1
|
Metcalfe-Roach A, Cirstea MS, Yu AC, Ramay HR, Coker O, Boroomand S, Kharazyan F, Martino D, Sycuro LK, Appel-Cresswell S, Finlay BB. Metagenomic Analysis Reveals Large-Scale Disruptions of the Gut Microbiome in Parkinson's Disease. Mov Disord 2024; 39:1740-1751. [PMID: 39192744 DOI: 10.1002/mds.29959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) has been consistently linked to alterations within the gut microbiome. OBJECTIVE Our goal was to identify microbial features associated with PD incidence and progression. METHODS Metagenomic sequencing was used to characterize taxonomic and functional changes to the PD microbiome and to explore their relation to bacterial metabolites and disease progression. Motor and non-motor symptoms were tracked using Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and levodopa equivalent dose across ≤5 yearly study visits. Stool samples were collected at baseline for metagenomic sequencing (176 PD, 100 controls). RESULTS PD-derived stool samples had reduced intermicrobial connectivity and seven differentially abundant species compared to controls. A suite of bacterial functions differed between PD and controls, including depletion of carbohydrate degradation pathways and enrichment of ribosomal genes. Faecalibacterium prausnitzii-specific reads contributed significantly to more than half of all differentially abundant functional terms. A subset of disease-associated functional terms correlated with faster progression of MDS-UPDRS part IV and separated those with slow and fast progression with moderate accuracy within a random forest model (area under curve = 0.70). Most PD-associated microbial trends were stronger in those with symmetric motor symptoms. CONCLUSION We provide further evidence that the PD microbiome is characterized by reduced intermicrobial communication and a shift to proteolytic metabolism in lieu of short-chain fatty acid production, and suggest that these microbial alterations may be relevant to disease progression. We also describe how our results support the existence of gut-first versus brain-first PD subtypes. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Avril Metcalfe-Roach
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mihai S Cirstea
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam C Yu
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hena R Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Olabisi Coker
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seti Boroomand
- Borgland Family Brain Tissue and DNA Bank, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Faezeh Kharazyan
- Borgland Family Brain Tissue and DNA Bank, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura K Sycuro
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Zeng T, Lin C, Deng Y, Zhu W. Effect of BF839 + earthworm protein supplement on motor and some non-motor symptoms of Parkinson's disease: a randomized clinical trial. Front Neurol 2024; 15:1371791. [PMID: 39309265 PMCID: PMC11412884 DOI: 10.3389/fneur.2024.1371791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Some studies have found that probiotics have the potential to treat PD, and earthworm protein is a traditional Chinese medicine used for the treatment of PD. The purpose of this study was to evaluate the safety and efficacy of Bacteroides fragilis 839 (BF839) + earthworm protein supplement as an adjunctive therapy for PD and to observe changes in the gut microbiota. Methods Forty-six patients with PD were recruited for a 12-week 1:1 randomized, double-blind, placebo-controlled clinical trial to evaluate changes in motor and some non-motor symptom scores and detect metagenomic changes in the gut microbiota. Results From baseline to 12 weeks, compared with placebo, the trial group showed significant reductions in the United Parkinson's Disease Rate Scale (UPDRS) total score (-7.74 ± 5.92 vs. -1.83 ± 4.14, p < 0.001), UPDRS part I (-0.72 ± 0.81 vs. -0.20 ± 0.72, p = 0.026), UPDRS part II (-2.50 ± 2.24 vs. -0.22 ± 1.98, p = 0.001), UPDRS part III (-3.43 ± 3.42 vs. -1.33 ± 2.65, p = 0.024), and UPDRS part IV (-1.13 ± 1.19 vs. -0.15 ± 0.57, p = 0.001). Significant reductions in the Hamilton Depression Scale-24 score (-3.91 ± 3.99 vs. +1.15 ± 3.42, p < 0.001), Self-Rating Anxiety Scale scores (-7.04 ± 5.71 vs. -1.23 ± 2.34, p < 0.001), and Constipation scoring system scores (-8.59 ± 4.75 vs. 0.27 ± 1.24, p < 0.001), were also noted. In the trial group, one patient experienced mild eczema and one suffered low blood pressure, which could not be conclusively attributed to supplementation. Compared to the placebo group, the trial group showed a marked increase in Enterococcus faecium and a decrease in Klebsiella. Conclusion This study is the first to report that probiotics plus earthworm protein can remarkably improve the motor and some non-motor symptoms of PD without serious adverse effects. However, further clinical trials and exploration of the underlying mechanisms are required. Clinical trial registration Clinical trial registry http://www.chictr.org.cn/, Identification No: ChiCTR2000035122.
Collapse
Affiliation(s)
- Ting Zeng
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuhui Lin
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhong Deng
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Zhu
- Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
3
|
Pimenta AI, Bernardino RM, Pereira IAC. Role of sulfidogenic members of the gut microbiota in human disease. Adv Microb Physiol 2024; 85:145-200. [PMID: 39059820 DOI: 10.1016/bs.ampbs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The human gut flora comprises a dynamic network of bacterial species that coexist in a finely tuned equilibrium. The interaction with intestinal bacteria profoundly influences the host's development, metabolism, immunity, and overall health. Furthermore, dysbiosis, a disruption of the gut microbiota, can induce a variety of diseases, not exclusively associated with the intestinal tract. The increased consumption of animal protein, high-fat and high-sugar diets in Western countries has been implicated in the rise of chronic and inflammatory illnesses associated with dysbiosis. In particular, this diet leads to the overgrowth of sulfide-producing bacteria, known as sulfidogenic bacteria, which has been linked to inflammatory bowel diseases and colorectal cancer, among other disorders. Sulfidogenic bacteria include sulfate-reducing bacteria (Desulfovibrio spp.) and Bilophila wadsworthia among others, which convert organic and inorganic sulfur compounds to sulfide through the dissimilatory sulfite reduction pathway. At high concentrations, sulfide is cytotoxic and disrupts the integrity of the intestinal epithelium and mucus barrier, triggering inflammation. Besides producing sulfide, B. wadsworthia has revealed significant pathogenic potential, demonstrated in the ability to cause infection, adhere to intestinal cells, promote inflammation, and compromise the integrity of the colonic mucus layer. This review delves into the mechanisms by which taurine and sulfide-driven gut dysbiosis contribute to the pathogenesis of sulfidogenic bacteria, and discusses the role of these gut microbes, particularly B. wadsworthia, in human diseases.
Collapse
Affiliation(s)
- Andreia I Pimenta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Raquel M Bernardino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
4
|
Zhong J, Guo L, Wang Y, Jiang X, Wang C, Xiao Y, Wang Y, Zhou F, Wu C, Chen L, Wang X, Wang J, Cao B, Li M, Ren L. Gut Microbiota Improves Prognostic Prediction in Critically Ill COVID-19 Patients Alongside Immunological and Hematological Indicators. RESEARCH (WASHINGTON, D.C.) 2024; 7:0389. [PMID: 38779486 PMCID: PMC11109594 DOI: 10.34133/research.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
The gut microbiota undergoes substantial changes in COVID-19 patients; yet, the utility of these alterations as prognostic biomarkers at the time of hospital admission, and its correlation with immunological and hematological parameters, remains unclear. The objective of this study is to investigate the gut microbiota's dynamic change in critically ill patients with COVID-19 and evaluate its predictive capability for clinical outcomes alongside immunological and hematological parameters. In this study, anal swabs were consecutively collected from 192 COVID-19 patients (583 samples) upon hospital admission for metagenome sequencing. Simultaneously, blood samples were obtained to measure the concentrations of 27 cytokines and chemokines, along with hematological and biochemical indicators. Our findings indicate a significant correlation between the composition and dynamics of gut microbiota with disease severity and mortality in COVID-19 patients. Recovered patients exhibited a higher abundance of Veillonella and denser interactions among gut commensal bacteria compared to deceased patients. Furthermore, the abundance of gut commensal bacteria exhibited a negative correlation with the concentration of proinflammatory cytokines and organ damage markers. The gut microbiota upon admission showed moderate prognostic prediction ability with an AUC of 0.78, which was less effective compared to predictions based on immunological and hematological parameters (AUC 0.80 and 0.88, respectively). Noteworthy, the integration of these three datasets yielded a higher predictive accuracy (AUC 0.93). Our findings suggest the gut microbiota as an informative biomarker for COVID-19 prognosis, augmenting existing immune and hematological indicators.
Collapse
Affiliation(s)
- Jiaxin Zhong
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital,
Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases,
Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xuan Jiang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Xiao
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Zhou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital,
Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases,
Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chao Wu
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Chen
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinming Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital,
Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases,
Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - LiLi Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Nishiwaki H, Ueyama J, Ito M, Hamaguchi T, Takimoto K, Maeda T, Kashihara K, Tsuboi Y, Mori H, Kurokawa K, Katsuno M, Hirayama M, Ohno K. Meta-analysis of shotgun sequencing of gut microbiota in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:106. [PMID: 38773112 PMCID: PMC11109112 DOI: 10.1038/s41531-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
We aimed to identify gut microbial features in Parkinson's disease (PD) across countries by meta-analyzing our fecal shotgun sequencing dataset of 94 PD patients and 73 controls in Japan with five previously reported datasets from USA, Germany, China1, China2, and Taiwan. GC-MS and LC-MS/MS assays were established to quantify fecal short-chain fatty acids (SCFAs) and fecal polyamines, respectively. α-Diversity was increased in PD across six datasets. Taxonomic analysis showed that species Akkermansia muciniphila was increased in PD, while species Roseburia intestinalis and Faecalibacterium prausnitzii were decreased in PD. Pathway analysis showed that genes in the biosyntheses of riboflavin and biotin were markedly decreased in PD after adjusting for confounding factors. Five out of six categories in carbohydrate-active enzymes (CAZymes) were decreased in PD. Metabolomic analysis of our fecal samples revealed that fecal SCFAs and polyamines were significantly decreased in PD. Genes in the riboflavin and biotin biosyntheses were positively correlated with the fecal concentrations of SCFAs and polyamines. Bacteria that accounted for the decreased riboflavin biosynthesis in Japan, the USA, and Germany were different from those in China1, China2, and Taiwan. Similarly, different bacteria accounted for decreased biotin biosynthesis in the two country groups. We postulate that decreased SCFAs and polyamines reduce the intestinal mucus layer, which subsequently facilitates the formation of abnormal α-synuclein fibrils in the intestinal neural plexus in PD, and also cause neuroinflammation in PD.
Collapse
Affiliation(s)
- Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiichi Takimoto
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Hiroshi Mori
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Ken Kurokawa
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Department of Occupational Therapy, Chubu University College of Life and Health Sciences, Kasugai, Japan.
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nagoya, Japan.
| |
Collapse
|
6
|
Liu X, Liu Y, Liu J, Zhang H, Shan C, Guo Y, Gong X, Cui M, Li X, Tang M. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res 2024; 19:833-845. [PMID: 37843219 PMCID: PMC10664138 DOI: 10.4103/1673-5374.382223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 10/17/2023] Open
Abstract
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mengmeng Cui
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
7
|
Liu K, Guo Q, Ding Y, Luo L, Huang J, Zhang Q. Alterations in nasal microbiota of patients with amyotrophic lateral sclerosis. Chin Med J (Engl) 2024; 137:162-171. [PMID: 37482646 PMCID: PMC10798702 DOI: 10.1097/cm9.0000000000002701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Links between alterations in gut microbiota composition and amyotrophic lateral sclerosis (ALS) have previously been reported. This study aimed to examine the microbiota in the nasal cavity of ALS. METHODS Sixty-six ALS patients and 40 healthy caregivers who live in close proximity with patients were enrolled. High throughput metagenomic sequencing of the 16S ribosomal deoxyribonucleic acid (rDNA) gene V3-V4 region of nasal microbiota was used to characterize the alpha and beta diversity and relative abundance of bacterial taxa, predict function, and conduct correlation analysis between specific taxa and clinical features. RESULTS The nasal microbiome of ALS patients showed lower alpha diversity than that of corresponding healthy family members. Genera Gaiella , Sphingomonas , Polaribacter _1, Lachnospiraceae _NK4A136_group, Klebsiella , and Alistipes were differentially enriched in ALS patients compared to controls. Nasal microbiota composition in ALS patients significantly differed from that in healthy subjects (unweighted UniFrac P = 0.001), while Linear discriminant analysis Effect Size (LEfSe) analysis indicated that Bacteroidetes and Firmicutes dominated healthy nasal communities at the phylum level, whereas Actinobacteria was the predominant phylum and Thermoleophilia was the predominant class in ALS patients. Genus Faecalibacterium and Alistipes were positively correlated with ALS functional rating scale revised (ALSFRS-R; rs = 0.349, P = 0.020 and rs = 0.393, P = 0.008), while Prevotella -9 and Bacteroides operational taxonomic units (OTUs) were positively associated with lung function (FVC) in ALS patients ( rs = 0.304, P = 0.045, and rs = 0.300, P = 0.048, respectively). Prevotella -1 was positively correlated with white blood cell counts (WBC, rs = 0.347, P = 0.021), neutrophil percentage (Neu%, rs = 0.428, P = 0.004), and neutrophil-to-lymphocyte ratio (NLR, rs = 0.411, P = 0.006), but negatively correlated with lymphocyte percentage (Lym%, rs = -0.408, P = 0.006). In contrast, Streptococcus was negatively associated with Neu% ( rs = -0.445, P = 0.003) and NLR ( rs = -0.436, P = 0.003), while positively associated with Lym% ( rs = 0.437, P = 0.003). No significant differences in nasal microbiota richness and evenness were detected among the severe and mild ALS patients. CONCLUSIONS ALS is accompanied by altered nasal microbial community composition and diversity. The findings presented here highlight the need to understand how dysbiosis of nasal microbiota may contribute to the development of ALS.
Collapse
Affiliation(s)
- Kaixiong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Qifu Guo
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Ying Ding
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Li Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Jianchai Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Qijie Zhang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| |
Collapse
|
8
|
Li Q, Meng LB, Chen LJ, Shi X, Tu L, Zhou Q, Yu JL, Liao X, Zeng Y, Yuan QY. The role of the microbiota-gut-brain axis and intestinal microbiome dysregulation in Parkinson's disease. Front Neurol 2023; 14:1185375. [PMID: 37305758 PMCID: PMC10249504 DOI: 10.3389/fneur.2023.1185375] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is a complex progressive neurodegenerative disease associated with aging. Its main pathological feature is the degeneration and loss of dopaminergic neurons related to the misfolding and aggregation of α-synuclein. The pathogenesis of PD has not yet been fully elucidated, and its occurrence and development process are closely related to the microbiota-gut-brain axis. Dysregulation of intestinal microbiota may promote the damage of the intestinal epithelial barrier, intestinal inflammation, and the upward diffusion of phosphorylated α-synuclein from the enteric nervous system (ENS) to the brain in susceptible individuals and further lead to gastrointestinal dysfunction, neuroinflammation, and neurodegeneration of the central nervous system (CNS) through the disordered microbiota-gut-brain axis. The present review aimed to summarize recent advancements in studies focusing on the role of the microbiota-gut-brain axis in the pathogenesis of PD, especially the mechanism of intestinal microbiome dysregulation, intestinal inflammation, and gastrointestinal dysfunction in PD. Maintaining or restoring homeostasis in the gut microenvironment by targeting the gut microbiome may provide future direction for the development of new biomarkers for early diagnosis of PD and therapeutic strategies to slow disease progression.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Ling-bing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-jun Chen
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Xia Shi
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Ling Tu
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Qi Zhou
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Jin-long Yu
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Xin Liao
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Yuan Zeng
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Qiao-ying Yuan
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Nie S, Jing Z, Wang J, Deng Y, Zhang Y, Ye Z, Ge Y. The link between increased Desulfovibrio and disease severity in Parkinson's disease. Appl Microbiol Biotechnol 2023; 107:3033-3045. [PMID: 36995383 DOI: 10.1007/s00253-023-12489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/31/2023]
Abstract
Parkinson's disease (PD), a progressive and incurable neurodegenerative disease, has taken a huge economic toll and medical burden on our society. Increasing evidence has shown a strong link between PD and the gut microbiome, but studies on the relationship between the gut microbiome and the severity of PD are limited. In this study, 90 fecal samples were collected from newly diagnosed and untreated patients with PD (n = 47) and matched healthy control subjects (n = 43). The 16S rRNA amplicon and shotgun metagenomic sequencing was performed, aiming to uncover the connection between the gut microbiome and disease severity in PD. The results showed that Desulfovibrio was significantly increased in PD compared to healthy controls and positively correlated with disease severity. The increase in Desulfovibrio was mainly driven by enhanced homogeneous selection and weakened drift. Moreover, through metagenome-assembled genomes (MAGs) analysis, a Desulfovibrio MAG (MAG58) was obtained which was also positively correlated with disease severity. MAG58 possesses a complete assimilatory sulfate reduction pathway and a near-complete dissimilatory sulfate reduction pathway to produce hydrogen sulfide which may influence the development of PD. Based on these results, a potential pathogenic mechanism was presented to illustrate how the increased Desulfovibrio accelerates the development of PD by producing excessive hydrogen sulfide. The present study highlighted the vital role of Desulfovibrio in the development of PD, which may provide a new target for the diagnosis and treatment of PD. KEY POINTS: • The evidence for the link between increased Desulfovibrio and disease severity in PD • A Desulfovibrio MAG was obtained which was correlated with PD • A model was presented to illustrate how increased Desulfovibrio causes PD.
Collapse
Affiliation(s)
- Shiqing Nie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongwang Jing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Deng
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Hall DA, Voigt RM, Cantu-Jungles TM, Hamaker B, Engen PA, Shaikh M, Raeisi S, Green SJ, Naqib A, Forsyth CB, Chen T, Manfready R, Ouyang B, Rasmussen HE, Sedghi S, Goetz CG, Keshavarzian A. An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson's disease participants. Nat Commun 2023; 14:926. [PMID: 36801916 PMCID: PMC9938693 DOI: 10.1038/s41467-023-36497-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
A pro-inflammatory intestinal microbiome is characteristic of Parkinson's disease (PD). Prebiotic fibers change the microbiome and this study sought to understand the utility of prebiotic fibers for use in PD patients. The first experiments demonstrate that fermentation of PD patient stool with prebiotic fibers increased the production of beneficial metabolites (short chain fatty acids, SCFA) and changed the microbiota demonstrating the capacity of PD microbiota to respond favorably to prebiotics. Subsequently, an open-label, non-randomized study was conducted in newly diagnosed, non-medicated (n = 10) and treated PD participants (n = 10) wherein the impact of 10 days of prebiotic intervention was evaluated. Outcomes demonstrate that the prebiotic intervention was well tolerated (primary outcome) and safe (secondary outcome) in PD participants and was associated with beneficial biological changes in the microbiota, SCFA, inflammation, and neurofilament light chain. Exploratory analyses indicate effects on clinically relevant outcomes. This proof-of-concept study offers the scientific rationale for placebo-controlled trials using prebiotic fibers in PD patients. ClinicalTrials.gov Identifier: NCT04512599.
Collapse
Affiliation(s)
- Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robin M Voigt
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.,Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Thaisa M Cantu-Jungles
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Bruce Hamaker
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Phillip A Engen
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
| | - Maliha Shaikh
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
| | - Shohreh Raeisi
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
| | - Stefan J Green
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.,Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, USA
| | - Ankur Naqib
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.,Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Tingting Chen
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA.,State Key Laboratory of Food Science & Technology, Nanchang University, Nanchang, China
| | - Richard Manfready
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Heather E Rasmussen
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA.,Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, USA
| | | | - Christopher G Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA. .,Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA. .,Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA. .,Department of Physiology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
11
|
Inflammatory microbes and genes as potential biomarkers of Parkinson's disease. NPJ Biofilms Microbiomes 2022; 8:101. [PMID: 36564391 PMCID: PMC9789082 DOI: 10.1038/s41522-022-00367-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
As the second-largest neurodegenerative disease in the world, Parkinson's disease (PD) has brought a severe economic and medical burden to our society. Growing evidence in recent years suggests that the gut microbiome may influence PD, but the exact pathogenesis of PD remains unclear. In addition, the current diagnosis of PD could be inaccurate and expensive. In this study, the largest meta-analysis currently of the gut microbiome in PD was analyzed, including 2269 samples by 16S rRNA gene and 236 samples by shotgun metagenomics, aiming to reveal the connection between PD and gut microbiome and establish a model to predict PD. The results showed that the relative abundances of potential pro-inflammatory bacteria, genes and pathways were significantly increased in PD, while potential anti-inflammatory bacteria, genes and pathways were significantly decreased. These changes may lead to a decrease in potential anti-inflammatory substances (short-chain fatty acids) and an increase in potential pro-inflammatory substances (lipopolysaccharides, hydrogen sulfide and glutamate). Notably, the results of 16S rRNA gene and shotgun metagenomic analysis have consistently identified five decreased genera (Roseburia, Faecalibacterium, Blautia, Lachnospira, and Prevotella) and five increased genera (Streptococcus, Bifidobacterium, Lactobacillus, Akkermansia, and Desulfovibrio) in PD. Furthermore, random forest models performed well for PD prediction based on 11 genera (accuracy > 80%) or 6 genes (accuracy > 90%) related to inflammation. Finally, a possible mechanism was presented to explain the pathogenesis of inflammation leading to PD. Our results provided further insights into the prediction and treatment of PD based on inflammation.
Collapse
|
12
|
Zacharias HU, Kaleta C, Cossais F, Schaeffer E, Berndt H, Best L, Dost T, Glüsing S, Groussin M, Poyet M, Heinzel S, Bang C, Siebert L, Demetrowitsch T, Leypoldt F, Adelung R, Bartsch T, Bosy-Westphal A, Schwarz K, Berg D. Microbiome and Metabolome Insights into the Role of the Gastrointestinal-Brain Axis in Parkinson's and Alzheimer's Disease: Unveiling Potential Therapeutic Targets. Metabolites 2022; 12:metabo12121222. [PMID: 36557259 PMCID: PMC9786685 DOI: 10.3390/metabo12121222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's disease (AD), the prevalence of which is rapidly rising due to an aging world population and westernization of lifestyles, are expected to put a strong socioeconomic burden on health systems worldwide. Clinical trials of therapies against PD and AD have only shown limited success so far. Therefore, research has extended its scope to a systems medicine point of view, with a particular focus on the gastrointestinal-brain axis as a potential main actor in disease development and progression. Microbiome and metabolome studies have already revealed important insights into disease mechanisms. Both the microbiome and metabolome can be easily manipulated by dietary and lifestyle interventions, and might thus offer novel, readily available therapeutic options to prevent the onset as well as the progression of PD and AD. This review summarizes our current knowledge on the interplay between microbiota, metabolites, and neurodegeneration along the gastrointestinal-brain axis. We further illustrate state-of-the art methods of microbiome and metabolome research as well as metabolic modeling that facilitate the identification of disease pathomechanisms. We conclude with therapeutic options to modulate microbiome composition to prevent or delay neurodegeneration and illustrate potential future research directions to fight PD and AD.
Collapse
Affiliation(s)
- Helena U. Zacharias
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 30625 Hannover, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Correspondence: (H.U.Z.); (C.K.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Correspondence: (H.U.Z.); (C.K.)
| | | | - Eva Schaeffer
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Henry Berndt
- Research Group Comparative Immunobiology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Lena Best
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Thomas Dost
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Svea Glüsing
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, 24118 Kiel, Germany
| | - Mathieu Groussin
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Mathilde Poyet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Heinzel
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Institute of Medical Informatics and Statistics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Leonard Siebert
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, 24118 Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, 24118 Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Rainer Adelung
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Thorsten Bartsch
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Anja Bosy-Westphal
- Institute of Human Nutrition and Food Science, Kiel University, 24107 Kiel, Germany
| | - Karin Schwarz
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, 24118 Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, 24118 Kiel, Germany
| | - Daniela Berg
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
13
|
Hong CT, Chan L, Chen KY, Lee HH, Huang LK, Yang YCSH, Liu YR, Hu CJ. Rifaximin Modifies Gut Microbiota and Attenuates Inflammation in Parkinson's Disease: Preclinical and Clinical Studies. Cells 2022; 11:3468. [PMID: 36359864 PMCID: PMC9656351 DOI: 10.3390/cells11213468] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 09/15/2023] Open
Abstract
Patients with Parkinson's disease (PD) exhibit distinct gut microbiota, which may promote gut-derived inflammation. Rifaximin is a nonabsorbable antibiotic that can modify gut microbiota. The present study investigated the effect of rifaximin on gut microbiota and inflammation status in PD. The study examined the effect of long-term rifaximin treatment on in vivo transgenic PD mice (MitoPark) and short-term rifaximin treatment on patients with PD. Rifaximin treatment caused a significant change in gut microbiota in the transgenic PD mice; in particular, it reduced the relative abundance of Prevotellaceae UCG-001 and increased the relative abundance of Bacteroides, Muribaculum, and Lachnospiraceae UCG-001. Rifaximin treatment attenuated serum interleukin-1β, interleukin-6 and tumor necrosis factor-α, claudin-5 and occludin, which indicated the reduction of systemic inflammation and the protection of the blood-brain barrier integrity. The rifaximin-treated MitoPark mice exhibited better motor and memory performance than did the control mice, with lower microglial activation and increased neuronal survival in the hippocampus. In the patients with PD, 7-day rifaximin treatment caused an increase in the relative abundance of Flavonifractor 6 months after treatment, and the change in plasma proinflammatory cytokine levels was negatively associated with the baseline plasma interleukin-1α level. In conclusion, the present study demonstrated that rifaximin exerted a neuroprotective effect on the transgenic PD mice by modulating gut microbiota. We observed that patients with higher baseline inflammation possibly benefited from rifaximin treatment. With consideration for the tolerability and safety of rifaximin, randomized controlled trials should investigate the disease-modification effect of long-term treatment on select patients with PD.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kai-Yun Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsun-Hua Lee
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Kai Huang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
14
|
The Interplay between Gut Microbiota and Parkinson's Disease: Implications on Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms232012289. [PMID: 36293176 PMCID: PMC9603886 DOI: 10.3390/ijms232012289] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
The bidirectional interaction between the gut microbiota (GM) and the Central Nervous System, the so-called gut microbiota brain axis (GMBA), deeply affects brain function and has an important impact on the development of neurodegenerative diseases. In Parkinson’s disease (PD), gastrointestinal symptoms often precede the onset of motor and non-motor manifestations, and alterations in the GM composition accompany disease pathogenesis. Several studies have been conducted to unravel the role of dysbiosis and intestinal permeability in PD onset and progression, but the therapeutic and diagnostic applications of GM modifying approaches remain to be fully elucidated. After a brief introduction on the involvement of GMBA in the disease, we present evidence for GM alterations and leaky gut in PD patients. According to these data, we then review the potential of GM-based signatures to serve as disease biomarkers and we highlight the emerging role of probiotics, prebiotics, antibiotics, dietary interventions, and fecal microbiota transplantation as supportive therapeutic approaches in PD. Finally, we analyze the mutual influence between commonly prescribed PD medications and gut-microbiota, and we offer insights on the involvement also of nasal and oral microbiota in PD pathology, thus providing a comprehensive and up-to-date overview on the role of microbial features in disease diagnosis and treatment.
Collapse
|
15
|
Ilieva NM, Wallen ZD, De Miranda BR. Oral ingestion of the environmental toxicant trichloroethylene in rats induces alterations in the gut microbiome: Relevance to idiopathic Parkinson's disease. Toxicol Appl Pharmacol 2022; 451:116176. [PMID: 35914559 PMCID: PMC10581445 DOI: 10.1016/j.taap.2022.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Microbial alterations within the gut microbiome appear to be a common feature of individuals with Parkinson's disease (PD), providing further evidence for the role of the gut-brain axis in PD development. As a major site of contact with the environment, questions have emerged surrounding the cause and effect of alterations to the gut microbiome by environmental contaminants associated with PD risk, such as pesticides, metals, and organic solvents. Recent data from our lab shows that ingestion of the industrial byproduct and environmental pollutant trichloroethylene (TCE) induces key Parkinsonian pathology within aged rats, including the degeneration of dopaminergic neurons, α-synuclein accumulation, neuroinflammation, and endolysosomal deficits. As TCE is the most common organic contaminant within drinking water, we postulated that ingestion of TCE associated with PD-related neurodegeneration may alter the gut microbiome to a similar extent as observed in persons with PD. To assess this, we collected fecal samples from adult rats treated with 200 mg/kg TCE over 6 weeks via oral gavage - the dose that produced nigrostriatal neurodegeneration - and analyzed the gut microbiome via whole genome shotgun sequencing. Our results showed changes in gut microorganisms reflective of the microbial signatures observed in individuals with idiopathic PD, such as decreased abundance of short-chain fatty acid producing Blautia and elevated lactic-acid producing Bifidobacteria, as well as genera who contain species previously reported as opportunistic pathogens such as Clostridium. From these experimental data, we postulate that TCE exposure within contaminated drinking water could induce alterations of the gut microbiome that contributes to chronic disease risk, including idiopathic PD.
Collapse
Affiliation(s)
- Neda M Ilieva
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zachary D Wallen
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Briana R De Miranda
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|