1
|
Liu W, Huang Z, Xiao J, Wu Y, Xia N, Yuan Q. Evolution of the SARS-CoV-2 Omicron Variants: Genetic Impact on Viral Fitness. Viruses 2024; 16:184. [PMID: 38399960 PMCID: PMC10893260 DOI: 10.3390/v16020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Over the last three years, the pandemic of COVID-19 has had a significant impact on people's lives and the global economy. The incessant emergence of variant strains has compounded the challenges associated with the management of COVID-19. As the predominant variant from late 2021 to the present, Omicron and its sublineages, through continuous evolution, have demonstrated iterative viral fitness. The comprehensive elucidation of the biological implications that catalyzed this evolution remains incomplete. In accordance with extant research evidence, we provide a comprehensive review of subvariants of Omicron, delineating alterations in immune evasion, cellular infectivity, and the cross-species transmission potential. This review seeks to clarify the underpinnings of biology within the evolution of SARS-CoV-2, thereby providing a foundation for strategic considerations in the post-pandemic era of COVID-19.
Collapse
Affiliation(s)
- Wenhao Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Zehong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Jin Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Mattiuz G, Di Giorgio S, Conticello SG. An elusive debate on the evidence for RNA editing in SARS-CoV-2. RNA Biol 2024; 21:1-2. [PMID: 38426405 PMCID: PMC10913694 DOI: 10.1080/15476286.2024.2321032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Giorgio Mattiuz
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Salvatore Di Giorgio
- German Cancer Research Center (DKFZ) - Division of Immune Diversity, Foundation under Public Law, Heidelberg, Germany
| | - Silvestro G. Conticello
- Core Research Laboratory, ISPRO, Firenze, Italy
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
3
|
Setthapramote C, Wongsuk T, Thongnak C, Phumisantiphong U, Hansirisathit T, Thanunchai M. SARS-CoV-2 Variants by Whole-Genome Sequencing in a University Hospital in Bangkok: First to Third COVID-19 Waves. Pathogens 2023; 12:pathogens12040626. [PMID: 37111512 PMCID: PMC10146024 DOI: 10.3390/pathogens12040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants emerged globally during the recent coronavirus disease (COVID-19) pandemic. From April 2020 to April 2021, Thailand experienced three COVID-19 waves, and each wave was driven by different variants. Therefore, we aimed to analyze the genetic diversity of circulating SARS-CoV-2 using whole-genome sequencing analysis. METHODS A total of 33 SARS-CoV-2 positive samples from three consecutive COVID-19 waves were collected and sequenced by whole-genome sequencing, of which, 8, 10, and 15 samples were derived from the first, second, and third waves, respectively. The genetic diversity of variants in each wave and the correlation between mutations and disease severity were explored. RESULTS During the first wave, A.6, B, B.1, and B.1.375 were found to be predominant. The occurrence of mutations in these lineages was associated with low asymptomatic and mild symptoms, providing no transmission advantage and resulting in extinction after a few months of circulation. B.1.36.16, the predominant lineage of the second wave, caused more symptomatic COVID-19 cases and contained a small number of key mutations. This variant was replaced by the VOC alpha variant, which later became dominant in the third wave. We found that B.1.1.7 lineage-specific mutations were crucial for increasing transmissibility and infectivity, but not likely associated with disease severity. There were six additional mutations found only in severe COVID-19 patients, which might have altered the virus phenotype with an inclination toward more highly pathogenic SARS-CoV-2. CONCLUSION The findings of this study highlighted the importance of whole-genome analysis in tracking newly emerging variants, exploring the genetic determinants essential for transmissibility, infectivity, and pathogenicity, and helping better understand the evolutionary process in the adaptation of viruses in humans.
Collapse
Affiliation(s)
- Chayanee Setthapramote
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Thanwa Wongsuk
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Chuphong Thongnak
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Uraporn Phumisantiphong
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
- Department of Central Laboratory and Blood Bank, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Tonsan Hansirisathit
- Department of Central Laboratory and Blood Bank, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Maytawan Thanunchai
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
de Prost N, Audureau E, Heming N, Gault E, Pham T, Chaghouri A, de Montmollin N, Voiriot G, Morand-Joubert L, Joseph A, Chaix ML, Préau S, Favory R, Guigon A, Luyt CE, Burrel S, Mayaux J, Marot S, Roux D, Descamps D, Meireles S, Pène F, Rozenberg F, Contou D, Henry A, Gaudry S, Brichler S, Timsit JF, Kimmoun A, Hartard C, Jandeaux LM, Fafi-Kremer S, Gabarre P, Emery M, Garcia-Sanchez C, Jochmans S, Pitsch A, Annane D, Azoulay E, Mekontso Dessap A, Rodriguez C, Pawlotsky JM, Fourati S. Clinical phenotypes and outcomes associated with SARS-CoV-2 variant Omicron in critically ill French patients with COVID-19. Nat Commun 2022; 13:6025. [PMID: 36224216 PMCID: PMC9555693 DOI: 10.1038/s41467-022-33801-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Infection with SARS-CoV-2 variant Omicron is considered to be less severe than infection with variant Delta, with rarer occurrence of severe disease requiring intensive care. Little information is available on comorbid factors, clinical conditions and specific viral mutational patterns associated with the severity of variant Omicron infection. In this multicenter prospective cohort study, patients consecutively admitted for severe COVID-19 in 20 intensive care units in France between December 7th 2021 and May 1st 2022 were included. Among 259 patients, we show that the clinical phenotype of patients infected with variant Omicron (n = 148) is different from that in those infected with variant Delta (n = 111). We observe no significant relationship between Delta and Omicron variant lineages/sublineages and 28-day mortality (adjusted odds ratio [95% confidence interval] = 0.68 [0.35–1.32]; p = 0.253). Among Omicron-infected patients, 43.2% are immunocompromised, most of whom have received two doses of vaccine or more (85.9%) but display a poor humoral response to vaccination. The mortality rate of immunocompromised patients infected with variant Omicron is significantly higher than that of non-immunocompromised patients (46.9% vs 26.2%; p = 0.009). In patients infected with variant Omicron, there is no association between specific sublineages (BA.1/BA.1.1 (n = 109) and BA.2 (n = 21)) or any viral genome polymorphisms/mutational profile and 28-day mortality. SARS-CoV-2 variant Omicron has been suggested to cause less severe disease. This prospective study shows that the clinical phenotype in patients infected with Omicron differs from patients infected with Delta but no association between Delta and Omicron including sublineages and mortality was observed.
Collapse
Affiliation(s)
- Nicolas de Prost
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France.,Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France.,Université Paris-Est-Créteil (UPEC), Créteil, France
| | - Etienne Audureau
- Université Paris-Est-Créteil (UPEC), Créteil, France.,Department of Public Health, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France.,IMRB INSERM U955, Team CEpiA, Créteil, France
| | - Nicholas Heming
- Médecine Intensive Réanimation, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Elyanne Gault
- Laboratoire de Virologie, Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne, France
| | - Tài Pham
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France.,Service de Médecine Intensive-Réanimation, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, DMU 4 CORREVE Maladies du Cœur et des Vaisseaux, FHU Sepsis, Le Kremlin-Bicêtre, France.,Inserm U1018, Equipe d'Epidémiologie respiratoire intégrative, CESP, 94807, Villejuif, France
| | - Amal Chaghouri
- Laboratoire de Virologie, Hôpital Paul Brousse, Assistance Publique-Hôpitaux de Paris, Villejuif, France
| | - Nina de Montmollin
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM, Médecine Intensive Réanimation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Voiriot
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM, Médecine Intensive Réanimation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laurence Morand-Joubert
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France.,Laboratoire de virologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, F-75012, Paris, France
| | - Adrien Joseph
- Médecine Intensive Réanimation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie-Laure Chaix
- Université de Paris, Inserm HIPI, F-75010, Paris, France.,Laboratoire de Virologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Sébastien Préau
- U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France
| | - Raphaël Favory
- U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France
| | - Aurélie Guigon
- Service de virologie, CHU de Lille, F-59000, Lille, France
| | - Charles-Edouard Luyt
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Médecine Intensive Réanimation, Paris, France.,INSERM UMRS_1166-iCAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Sonia Burrel
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France.,Département de Virologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Julien Mayaux
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Médecine Intensive Réanimation, Paris, France
| | - Stéphane Marot
- Département de Virologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Damien Roux
- Université de Paris, APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France.,INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades (INEM), Department of Immunology, Infectiology and Hematology, Paris, France
| | - Diane Descamps
- Université de Paris, IAME INSERM UMR 1137, Service de Virologie, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvie Meireles
- Service de Réanimation médico-chirurgicale, Assistance Publique-Hôpitaux de Paris, Hôpital Ambroise Paré, Boulogne, France
| | - Frédéric Pène
- Médecine Intensive Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Flore Rozenberg
- Laboratoire de Virologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Damien Contou
- Service de Réanimation, Hôpital Victor Dupouy, Argenteuil, France
| | - Amandine Henry
- Service de Virologie, Hôpital Victor Dupouy, Argenteuil, France
| | - Stéphane Gaudry
- Service de Réanimation, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Ségolène Brichler
- Laboratoire de Virologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Jean-François Timsit
- Service de Médecine Intensive Réanimation, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Kimmoun
- Université de Lorraine, CHRU de Nancy, Médecine Intensive et Réanimation Brabois, Vandœuvre-lès-Nancy, France.,INSERM U942 and U1116, F-CRIN-INIC RCT, Vandœuvre-lès-Nancy, France
| | - Cédric Hartard
- Service de Virologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Louise-Marie Jandeaux
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France.,Department of Intensive Care (Service de Médecine Intensive - Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Samira Fafi-Kremer
- Service de Virologie, Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Paul Gabarre
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Médecine Intensive Réanimation, 75571, Paris, Cedex 12, France
| | - Malo Emery
- Service de Réanimation, Hôpital Saint-Camille, Bry-sur-Marne, France
| | | | | | - Aurélia Pitsch
- Laboratoire de Microbiologie, Hôpital Marc Jacquet, Melun, France
| | - Djillali Annane
- Médecine Intensive Réanimation, Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Elie Azoulay
- Médecine Intensive Réanimation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Armand Mekontso Dessap
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France.,Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), Créteil, France.,Université Paris-Est-Créteil (UPEC), Créteil, France
| | - Christophe Rodriguez
- Université Paris-Est-Créteil (UPEC), Créteil, France.,Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France.,INSERM U955, Team « Viruses, Hepatology, Cancer », Créteil, France
| | - Jean-Michel Pawlotsky
- Université Paris-Est-Créteil (UPEC), Créteil, France.,Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France.,INSERM U955, Team « Viruses, Hepatology, Cancer », Créteil, France
| | - Slim Fourati
- Université Paris-Est-Créteil (UPEC), Créteil, France. .,Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France. .,INSERM U955, Team « Viruses, Hepatology, Cancer », Créteil, France.
| |
Collapse
|
5
|
Chavda VP, Apostolopoulos V. COVID-19 vaccine design and vaccination strategy for emerging variants. Expert Rev Vaccines 2022; 21:1359-1361. [PMID: 35949150 DOI: 10.1080/14760584.2022.2112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Vassilaki N, Papadimitriou K, Ioannidis A, Papandreou NC, Milona RS, Iconomidou VA, Chatzipanagiotou S. SARS-CoV-2 Amino Acid Mutations Detection in Greek Patients Infected in the First Wave of the Pandemic. Microorganisms 2022; 10:microorganisms10071430. [PMID: 35889149 PMCID: PMC9322066 DOI: 10.3390/microorganisms10071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel virus that belongs to the Coronoviridae family, emerged in December 2019, causing the COVID-19 pandemic in March 2020. Unlike previous SARS and Middle East respiratory syndrome (MERS) outbreaks, this virus has a higher transmissibility rate, albeit a lower case fatality rate, which results in accumulation of a significant number of mutations and a faster evolution rate. Genomic studies on the mutation rate of the virus, as well as the identification of mutations that prevail and their impact on disease severity, are of great importance for pandemic surveillance and vaccine and drug development. Here, we aim to identify mutations on the SARS-CoV-2 viral genome and their effect on the proteins they are located in, in Greek patients infected in the first wave of the pandemic. To this end, we perform SARS-CoV-2 amplicon-based NGS sequencing on nasopharyngeal swab samples from Greek patients and bioinformatic analysis of the results. Although SARS-CoV-2 is considered genetically stable, we discover a variety of mutations on the viral genome. In detail, 18 mutations are detected in total on 10 SARS-CoV-2 isolates. The mutations are located on ORF1ab, S protein, M protein, ORF3a and ORF7a. Sixteen are also detected in patients from other regions around the world, and two are identified for the first time in the present study. Most of them result in amino acid substitutions. These substitutions are analyzed using computational tools, and the results indicate minor or major impact on the proteins’ structural stability, which could probably affect viral transmissibility and pathogenesis. The correlation of these variations with the viral load levels is examined, and their implication for disease severity and the biology of the virus are discussed.
Collapse
Affiliation(s)
- Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.V.); (R.S.M.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Anastasios Ioannidis
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Sehi Area, 22100 Tripoli, Greece;
| | - Nikos C. Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (N.C.P.); (V.A.I.)
| | - Raphaela S. Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.V.); (R.S.M.)
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece; (N.C.P.); (V.A.I.)
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Eginition Hospital, Athens Medical School, National and Kapodistrian University of Athens, 72–74 Vasilissis Sofias Avenue, 11528 Athens, Greece
- Correspondence:
| |
Collapse
|
7
|
Fourati S, Audureau E, Arrestier R, Marot S, Dubois C, Voiriot G, Luyt CE, Urbina T, Mayaux J, Roque-Afonso AM, Pham T, Landraud L, Visseaux B, Roux D, Bellaiche R, L’honneur AS, Ait Hamou Z, Brichler S, Gaudry S, Salmona M, Clere-Jehl R, Azoulay E, Morand-Joubert L, Marcelin AG, Chaix ML, Descamps D, Mekontso Dessap A, Rodriguez C, Pawlotsky JM, de Prost N. SARS-CoV-2 Genomic Characteristics and Clinical Impact of SARS-CoV-2 Viral Diversity in Critically Ill COVID-19 Patients: A Prospective Multicenter Cohort Study. Viruses 2022; 14:v14071529. [PMID: 35891509 PMCID: PMC9322524 DOI: 10.3390/v14071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 variant of concern, α, spread worldwide at the beginning of 2021. It was suggested that this variant was associated with a higher risk of mortality than other variants. We aimed to characterize the genetic diversity of SARS-CoV-2 variants isolated from patients with severe COVID-19 and unravel the relationships between specific viral mutations/mutational patterns and clinical outcomes. This is a prospective multicenter observational cohort study. Patients aged ≥18 years admitted to 11 intensive care units (ICUs) in hospitals in the Greater Paris area for SARS-CoV-2 infection and acute respiratory failure between 1 October 2020 and 30 May 2021 were included. The primary clinical endpoint was day-28 mortality. Full-length SARS-CoV-2 genomes were sequenced by means of next-generation sequencing (Illumina COVIDSeq). In total, 413 patients were included, 183 (44.3%) were infected with pre-existing variants, 197 (47.7%) were infected with variant α, and 33 (8.0%) were infected with other variants. The patients infected with pre-existing variants were significantly older (64.9 ± 11.9 vs. 60.5 ± 11.8 years; p = 0.0005) and had more frequent COPD (11.5% vs. 4.1%; p = 0.009) and higher SOFA scores (4 [3–8] vs. 3 [2–4]; 0.0002). The day-28 mortality was no different between the patients infected with pre-existing, α, or other variants (31.1% vs. 26.2% vs. 30.3%; p = 0.550). There was no association between day-28 mortality and specific variants or the presence of specific mutations. At ICU admission, the patients infected with pre-existing variants had a different clinical presentation from those infected with variant α, but mortality did not differ between these groups. There was no association between specific variants or SARS-CoV-2 genome mutational pattern and day-28 mortality.
Collapse
Affiliation(s)
- Slim Fourati
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94010 Créteil, France; (S.F.); (C.R.); (J.-M.P.)
- Université Paris-Est-Créteil (UPEC), 94010 Créteil, France;
- INSERM U955, Team «Viruses, Hepatology, Cancer», 94010 Créteil, France
| | - Etienne Audureau
- INSERM U955 Team CEpiA, University Paris-Est-Créteil, 94010 Créteil, France;
- Department of Public Health, Hôpitaux Universitaires Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94010 Créteil, France
| | - Romain Arrestier
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94010 Créteil, France;
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), 94010 Créteil, France;
| | - Stéphane Marot
- Department of Virology, Assistance Publique–Hôpitaux de Paris, Hôpital Pitié–Salpêtrière, Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Sorbonne Université, INSERM U1136, 75013 Paris, France; (S.M.); (A.-G.M.)
| | - Claire Dubois
- Laboratoire de Virologie, Hôpital Universitaire Saint-Antoine, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Sorbonne Université, INSERM, AP-HP, 75012 Paris, France; (C.D.); (L.M.-J.)
| | - Guillaume Voiriot
- Médecine Intensive Réanimation, Hôpital Tenon, Assistance Publique—Hôpitaux de Paris, 75020 Paris, France;
| | - Charles-Edouard Luyt
- Médecine Intensive Réanimation, Assistance Publique—Hôpitaux de Paris, Hôpital Pitié–Salpêtrière, INSERM UMRS_1166-iCAN, Institute of Cardiometabolism and Nutrition, Sorbonne Université, 75013 Paris, France;
| | - Tomas Urbina
- Médecine Intensive Réanimation, Assistance Publique—Hôpitaux de Paris, Hôpital Saint-Antoine, Sorbonne Université, 75571 Paris, France;
| | - Julien Mayaux
- Médecine Intensive Réanimation, Assistance Publique–Hôpitaux de Paris, Hôpital Pitié–Salpêtrière, Sorbonne Université, 75013 Paris, France;
| | - Anne-Marie Roque-Afonso
- Laboratoire de Virologie, Hôpital Paul Brousse, Assistance Publique—Hôpitaux de Paris, 94800 Villejuif, France;
| | - Tài Pham
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), 94010 Créteil, France;
- Service de Médecine Intensive-Réanimation, Assistance Publique—Hôpitaux de Paris, Hôpital de Bicêtre, DMU 4 CORREVE Maladies du Cœur et des Vaisseaux, FHU Sepsis, Groupe de Recherche Clinique CARMAS, 94270 Le Kremlin-Bicêtre, France
- Equipe d’Epidémiologie Respiratoire Intégrative, CESP, Université Paris-Saclay, UVSQ, Univ. Paris-Sud, INSERM U1018, 94807 Villejuif, France
| | - Luce Landraud
- Laboratoire de Microbiologie, Hôpital Louis Mourier, Assistance Publique—Hôpitaux de Paris, 92700 Colombes, France;
| | - Benoit Visseaux
- Service de Virologie, Hôpital Bichat-Claude Bernard, Assistance Publique—Hôpitaux de Paris, Université de Paris, IAME INSERM UMR 1137, 75018 Paris, France; (B.V.); (D.D.)
| | - Damien Roux
- Service de Médecine Intensive Réanimation, DMU ESPRIT, Hôpital Louis Mourier, Assistance Publique—Hôpitaux de Paris, 92700 Colombes, France;
- Institut Necker-Enfants Malades (INEM), Department of Immunology, Infectiology and Hematology, INSERM U1151, CNRS UMR 8253, 75015 Paris, France
| | - Raphael Bellaiche
- Département d’Anesthésie Réanimations Chirurgicales, Hôpitaux Universitaires Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94010 Créteil, France;
| | - Anne-Sophie L’honneur
- Laboratoire de Virologie, Hôpital Cochin, Assistance Publique—Hôpitaux de Paris, 75014 Paris, France;
| | - Zakaria Ait Hamou
- Médecine Intensive Réanimation, Hôpital Cochin, Assistance Publique—Hôpitaux de Paris, 75014 Paris, France;
| | - Ségolène Brichler
- Laboratoire de Virologie, Hôpital Avicenne, Assistance Publique—Hôpitaux de Paris, 93000 Bobigny, France;
| | - Stéphane Gaudry
- Service de Réanimation, Hôpital Avicenne, Assistance Publique—Hôpitaux de Paris, 93000 Bobigny, France;
| | - Maud Salmona
- Laboratoire de Virologie, Assistance Publique—Hôpitaux de Paris, Hôpital Saint-Louis, Université de Paris, INSERM HIPI, 75010 Paris, France; (M.S.); (M.-L.C.)
| | - Raphaël Clere-Jehl
- Médecine Intensive Réanimation, Hôpital Saint-Louis, Assistance Publique—Hôpitaux de Paris, 75010 Paris, France; (R.C.-J.); (E.A.)
| | - Elie Azoulay
- Médecine Intensive Réanimation, Hôpital Saint-Louis, Assistance Publique—Hôpitaux de Paris, 75010 Paris, France; (R.C.-J.); (E.A.)
| | - Laurence Morand-Joubert
- Laboratoire de Virologie, Hôpital Universitaire Saint-Antoine, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Sorbonne Université, INSERM, AP-HP, 75012 Paris, France; (C.D.); (L.M.-J.)
| | - Anne-Geneviève Marcelin
- Department of Virology, Assistance Publique–Hôpitaux de Paris, Hôpital Pitié–Salpêtrière, Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Sorbonne Université, INSERM U1136, 75013 Paris, France; (S.M.); (A.-G.M.)
| | - Marie-Laure Chaix
- Laboratoire de Virologie, Assistance Publique—Hôpitaux de Paris, Hôpital Saint-Louis, Université de Paris, INSERM HIPI, 75010 Paris, France; (M.S.); (M.-L.C.)
| | - Diane Descamps
- Service de Virologie, Hôpital Bichat-Claude Bernard, Assistance Publique—Hôpitaux de Paris, Université de Paris, IAME INSERM UMR 1137, 75018 Paris, France; (B.V.); (D.D.)
| | - Armand Mekontso Dessap
- Université Paris-Est-Créteil (UPEC), 94010 Créteil, France;
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94010 Créteil, France;
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), 94010 Créteil, France;
| | - Christophe Rodriguez
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94010 Créteil, France; (S.F.); (C.R.); (J.-M.P.)
- Université Paris-Est-Créteil (UPEC), 94010 Créteil, France;
- INSERM U955, Team «Viruses, Hepatology, Cancer», 94010 Créteil, France
| | - Jean-Michel Pawlotsky
- Department of Virology, Hôpitaux Universitaires Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94010 Créteil, France; (S.F.); (C.R.); (J.-M.P.)
- Université Paris-Est-Créteil (UPEC), 94010 Créteil, France;
- INSERM U955, Team «Viruses, Hepatology, Cancer», 94010 Créteil, France
| | - Nicolas de Prost
- Université Paris-Est-Créteil (UPEC), 94010 Créteil, France;
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94010 Créteil, France;
- Groupe de Recherche Clinique CARMAS, Université Paris-Est-Créteil (UPEC), 94010 Créteil, France;
- Correspondence: ; Tel.: +33-1-45-17-86-37
| |
Collapse
|
8
|
Contrasting Epidemiology and Population Genetics of COVID-19 Infections Defined by Multilocus Genotypes in SARS-CoV-2 Genomes Sampled Globally. Viruses 2022; 14:v14071434. [PMID: 35891414 PMCID: PMC9316073 DOI: 10.3390/v14071434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022] Open
Abstract
Since its emergence in 2019, SARS-CoV-2 has spread and evolved globally, with newly emerged variants of concern (VOCs) accounting for more than 500 million COVID-19 cases and 6 million deaths. Continuous surveillance utilizing simple genetic tools is needed to measure the viral epidemiological diversity, risk of infection, and distribution among different demographics in different geographical regions. To help address this need, we developed a proof-of-concept multilocus genotyping tool and demonstrated its utility to monitor viral populations sampled in 2020 and 2021 across six continents. We sampled globally 22,164 SARS-CoV-2 genomes from GISAID (inclusion criteria: available clinical and demographic data). They comprised two study populations, “2020 genomes” (N = 5959) sampled from December 2019 to September 2020 and “2021 genomes” (N = 16,205) sampled from 15 January to 15 March 2021. All genomes were aligned to the SARS-CoV-2 reference genome and amino acid polymorphisms were called with quality filtering. Thereafter, 74 codons (loci) in 14 genes including orf1ab polygene (N = 9), orf3a, orf8, nucleocapsid (N), matrix (M), and spike (S) met the 0.01 minimum allele frequency criteria and were selected to construct multilocus genotypes (MLGs) for the genomes. At these loci, 137 mutant/variant amino acids (alleles) were detected with eight VOC-defining variant alleles, including N KR203&204, orf1ab (I265, F3606, and L4715), orf3a H57, orf8 S84, and S G614, being predominant globally with > 35% prevalence. Their persistence and selection were associated with peaks in the viral transmission and COVID-19 incidence between 2020 and 2021. Epidemiologically, older patients (≥20 years) compared to younger patients (<20 years) had a higher risk of being infected with these variants, but this association was dependent on the continent of origin. In the global population, the discriminant analysis of principal components (DAPC) showed contrasting patterns of genetic clustering with three (Africa, Asia, and North America) and two (North and South America) continental clusters being observed for the 2020 and 2021 global populations, respectively. Within each continent, the MLG repertoires (range 40−199) sampled in 2020 and 2021 were genetically differentiated, with ≤4 MLGs per repertoire accounting for the majority of genomes sampled. These data suggested that the majority of SARS-CoV-2 infections in 2020 and 2021 were caused by genetically distinct variants that likely adapted to local populations. Indeed, four GISAID clade-defined VOCs - GRY (Alpha), GH (Beta), GR (Gamma), and G/GK (Delta variant) were differentiated by their MLG signatures, demonstrating the versatility of the MLG tool for variant identification. Results from this proof-of-concept multilocus genotyping demonstrates its utility for SARS-CoV-2 genomic surveillance and for monitoring its spatiotemporal epidemiology and evolution, particularly in response to control interventions including COVID-19 vaccines and chemotherapies.
Collapse
|
9
|
Hoteit R, Yassine HM. Biological Properties of SARS-CoV-2 Variants: Epidemiological Impact and Clinical Consequences. Vaccines (Basel) 2022; 10:919. [PMID: 35746526 PMCID: PMC9230982 DOI: 10.3390/vaccines10060919] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that belongs to the coronavirus family and is the cause of coronavirus disease 2019 (COVID-19). As of May 2022, it had caused more than 500 million infections and more than 6 million deaths worldwide. Several vaccines have been produced and tested over the last two years. The SARS-CoV-2 virus, on the other hand, has mutated over time, resulting in genetic variation in the population of circulating variants during the COVID-19 pandemic. It has also shown immune-evading characteristics, suggesting that vaccinations against these variants could be potentially ineffective. The purpose of this review article is to investigate the key variants of concern (VOCs) and mutations of the virus driving the current pandemic, as well as to explore the transmission rates of SARS-CoV-2 VOCs in relation to epidemiological factors and to compare the virus's transmission rate to that of prior coronaviruses. We examined and provided key information on SARS-CoV-2 VOCs in this study, including their transmissibility, infectivity rate, disease severity, affinity for angiotensin-converting enzyme 2 (ACE2) receptors, viral load, reproduction number, vaccination effectiveness, and vaccine breakthrough.
Collapse
Affiliation(s)
- Reem Hoteit
- Clinical Research Institute, Faculty of Medicine, American University of Beirut, Beirut 110236, Lebanon;
| | - Hadi M. Yassine
- Biomedical Research Center and College of Health Sciences-QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
10
|
Martignano F, Di Giorgio S, Mattiuz G, Conticello SG. Commentary on "Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2". J Appl Genet 2022; 63:423-428. [PMID: 35279801 PMCID: PMC8917825 DOI: 10.1007/s13353-022-00688-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023]
Abstract
Analysis of the SARS-CoV-2 transcriptome has revealed a background of low-frequency intra-host genetic changes with a strong bias towards transitions. A similar pattern is also observed when inter-host variability is considered. We and others have shown that the cellular RNA editing machinery based on ADAR and APOBEC host-deaminases could be involved in the onset of SARS-CoV-2 genetic variability. Our hypothesis is based both on similarities with other known forms of viral genome editing and on the excess of transition changes, which is difficult to explain with errors during viral replication. Zong et al. criticize our analysis on both conceptual and technical grounds. While ultimate proof of an involvement of host deaminases in viral RNA editing will depend on experimental validation, here, we address the criticism to suggest that viral RNA editing is the most reasonable explanation for the observed intra- and inter-host variability.
Collapse
Affiliation(s)
- F Martignano
- Core Research Laboratory, ISPRO, 50139, Firenze, Italy
| | - S Di Giorgio
- German Cancer Research Center (DKFZ), Division of Immune Diversity, Foundation Under Public Law, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - G Mattiuz
- Department of Experimental and Clinical Medicine, University of Florence, 50139, Firenze, Italy
| | - S G Conticello
- Core Research Laboratory, ISPRO, 50139, Firenze, Italy.
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy.
| |
Collapse
|
11
|
Chekol Abebe E, Tiruneh G/Medhin M, Behaile T/Mariam A, Asmamaw Dejenie T, Mengie Ayele T, Tadele Admasu F, Tilahun Muche Z, Asmare Adela G. Mutational Pattern, Impacts and Potential Preventive Strategies of Omicron SARS-CoV-2 Variant Infection. Infect Drug Resist 2022; 15:1871-1887. [PMID: 35450114 PMCID: PMC9017707 DOI: 10.2147/idr.s360103] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/08/2022] [Indexed: 01/18/2023] Open
Abstract
Since the emergence of COVID 19, the authentic SARS-CoV-2 has evolved into a range of novel variants that are of more global concern. In late November 2021, the Omicron (lineage B.1.1.529) variant was identified as a new variant and considered as the fifth variant of concern. Omicron harbors a genetic profile that is exceedingly unusual, with a huge number of mutations. Above thirty mutations are localized in the S protein, while some are found in other structural and non-structural proteins. Half of the mutations in the S protein are in the RBD, which is a major target of antibodies, showing that Omicron mutations may affect antibody binding affinity to the S protein. The Omicron variant has been found to result in immune escape, therapeutic or vaccine escape, as well as increased transmissibility and reinfection risk, explaining its rapid international spread that sparks a global alarm even more serious than the previously reported variants. Omicron has the capability to bypass at least some of the multi-faceted immune responses induced by prior infection or vaccination. It is shown to extensively escape neutralizing antibodies while evading cell mediated immune defense to a lesser extent. The efficacy of COVID 19 vaccines against Omicron variant is decreased with primary vaccination, showing that the vaccine is less efficient in preventing Omicron infections. However, after receiving a booster vaccine dose, the immunological response to Omicron significantly improved and hold promising results. Despite the mild nature of the disease in most vaccinated people, the rapid spread of Omicron, as well as the increased risk of re-infection, poses yet another major public health concern. Therefore, effort should be devoted to maintaining the existing COVID 19 preventive measures as well as developing new vaccination strategies in order to control the fast dissemination of Omicron.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Markeshaw Tiruneh G/Medhin
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Awgichew Behaile T/Mariam
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Teklie Mengie Ayele
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Fitalew Tadele Admasu
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Getachew Asmare Adela
- Department of Reproductive Health and Nutrition, School of Public Health, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| |
Collapse
|
12
|
Ao D, Lan T, He X, Liu J, Chen L, Baptista‐Hon DT, Zhang K, Wei X. SARS-CoV-2 Omicron variant: Immune escape and vaccine development. MedComm (Beijing) 2022; 3:e126. [PMID: 35317190 PMCID: PMC8925644 DOI: 10.1002/mco2.126] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
New genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constantly emerge through unmitigated spread of the virus in the ongoing Coronavirus disease 2019 pandemic. Omicron (B.1.1.529), the latest variant of concern (VOC), has so far shown exceptional spread and infectivity and has established itself as the dominant variant in recent months. The SARS-CoV-2 spike glycoprotein is a key component for the recognition and binding to host cell angiotensin-converting enzyme 2 receptors. The Omicron variant harbors a cluster of substitutions/deletions/insertions, and more than 30 mutations are located in spike. Some noticeable mutations, including K417N, T478K, N501Y, and P681H, are shared with the previous VOCs Alpha, Beta, Gamma, or Delta variants and have been proven to be associated with higher transmissibility, viral infectivity, and immune evasion potential. Studies have revealed that the Omicron variant is partially resistant to the neutralizing activity of therapeutic antibodies and convalescent sera, which poses significant challenges for the clinical effectiveness of the current vaccines and therapeutic antibodies. We provide a comprehensive analysis and summary of the epidemiology and immune escape mechanisms of the Omicron variant. We also suggest some therapeutic strategies against the Omicron variant. This review, therefore, aims to provide information for further research efforts to prevent and contain the impact of new VOCs during the ongoing pandemic.
Collapse
Affiliation(s)
- Danyi Ao
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jian Liu
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daniel T. Baptista‐Hon
- Center for Biomedicine and InnovationsFaculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Kang Zhang
- Center for Biomedicine and InnovationsFaculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
13
|
Quarleri J, Galvan V, Delpino MV. Omicron variant of the SARS-CoV-2: a quest to define the consequences of its high mutational load. GeroScience 2022; 44:53-56. [PMID: 34921354 PMCID: PMC8683309 DOI: 10.1007/s11357-021-00500-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Veronica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Research Health Scientist, US Department of Veterans Affairs, Oklahoma City VA Health Care System, Oklahoma City, OK, USA
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Mendiola-Pastrana IR, López-Ortiz E, Río de la Loza-Zamora JG, González J, Gómez-García A, López-Ortiz G. SARS-CoV-2 Variants and Clinical Outcomes: A Systematic Review. Life (Basel) 2022; 12:life12020170. [PMID: 35207458 PMCID: PMC8879159 DOI: 10.3390/life12020170] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
Background: From the start of the COVID-19 pandemic, new SARS-CoV-2 variants have emerged that potentially affect transmissibility, severity, and immune evasion in infected individuals. In the present systematic review, the impact of different SARS-CoV-2 variants on clinical outcomes is analyzed. Methods: A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. Two databases (PubMed and ScienceDirect) were searched for original articles published from 1 January 2020 to 23 November 2021. The articles that met the selection criteria were appraised according to the Newcastle–Ottawa Quality Assessment Scale. Results: Thirty-three articles were included, involving a total of 253,209 patients and 188,944 partial or complete SARS-CoV-2 sequences. The most reported SARS-CoV-2 variants showed changes in the spike protein, N protein, RdRp and NSP3. In 28 scenarios, SARS-CoV-2 variants were found to be associated with a mild to severe or even fatal clinical outcome, 15 articles reported such association to be statistically significant. Adjustments in eight of them were made for age, sex and other covariates. Conclusions: SARS-CoV-2 variants can potentially have an impact on clinical outcomes; future studies focused on this topic should consider several covariates that influence the clinical course of the disease.
Collapse
Affiliation(s)
- Indira R. Mendiola-Pastrana
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - Eduardo López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - José G. Río de la Loza-Zamora
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Anel Gómez-García
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58351, Mexico;
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
- Correspondence:
| |
Collapse
|