- The Centre of New Technologies, University of Warsaw, Stefana Banacha 2c, 02-097, Warsaw, Poland
| | - Jacek Sroka
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097, Warsaw, Poland
| | - Piotr Setny
- The Centre of New Technologies, University of Warsaw, Stefana Banacha 2c, 02-097, Warsaw, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Ewa Szczurek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097, Warsaw, Poland.
| |
Collapse
|
29
|
Zhang H, Saravanan KM, Wei Y, Jiao Y, Yang Y, Pan Y, Wu X, Zhang JZH. Deep Learning-Based Bioactive Therapeutic Peptide Generation and Screening. J Chem Inf Model 2023; 63:835-845. [PMID: 36724090 DOI: 10.1021/acs.jcim.2c01485] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many bioactive peptides demonstrated therapeutic effects over complicated diseases, such as antiviral, antibacterial, anticancer, etc. It is possible to generate a large number of potentially bioactive peptides using deep learning in a manner analogous to the generation of de novo chemical compounds using the acquired bioactive peptides as a training set. Such generative techniques would be significant for drug development since peptides are much easier and cheaper to synthesize than compounds. Despite the limited availability of deep learning-based peptide-generating models, we have built an LSTM model (called LSTM_Pep) to generate de novo peptides and fine-tuned the model to generate de novo peptides with specific prospective therapeutic benefits. Remarkably, the Antimicrobial Peptide Database has been effectively utilized to generate various kinds of potential active de novo peptides. We proposed a pipeline for screening those generated peptides for a given target and used the main protease of SARS-COV-2 as a proof-of-concept. Moreover, we have developed a deep learning-based protein-peptide prediction model (DeepPep) for rapid screening of the generated peptides for the given targets. Together with the generating model, we have demonstrated that iteratively fine-tuning training, generating, and screening peptides for higher-predicted binding affinity peptides can be achieved. Our work sheds light on developing deep learning-based methods and pipelines to effectively generate and obtain bioactive peptides with a specific therapeutic effect and showcases how artificial intelligence can help discover de novo bioactive peptides that can bind to a particular target.
Collapse
Affiliation(s)
- Haiping Zhang
- Shenzhen Institute of Synthetic Biology, Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India
| | - Yanjie Wei
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yang Jiao
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yi Pan
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.,Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuli Wu
- School of Medicine, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - John Z H Zhang
- Shenzhen Institute of Synthetic Biology, Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.,East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
30
|
Zhang K, Teng D, Mao R, Yang N, Hao Y, Wang J. Thinking on the Construction of Antimicrobial Peptide Databases: Powerful Tools for the Molecular Design and Screening. Int J Mol Sci 2023; 24:ijms24043134. [PMID: 36834553 PMCID: PMC9960615 DOI: 10.3390/ijms24043134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
With the accelerating growth of antimicrobial resistance (AMR), there is an urgent need for new antimicrobial agents with low or no AMR. Antimicrobial peptides (AMPs) have been extensively studied as alternatives to antibiotics (ATAs). Coupled with the new generation of high-throughput technology for AMP mining, the number of derivatives has increased dramatically, but manual running is time-consuming and laborious. Therefore, it is necessary to establish databases that combine computer algorithms to summarize, analyze, and design new AMPs. A number of AMP databases have already been established, such as the Antimicrobial Peptides Database (APD), the Collection of Antimicrobial Peptides (CAMP), the Database of Antimicrobial Activity and Structure of Peptides (DBAASP), and the Database of Antimicrobial Peptides (dbAMPs). These four AMP databases are comprehensive and are widely used. This review aims to cover the construction, evolution, characteristic function, prediction, and design of these four AMP databases. It also offers ideas for the improvement and application of these databases based on merging the various advantages of these four peptide libraries. This review promotes research and development into new AMPs and lays their foundation in the fields of druggability and clinical precision treatment.
Collapse
Affiliation(s)
- Kun Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Correspondence: ; Tel.: +86-10-82106081 or +86-10-82106079; Fax: +86-10-82106079
| |
Collapse
|
31
|
Lin D, Sutherland D, Aninta SI, Louie N, Nip KM, Li C, Yanai A, Coombe L, Warren RL, Helbing CC, Hoang LMN, Birol I. Mining Amphibian and Insect Transcriptomes for Antimicrobial Peptide Sequences with rAMPage. Antibiotics (Basel) 2022; 11:antibiotics11070952. [PMID: 35884206 PMCID: PMC9312091 DOI: 10.3390/antibiotics11070952] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance is a global health crisis increasing in prevalence every day. To combat this crisis, alternative antimicrobial therapeutics are urgently needed. Antimicrobial peptides (AMPs), a family of short defense proteins, are produced naturally by all organisms and hold great potential as effective alternatives to small molecule antibiotics. Here, we present rAMPage, a scalable bioinformatics discovery platform for identifying AMP sequences from RNA sequencing (RNA-seq) datasets. In our study, we demonstrate the utility and scalability of rAMPage, running it on 84 publicly available RNA-seq datasets from 75 amphibian and insect species—species known to have rich AMP repertoires. Across these datasets, we identified 1137 putative AMPs, 1024 of which were deemed novel by a homology search in cataloged AMPs in public databases. We selected 21 peptide sequences from this set for antimicrobial susceptibility testing against Escherichia coli and Staphylococcus aureus and observed that seven of them have high antimicrobial activity. Our study illustrates how in silico methods such as rAMPage can enable the fast and efficient discovery of novel antimicrobial peptides as an effective first step in the strenuous process of antimicrobial drug development.
Collapse
Affiliation(s)
- Diana Lin
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Darcy Sutherland
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sambina Islam Aninta
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Nathan Louie
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Ka Ming Nip
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chenkai Li
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anat Yanai
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - René L. Warren
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Linda M. N. Hoang
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Inanc Birol
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence:
| |
Collapse
|
32
|
Hamre JR, Jafri MS. Optimizing peptide inhibitors of SARS-Cov-2 nsp10/nsp16 methyltransferase predicted through molecular simulation and machine learning. INFORMATICS IN MEDICINE UNLOCKED 2022; 29:100886. [PMID: 35252541 PMCID: PMC8883729 DOI: 10.1016/j.imu.2022.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Coronaviruses, including the recent pandemic strain SARS-Cov-2, use a multifunctional 2'-O-methyltransferase (2'-O-MTase) to restrict the host defense mechanism and to methylate RNA. The nonstructural protein 16 2'-O-MTase (nsp16) becomes active when nonstructural protein 10 (nsp10) and nsp16 interact. Novel peptide drugs have shown promise in the treatment of numerous diseases and new research has established that nsp10 derived peptides can disrupt viral methyltransferase activity via interaction of nsp16. This study had the goal of optimizing new analogous nsp10 peptides that have the ability to bind nsp16 with equal to or higher affinity than those naturally occurring. The following research demonstrates that in silico molecular simulations can shed light on peptide structures and predict the potential of new peptides to interrupt methyltransferase activity via the nsp10/nsp16 interface. The simulations suggest that misalignments at residues F68, H80, I81, D94, and Y96 or rotation at H80 abrogate MTase function. We develop a new set of peptides based on conserved regions of the nsp10 protein in the Coronaviridae species and test these to known MTase variant values. This results in the prediction that the H80R variant is a solid new candidate for potential new testing. We envision that this new lead is the beginning of a reputable foundation of a new computational method that combats coronaviruses and that is beneficial for new peptide drug development.
Collapse
Affiliation(s)
- John R Hamre
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA
| | - M Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|