1
|
McEwan TBD, De Oliveira DMP, Stares EK, Hartley-Tassell LE, Day CJ, Proctor EJ, Nizet V, Walker MJ, Jennings MP, Sluyter R, Sanderson-Smith ML. M proteins of group A Streptococcus bind hyaluronic acid via arginine-arginine/serine-arginine motifs. FASEB J 2024; 38:e70123. [PMID: 39436142 DOI: 10.1096/fj.202401301r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Tissue injury, including extracellular matrix (ECM) degradation, is a hallmark of group A Streptococcus (GAS) skin infection and is partially mediated by M proteins which possess lectin-like properties. Hyaluronic acid is a glycosaminoglycan enriched in the cutaneous ECM, yet an interaction with M proteins has yet to be explored. This study revealed that hyaluronic acid binding was conserved across phylogenetically diverse M proteins, mediated by RR/SR motifs predominantly localized in the C repeat region. Keratinocyte wound healing was decreased through the recruitment of hyaluronic acid by M proteins in an M type-specific manner. GAS strains 5448 (M1 serotype) and ALAB49 (M53 serotype) also bound hyaluronic acid via M proteins, but hyaluronic acid could increase bacterial adherence independently of M proteins. The identification of host-pathogen mechanisms that affect ECM composition and cell repair responses may facilitate the development of nonantibiotic therapeutics that arrest GAS disease progression in the skin.
Collapse
Affiliation(s)
- Tahnee B-D McEwan
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - David M P De Oliveira
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Emily K Stares
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Christopher J Day
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Emma-Jayne Proctor
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Mark J Walker
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Michael P Jennings
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ronald Sluyter
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martina L Sanderson-Smith
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
2
|
Gómez-Mejia A, Orlietti M, Tarnutzer A, Mairpady Shambat S, Zinkernagel AS. Inhibition of Streptococcus pyogenes biofilm by Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus. mSphere 2024; 9:e0043024. [PMID: 39360839 PMCID: PMC11520294 DOI: 10.1128/msphere.00430-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
The human pathobiont Streptococcus pyogenes forms biofilms and causes infections, such as pharyngotonsillitis and necrotizing fasciitis. Bacterial biofilms are more resilient to antibiotic treatment, and new therapeutic strategies are needed to control biofilm-associated infections, such as recurrent pharyngotonsillitis. Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus are two bacterial commensals used for their probiotic properties. This study aimed to elucidate the anti-biofilm properties of L. plantarum and L. rhamnosus cell-free supernatants (LPSN and LRSN, respectively) on S. pyogenes biofilms grown in vitro in supplemented minimal medium. When planktonic or biofilm S. pyogenes were exposed to LPSN or LRSN, S. pyogenes survival was reduced significantly in a concentration-dependent manner, and the effect was more pronounced on preformed biofilms. Enzymatic digestion of LPSN and LRSN suggested that glycolipid compounds might cause the antimicrobial effect. In conclusion, this study indicates that L. plantarum and L. rhamnosus produce glycolipid bioactive compounds that reduce the viability of S. pyogenes in planktonic and biofilm cultures.IMPORTANCEStreptococcus pyogenes infections are a significant concern for populations at risk, such as children and the elderly, as non-invasive conditions such as impetigo and strep throat can lead to severe invasive diseases such as necrotizing fasciitis. Despite its susceptibility to current antibiotics, the formation of biofilm by this pathogen decreases the efficacy of antibiotic treatment alone. The ability of commensal lactobacillus to kill S. pyogenes has been documented by previous studies using in vitro settings. The relevance of our study is in using a physiological setup and a more detailed understanding of the nature of the lactobacillus molecule affecting the viability of S. pyogenes. This additional knowledge will help for a better comprehension of the molecules' characteristics and kinetics, which in turn will facilitate new avenues of research for its translation to new therapies.
Collapse
Affiliation(s)
- Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Mariano Orlietti
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Andrea Tarnutzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Alves GDSG, de Oliveira AMP, Roseno ACB, Ribeiro NP, Alves MDS, Sampaio C, do Prado RL, Pessan JP, Monteiro DR. Interkingdom biofilm of Streptococcus pyogenes and Candida albicans: establishment of an in vitro model and dose-response validation of antimicrobials. BIOFOULING 2024; 40:580-592. [PMID: 39193785 DOI: 10.1080/08927014.2024.2395390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Although Streptococcus pyogenes and Candida albicans may colonize tonsillar tissues, the interaction between them in mixed biofilms has been poorly explored. This study established an interkingdom biofilm model of S. pyogenes and C. albicans and verified the dose-response validation of antimicrobials. Biofilms were formed on microplates, in the presence or absence of a conditioning layer of human saliva, using Brain Heart Infusion (BHI) broth or artificial saliva (AS) as a culture medium, and with variations in the microorganism inoculation sequence. Biofilms grown in AS showed higher mass than those grown in BHI broth, and an opposite trend was observed for metabolism. The number of S. pyogenes colonies was lower in AS. Amoxicillin and nystatin showed dose-dependent effects. The inoculation of the two species at the same time, without prior exposure to saliva, and using BHI broth would be the model of choice for future studies assessing the effects of antimicrobials on dual S. pyogenes/C. albicans biofilms.
Collapse
Affiliation(s)
| | | | - Ana Carolyna Becher Roseno
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Natália Pereira Ribeiro
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Maria do Socorro Alves
- Postgraduate Program in Animal Science, University of Western São Paulo (UNOESTE), Presidente Prudente/São Paulo, Brazil
| | - Caio Sampaio
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Rosana Leal do Prado
- School of Dentistry, Department of Community and Preventive Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Juliano Pelim Pessan
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Douglas Roberto Monteiro
- School of Dentistry, Araçatuba, Department of Diagnosis and Surgery, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| |
Collapse
|
4
|
Bjånes E, Stream A, Janssen AB, Gibson PS, Bravo AM, Dahesh S, Baker JL, Varble A, Nizet V, Veening JW. An efficient in vivo-inducible CRISPR interference system for group A Streptococcus genetic analysis and pathogenesis studies. mBio 2024; 15:e0084024. [PMID: 38953375 PMCID: PMC11323564 DOI: 10.1128/mbio.00840-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
While genome-wide transposon mutagenesis screens have identified numerous essential genes in the significant human pathogen Streptococcus pyogenes (group A Streptococcus or GAS), many of their functions remain elusive. This knowledge gap is attributed in part to the limited molecular toolbox for controlling GAS gene expression and the bacterium's poor genetic transformability. CRISPR interference (CRISPRi), using catalytically inactive GAS Cas9 (dCas9), is a powerful approach to specifically repress gene expression in both bacteria and eukaryotes, but ironically, it has never been harnessed for controlled gene expression in GAS. In this study, we present a highly transformable and fully virulent serotype M1T1 GAS strain and introduce a doxycycline-inducible CRISPRi system for efficient repression of bacterial gene expression. We demonstrate highly efficient, oligo-based single guide RNA cloning directly to GAS, enabling the construction of a gene knockdown strain in just 2 days, in contrast to the several weeks typically required. The system is shown to be titratable and functional both in vitro and in vivo using a murine model of GAS infection. Furthermore, we provide direct in vivo evidence that the expression of the conserved cell division gene ftsZ is essential for GAS virulence, highlighting its promise as a target for emerging FtsZ inhibitors. Finally, we introduce SpyBrowse (https://veeninglab.com/SpyBrowse), a comprehensive and user-friendly online resource for visually inspecting and exploring GAS genetic features. The tools and methodologies described in this work are poised to facilitate fundamental research in GAS, contribute to vaccine development, and aid in the discovery of antibiotic targets. IMPORTANCE While group A Streptococcus (GAS) remains a predominant cause of bacterial infections worldwide, there are limited genetic tools available to study its basic cell biology. Here, we bridge this gap by creating a highly transformable, fully virulent M1T1 GAS strain. In addition, we established a tight and titratable doxycycline-inducible system and developed CRISPR interference (CRISPRi) for controlled gene expression in GAS. We show that CRISPRi is functional in vivo in a mouse infection model. Additionally, we present SpyBrowse, an intuitive and accessible genome browser (https://veeninglab.com/SpyBrowse). Overall, this work overcomes significant technical challenges of working with GAS and, together with SpyBrowse, represents a valuable resource for researchers in the GAS field.
Collapse
Affiliation(s)
- Elisabet Bjånes
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Alexandra Stream
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Axel B. Janssen
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paddy S. Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Afonso M. Bravo
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Samira Dahesh
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Jonathon L. Baker
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Andrew Varble
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Jan-Willem Veening
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Zou Z, Singh P, Pinkner JS, Obernuefemann CLP, Xu W, Nye TM, Dodson KW, Almqvist F, Hultgren SJ, Caparon MG. Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds treat Streptococcus pyogenes skin and soft tissue infection. SCIENCE ADVANCES 2024; 10:eadn7979. [PMID: 39093975 PMCID: PMC11296344 DOI: 10.1126/sciadv.adn7979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that has antimicrobial activities against a broad spectrum of Gram-positive pathogens. Here, we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens, and accelerated rates of wound healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.
Collapse
Affiliation(s)
- Zongsen Zou
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pardeep Singh
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Xu
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taylor M. Nye
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen W. Dodson
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Scott J. Hultgren
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael G. Caparon
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Del Rosso JQ, Armillei MK, Lomakin IB, Grada A, Bunick CG. Clindamycin: A Comprehensive Status Report with Emphasis on Use in Dermatology. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2024; 17:29-40. [PMID: 39148960 PMCID: PMC11324192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Clindamycin is a lincosamide antibiotic that has been used as a topical, oral, or injectable formulation for over five decades. It exhibits a narrow spectrum of microbiologic activity, primarily against gram-positive and anaerobic bacteria. In dermatology, clindamycin has been used primarily as a topical agent, usually for the treatment of acne vulgaris. Despite questions surrounding antibiotic resistance and/or its relative contribution to antibiotic treatment efficacy, a large body of data support the therapeutic value of topical clindamycin for acne vulgaris. As a systemic agent, clindamycin is used orally to treat a variety of cutaneous bacterial infections, and sometimes for acne vulgaris, with oral treatment for the latter less common in more recent years. The modes of action of clindamycin are supported by data showing both its anti-inflammatory and antibiotic mechanisms, which are discussed here along with pharmacokinetic profiles and structure-activity relationships. The diverse applications of clindamycin for multiple disease states, its efficacy, and safety considerations are also reviewed here, including for both topical and systemic formulations. Emphasis is placed on uses in dermatology, but other information on clindamycin relevant to clinicians is also discussed.
Collapse
Affiliation(s)
- James Q. Del Rosso
- Dr. Del Rosso is Adjunct Clinical Faculty in Dermatology at Touro University Nevada in Henderson, Nevada, JDR Dermatology Research in Las Vegas, Nevada, and Advanced Dermatology and Cosmetic Surgery in Maitland, Florida
| | - Maria K. Armillei
- Ms. Armillei is with the Translational Biomedicine Program at the Yale University School of Medicine in New Haven, Connecticut
| | - Ivan B. Lomakin
- Dr. Lomakin is with the Department of Dermatology at Yale University in New Haven, Connecticut
| | - Ayman Grada
- Dr. Grada is with the Department of Dermatology at Case Western Reserve University School of Medicine in Cleveland, Ohio
| | - Christopher G. Bunick
- Dr. Bunick is with the Translational Biomedicine Program at the Yale University School of Medicine in New Haven, Connecticut, and the Department of Dermatology at Yale University in New Haven, Connecticut
| |
Collapse
|
7
|
Nishioka ST, Snipper J, Lee J, Schapiro J, Zhang RZ, Abe H, Till A, Okumura CYM. Group A Streptococcus induces lysosomal dysfunction in THP-1 macrophages. Infect Immun 2024; 92:e0014124. [PMID: 38722166 PMCID: PMC11237432 DOI: 10.1128/iai.00141-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.
Collapse
Affiliation(s)
- Scott T Nishioka
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Joshua Snipper
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Jimin Lee
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Joshua Schapiro
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Robert Z Zhang
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Hyewon Abe
- Biology Department, Occidental College, Los Angeles, California, USA
| | - Andreas Till
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- The San Diego Center for Systems Biology, University of California San Diego, La Jolla, California, USA
- University Hospital of Bonn, Bonn, Germany
| | | |
Collapse
|
8
|
Di Pietro GM, Marchisio P, Bosi P, Castellazzi ML, Lemieux P. Group A Streptococcal Infections in Pediatric Age: Updates about a Re-Emerging Pathogen. Pathogens 2024; 13:350. [PMID: 38787202 PMCID: PMC11124454 DOI: 10.3390/pathogens13050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Group A Streptococcus (GAS) presents a significant global health burden due to its diverse clinical manifestations ranging from mild infections to life-threatening invasive diseases. While historically stable, the incidence of GAS infections declined during the COVID-19 pandemic but resurged following the relaxation of preventive measures. Despite general responsiveness to β-lactam antibiotics, there remains an urgent need for a GAS vaccine due to its substantial global disease burden, particularly in low-resource settings. Vaccine development faces numerous challenges, including the extensive strain diversity, the lack of suitable animal models for testing, potential autoimmune complications, and the need for global distribution, while addressing socioeconomic disparities in vaccine access. Several vaccine candidates are in various stages of development, offering hope for effective prevention strategies in the future.
Collapse
Affiliation(s)
- Giada Maria Di Pietro
- Pediatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paola Marchisio
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (P.L.)
| | - Pietro Bosi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (P.L.)
| | - Massimo Luca Castellazzi
- Pediatric Emergency Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Paul Lemieux
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (P.L.)
| |
Collapse
|
9
|
Ruland KL, Beneschott N, Creech CB, Umfress A. Amniotic membrane transplantation as part of a multimodal management approach to Streptococcus pyogenes necrotizing keratoconjunctivitis. J AAPOS 2024:103900. [PMID: 38537895 DOI: 10.1016/j.jaapos.2024.103900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/28/2023] [Accepted: 02/11/2024] [Indexed: 04/26/2024]
Abstract
Streptococcus pyogenes (group A beta-hemolytic Streptococcus, GABHS) causes a range of human infections, including necrotizing fasciitis and toxic shock syndrome, because it produces exotoxins that damage host cells, facilitate immune evasion, and serve as T cell superantigens. GABHS conjunctivitis is rare. We report a case of membranous conjunctivitis in a 3-year-old child who was treated with a combination of targeted bactericidal antimicrobials, toxin-synthesis inhibition, and amniotic membrane transplantation.
Collapse
Affiliation(s)
- Kelly L Ruland
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Natalya Beneschott
- Vanderbilt Vaccine Research Program, Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Buddy Creech
- Vanderbilt Vaccine Research Program, Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Allison Umfress
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
10
|
Armillei MK, Lomakin IB, Del Rosso JQ, Grada A, Bunick CG. Scientific Rationale and Clinical Basis for Clindamycin Use in the Treatment of Dermatologic Disease. Antibiotics (Basel) 2024; 13:270. [PMID: 38534705 DOI: 10.3390/antibiotics13030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Clindamycin is a highly effective antibiotic of the lincosamide class. It has been widely used for decades to treat a range of skin and soft tissue infections in dermatology and medicine. Clindamycin is commonly prescribed for acne vulgaris, with current practice standards utilizing fixed-combination topicals containing clindamycin that prevent Cutibacterium acnes growth and reduce inflammation associated with acne lesion formation. Certain clinical presentations of folliculitis, rosacea, staphylococcal infections, and hidradenitis suppurativa are also responsive to clindamycin, demonstrating its suitability and versatility as a treatment option. This review describes the use of clindamycin in dermatological practice, the mechanism of protein synthesis inhibition by clindamycin at the level of the bacterial ribosome, and clindamycin's anti-inflammatory properties with a focus on its ability to ameliorate inflammation in acne. A comparison of the dermatologic indications for similarly utilized antibiotics, like the tetracycline class antibiotics, is also presented. Finally, this review addresses both the trends and mechanisms for clindamycin and antibiotic resistance, as well as the current clinical evidence in support of the continued, targeted use of clindamycin in dermatology.
Collapse
Affiliation(s)
- Maria K Armillei
- Program in Translational Biomedicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Ivan B Lomakin
- Department of Dermatology, Yale University, New Haven, CT 06520, USA
| | - James Q Del Rosso
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
- JDR Dermatology Research, Las Vegas, NV 89148, USA
- Clinical Research and Strategic Development, Advanced Dermatology and Cosmetic Surgery, Maitland, FL 32751, USA
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Christopher G Bunick
- Program in Translational Biomedicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Dermatology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Olesk J, Donahue D, Ross J, Sheehan C, Bennett Z, Armknecht K, Kudary C, Hopf J, Ploplis VA, Castellino FJ, Lee SW, Nallathamby PD. Antimicrobial peptide-conjugated phage-mimicking nanoparticles exhibit potent bactericidal action against Streptococcus pyogenes in murine wound infection models. NANOSCALE ADVANCES 2024; 6:1145-1162. [PMID: 38356633 PMCID: PMC10863710 DOI: 10.1039/d3na00620d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Streptococcus pyogenes is a causative agent for strep throat, impetigo, and more invasive diseases. The main reason for the treatment failure of streptococcal infections is increased antibiotic resistance. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been rising with a significant impact on public health and the veterinary industry. The development of antibiotic resistance and the resulting emergence of multidrug-resistant bacteria have become primary threats to the public health system, commonly leading to nosocomial infections. Many researchers have turned their focus to developing alternative classes of antibacterial agent based on various nanomaterials. We have developed an antibiotic-free nanoparticle system inspired by naturally occurring bacteriophages to fight antibiotic-resistant bacteria. Our phage-mimicking nanoparticles (PhaNPs) display structural mimicry of protein-turret distribution on the head structure of bacteriophages. By mimicking phages, we can take advantage of their evolutionary constant shape and high antibacterial activity while avoiding the immune reactions of the human body experienced by biologically derived phages. We describe the synthesis of hierarchically arranged core-shell nanoparticles, with a silica core conjugated with silver-coated gold nanospheres to which we have chemisorbed the synthetic antimicrobial peptide Syn-71 on the PhaNPs surface, and increased the rapidity of the antibacterial activity of the nanoparticles (PhaNP@Syn71). The antibacterial effect of the PhaNP@Syn71 was tested in vitro and in vivo in mouse wound infection models. In vitro, results showed a dose-dependent complete inhibition of bacterial growth (>99.99%). Cytocompatibility testing on HaCaT human skin keratinocytes showed minimal cytotoxicity of PhaNP@Syn71, being comparable to the vehicle cytotoxicity levels even at higher concentrations, thus proving that our design is biocompatible with human cells. There was a minimum cutoff dosage above which there was no evolution of resistance after prolonged exposure to sub-MIC dosages of PhaNP@Syn71. Application of PhaNP@Syn71 to a mouse wound infection model exhibited high biocompatibility in vivo while showing immediate stabilization of the wound size, and infection free wound healing. Our results suggest the robust utility of antimicrobial peptide-conjugated phage-mimicking nanoparticles as a highly effective antibacterial system that can combat bacterial infections consistently while avoiding the emergence of resistant bacterial strains.
Collapse
Affiliation(s)
- Johanna Olesk
- Department of Aerospace and Mechanical Engineering, University of Notre Dame Notre Dame Indiana USA +1 574 631 7868
| | - Deborah Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame Notre Dame Indiana USA
| | - Jessica Ross
- Department of Biological Sciences, University of Notre Dame Notre Dame Indiana USA
| | - Conor Sheehan
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana USA
| | - Zach Bennett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame Notre Dame Indiana USA +1 574 631 7868
| | - Kevin Armknecht
- Department of Pre-Professional Studies, University of Notre Dame Notre Dame Indiana USA
| | - Carlie Kudary
- Berthiaume Institute for Precision Health, University of Notre Dame Notre Dame Indiana USA
| | - Juliane Hopf
- Berthiaume Institute for Precision Health, University of Notre Dame Notre Dame Indiana USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame Notre Dame Indiana USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame Notre Dame Indiana USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame Notre Dame Indiana USA
| | - Prakash D Nallathamby
- Department of Aerospace and Mechanical Engineering, University of Notre Dame Notre Dame Indiana USA +1 574 631 7868
- Berthiaume Institute for Precision Health, University of Notre Dame Notre Dame Indiana USA
| |
Collapse
|
12
|
Mangioni D, Fox V, Saltini P, Lombardi A, Bussini L, Carella F, Cariani L, Comelli A, Matinato C, Muscatello A, Teri A, Terranova L, Cento V, Carloni S, Bartoletti M, Alteri C, Bandera A. Increase in invasive group A streptococcal infections in Milan, Italy: a genomic and clinical characterization. Front Microbiol 2024; 14:1287522. [PMID: 38274761 PMCID: PMC10808429 DOI: 10.3389/fmicb.2023.1287522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Background Group A Streptococcus (GAS) causes multiple clinical manifestations, including invasive (iGAS) or even life-threatening (severe-iGAS) infections. After the drop in cases during COVID-19 pandemic, in 2022 a sharp increase of GAS was reported globally. Methods GAS strains collected in 09/2022-03/2023 in two university hospitals in Milan, Italy were retrospectively analyzed. Clinical/epidemiological data were combined with whole-genome sequencing to: (i) define resistome/virulome, (ii) identify putative transmission chains, (iii) explore associations between emm-types and clinical severity. Results Twenty-eight isolates were available, 19/28 (67.9%) from adults and 9/28 (32.1%) from pediatric population. The criteria for iGAS were met by 19/28 cases (67.9%), of which 11/19 (39.3%) met the further criteria for severe-iGAS. Pediatric cases were mainly non-invasive infections (8/9, 88.9%), adult cases were iGAS and severe-iGAS in 18/19 (94.7%) and 10/19 (52.6%), respectively. Thirteen emm-types were detected, the most prevalent being emm1 and emm12 (6/28 strains each, 21.4%). Single nucleotide polymorphism (SNP) analysis of emm1.0 and emm12.0 strains revealed pairwise SNP distance always >10, inconsistent with unique transmission chains. Emm12.0-type, found to almost exclusively carry virulence factors speH and speI, was mainly detected in children and in no-iGAS infections (55.6 vs. 5.3%, p = 0.007 and 66.7 vs. 0.0%, p < 0.001, respectively), while emm1.0-type was mainly detected in severe-iGAS (0.0 vs. 45.5%, p = 0.045). Conclusions This study showed that multiple emm-types contributed to a 2022/2023 GAS infection increase in two hospitals in Milan, with no evidence of direct transmission chains. Specific emm-types could be associated with disease severity or invasiveness. Overall, these results support the integration of classical epidemiological studies with genomic investigation to appropriately manage severe infections and improve surveillance.
Collapse
Affiliation(s)
- Davide Mangioni
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Valeria Fox
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paola Saltini
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Linda Bussini
- Infectious Disease Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Francesco Carella
- Infectious Disease Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Lisa Cariani
- Microbiology Laboratory, Clinical Pathology, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Agnese Comelli
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Caterina Matinato
- Microbiology Laboratory, Clinical Pathology, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Teri
- Microbiology Laboratory, Clinical Pathology, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Leonardo Terranova
- Respiratory Unit and Adult Cystic Fibrosis Center, Department of Internal Medicine, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Cento
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Microbiology and Virology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Michele Bartoletti
- Infectious Disease Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
13
|
Zou Z, Obernuefemann CLP, Singh P, Pinkner JS, Xu W, Nye TM, Dodson KW, Almqvist F, Hultgren SJ, Caparon MG. Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds treat Streptococcus pyogenes skin and soft tissue infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573960. [PMID: 38260261 PMCID: PMC10802287 DOI: 10.1101/2024.01.02.573960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that have antimicrobial activities against a broad-spectrum of Gram-positive pathogens. Here we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens and accelerated rates of wound-healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.
Collapse
Affiliation(s)
- Zongsen Zou
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Chloe L P Obernuefemann
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Pardeep Singh
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Jerome S Pinkner
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Wei Xu
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Taylor M Nye
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Karen W Dodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | | | - Scott J Hultgren
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael G Caparon
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
14
|
Pylypiv DB, Sharga BM, Rishko OA, Leshak V, Karbovanets E. Relation of Streptococcus Pyogenes tonsillitis isolate to antimicrobial agents and its infection treatment. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:171-177. [PMID: 38431823 DOI: 10.36740/wlek202401122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We reported the case of tonsillitis treatment in a 17-years-old boy with use of chemical non-antibiotic preparations, plant derived products and antibiotic benzathine phenoxymethylpenicillin. The antimicrobial agents for treatment were selected on the basis of their activity against a disease agent, the group A β-hemolytic strain Streptococcus pyogenes BS1 isolated from a patient. The bacterium was susceptible in vitro to β-lactams, with largest zones conditioned by penicillin G and benzathine phenoxymethylpenicillin discs, to fluoroquinolones and to cephems, with exception of cefazolin. Lincosamide clindamycin, macrolide spiramycin, aminoglycoside gentamicin, erythromycin, tetracycline and combination of sulfamethoxazole and trimethoprim were inactive against this bacterium. The Streptococcus pyogenes BS1 demonstrated intermediate susceptibility to the cephalosporin cephalexin, fluoroquinolone lomefloxacin and glycopeptide vancomycin. Non-antibiotic preparations were evaluated against Streptococcus pyogenes BS1 also. Among them "Stomatidin", "Chlorophyllipt", and phages of "Pyofag" were more effective than "Decatylen", "Decasan" and "Furadonin" in vitro. The antimicrobial applications of "Stomatidin", "Chlorophyllipt" and phages of "Pyofag" in the patient were less effective compared to the result of antibiotic benzathine phenoxymethylpenicillin treatment. Complete recovery of the patient was achieved with use of this antibiotic and Calendula flower extract as an local anti-inflammatory agent.
Collapse
|
15
|
Wilde S, Dash A, Johnson A, Mackey K, Okumura CYM, LaRock CN. Detoxification of reactive oxygen species by the hyaluronic acid capsule of group A Streptococcus. Infect Immun 2023; 91:e0025823. [PMID: 37874162 PMCID: PMC10652860 DOI: 10.1128/iai.00258-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023] Open
Abstract
The pro-inflammatory cytokine IL-6 regulates antimicrobial responses that are broadly crucial in the defense against infection. Our prior work shows that IL-6 promotes the killing of the M4 serotype group A Streptococcus (GAS) but does not impact the globally disseminated M1T1 serotype associated with invasive infections. Using in vitro and in vivo infection models, we show that IL-6 induces phagocyte reactive oxygen species (ROS) that are responsible for the differential susceptibility of M4 and M1T1 GAS to IL-6-mediated defenses. Clinical isolates naturally deficient in capsule, or M1T1 strains deficient in capsule production, are sensitive to this ROS killing. The GAS capsule is made of hyaluronic acid, an antioxidant that detoxifies ROS and can protect acapsular M4 GAS when added exogenously. During in vitro interactions with macrophages and neutrophils, acapsular GAS can also be rescued with the antioxidant N-acetylcysteine, suggesting this is a major virulence contribution of the capsule. In an intradermal infection model with gp91phox -/- (chronic granulomatous disease [CGD]) mice, phagocyte ROS production had a modest effect on bacterial proliferation and the cytokine response but significantly limited the size of the bacterial lesion in the skin. These data suggest that the capsule broadly provides enhanced resistance to phagocyte ROS but is not essential for invasive infection. Since capsule-deficient strains are observed across several GAS serotypes and are competent for transmission and both mild and invasive infections, additional host or microbe factors may contribute to ROS detoxification during GAS infections.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ananya Dash
- Immunology and Molecular Pathogenesis Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Anders Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Kialani Mackey
- Department of Biology, Occidental College, Los Angeles, California, USA
| | | | - Christopher N. LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
16
|
McKenna S, Aylward F, Miliara X, Lau RJ, Huemer CB, Giblin SP, Huse KK, Liang M, Reeves L, Pearson M, Xu Y, Rouse SL, Pease JE, Sriskandan S, Kagawa TF, Cooney J, Matthews S. The protease associated (PA) domain in ScpA from Streptococcus pyogenes plays a role in substrate recruitment. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140946. [PMID: 37562488 DOI: 10.1016/j.bbapap.2023.140946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Annually, over 18 million disease cases and half a million deaths worldwide are estimated to be caused by Group A Streptococcus. ScpA (or C5a peptidase) is a well characterised member of the cell enveleope protease family, which possess a S8 subtilisin-like catalytic domain and a shared multi-domain architecture. ScpA cleaves complement factors C5a and C3a, impairing the function of these critical anaphylatoxins and disrupts complement-mediated innate immunity. Although the high resolution structure of ScpA is known, the details of how it recognises its substrate are only just emerging. Previous studies have identified a distant exosite on the 2nd fibronectin domain that plays an important role in recruitment via an interaction with the substrate core. Here, using a combination of solution NMR spectroscopy, mutagenesis with functional assays and computational approaches we identify a second exosite within the protease-associated (PA) domain. We propose a model in which the PA domain assists optimal delivery of the substrate's C terminus to the active site for cleavage.
Collapse
Affiliation(s)
- Sophie McKenna
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Frances Aylward
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Xeni Miliara
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Rikin J Lau
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Camilla Berg Huemer
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Sean P Giblin
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Kristin K Huse
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Mingyang Liang
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Lucy Reeves
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Max Pearson
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - James E Pease
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Todd F Kagawa
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jakki Cooney
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
17
|
Ho EC, Cataldi JR, Silveira LJ, Birkholz M, Loi MM, Osborne CM, Dominguez SR. Outbreak of Invasive Group A Streptococcus in Children-Colorado, October 2022-April 2023. J Pediatric Infect Dis Soc 2023; 12:540-548. [PMID: 37792995 DOI: 10.1093/jpids/piad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND In the fall of 2022, we observed a sharp rise in pediatric Invasive Group A Streptococcus (iGAS) hospitalizations in Colorado. We compared the epidemiology, clinical features, and patient outcomes in this outbreak to prior years. METHODS Between October 2022 and April 2023, we prospectively identified and reviewed iGAS cases in hospitalized pediatric patients at Children's Hospital Colorado. Using laboratory specimen records, we also retrospectively compared the number of patients with sterile site GAS-positive cultures across three time periods: pre-COVID-19 (January 2015-March 2020), height of COVID-19 pandemic (April 2020-September 2022), and outbreak (October 2022-April 2023). RESULTS Among 96 prospectively identified iGAS cases, median age was 5.7 years old; 66% were male, 70% previously healthy, 39% required critical care, and four patients died. Almost 60% had associated respiratory viral symptoms, 10% had toxic shock syndrome, and 4% had necrotizing fasciitis. Leukopenia, bandemia, and higher C-reactive protein values were laboratory findings associated with need for critical care. There were significantly more cases during the outbreak (9.9/month outbreak vs 3.9/month pre-pandemic vs 1.3/month pandemic), including more cases with pneumonia (28% outbreak vs 15% pre-pandemic vs 0% pandemic) and multifocal disease (17% outbreak vs 3% pre-pandemic vs 0% pandemic), P < .001 for all. CONCLUSIONS Outbreak case numbers were almost triple the pre-pandemic baseline. The high percentage of cases with associated viral symptoms suggests a link to coinciding surges in respiratory viruses during this time. Invasive GAS can be severe and evolve rapidly; clinical and laboratory features may help in earlier identification of critically ill children.
Collapse
Affiliation(s)
- Erin C Ho
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Jessica R Cataldi
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Lori J Silveira
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Meghan Birkholz
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Michele M Loi
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Christina M Osborne
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA and
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samuel R Dominguez
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
18
|
Gillins DA, Hutton M, Buckel WR. Antibiotic prescribing for adults with group A streptococcal bacteremia in a large healthcare system. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e170. [PMID: 38028920 PMCID: PMC10644168 DOI: 10.1017/ash.2023.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 12/01/2023]
Abstract
Purpose Limited data exist regarding treatment of invasive group A streptococcal (GAS) infections, including safety and efficacy of oral (PO) step-down therapy. We sought to describe current prescribing practices and clinical outcomes for patients with GAS bacteremia across a large health system, including a prespecified subset of patients who stepped down to PO antibiotics. Methods This retrospective cohort study included adult patients with a positive blood culture for GAS between July 2018 and July 2021. Primary outcomes included frequency of PO step-down, total duration of therapy, duration of intravenous (IV) therapy prior to PO switch, and antimicrobial selection. Secondary outcomes included length of stay (LOS), mortality, adverse events, and clinical failure leading to readmission within 90 days. Results In total, 280 patients met inclusion criteria. Of these, 46.7% were stepped down to PO antibiotics. Median total duration of therapy was 15 days. Median duration of IV therapy prior to PO switch was 5 days. The predominant definitive antibiotic choice was a beta-lactam. Median LOS was 5 days. Ninety-day mortality was 16.7%. One patient developed an occluded line and one developed Clostridioides difficile-associated diarrhea within 90 days. Ninety-day readmission due to clinical failure was 12.5%. Among cases of uncomplicated skin and soft tissue source, mortality (6.1% vs 2.4%) and readmission (15.2% vs 16.9%) were similar between definitive IV and PO groups. Conclusions Group A streptococcal bacteremia is a severe infection with a high readmission and mortality rate. Use of PO step-down therapy was common with similar readmission and mortality rates compared with definitive IV therapy.
Collapse
Affiliation(s)
| | - Mary Hutton
- Department of Pharmacy, Intermountain Health Utah Valley Hospital, Provo, UT, USA
| | | |
Collapse
|
19
|
Martini CL, Silva DNS, Viana AS, Planet PJ, Figueiredo AMS, Ferreira-Carvalho BT. Streptococcus pyogenes Lineage ST62/ emm87: The International Spread of This Potentially Invasive Lineage. Antibiotics (Basel) 2023; 12:1530. [PMID: 37887231 PMCID: PMC10603930 DOI: 10.3390/antibiotics12101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Streptococcus pyogenes is known to be associated with a variety of infections, from pharyngitis to necrotizing fasciitis (flesh-eating disease). S. pyogenes of the ST62/emm87 lineage is recognized as one of the most frequently isolated lineages of invasive infections caused by this bacterium, which may be involved in hospital outbreaks and cluster infections. Despite this, comparative genomic and phylogenomic studies have not yet been carried out for this lineage. Thus, its virulence and antimicrobial susceptibility profiles are mostly unknown, as are the genetic relationships and evolutionary traits involving this lineage. Previously, a strain of S. pyogenes ST62/emm87 (37-97) was characterized in our lab for its ability to generate antibiotic-persistent cells, and therapeutic failure in severe invasive infections caused by this bacterial species is well-reported in the scientific literature. In this work, we analyzed genomic and phylogenomic characteristics and evaluated the virulence and resistance profiles of ST62/emm87 S. pyogenes from Brazil and international sources. Here we show that strains that form this lineage (ST62/emm87) are internationally spread, involved in invasive outbreaks, and share important virulence profiles with the most common emm types of S. pyogenes, such as emm1, emm3, emm12, and emm69, which are associated with most invasive infections caused by this bacterial species in the USA and Europe. Accordingly, the continued increase of ST62/emm87 in severe S. pyogenes diseases should not be underestimated.
Collapse
Affiliation(s)
- Caroline Lopes Martini
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.M.); (D.N.S.S.); (A.S.V.)
| | - Deborah Nascimento Santos Silva
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.M.); (D.N.S.S.); (A.S.V.)
| | - Alice Slotfeldt Viana
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.M.); (D.N.S.S.); (A.S.V.)
| | - Paul Joseph Planet
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Children’s Hospital of Philadelphia, Philadelphia, PA 19106, USA
| | - Agnes Marie Sá Figueiredo
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.M.); (D.N.S.S.); (A.S.V.)
- Programa de Pós-graduação em Patologia, Faculdade de Medicina, Universidade Federal, Fluminense, Niterói 24220-900, RJ, Brazil
| | - Bernadete Teixeira Ferreira-Carvalho
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.M.); (D.N.S.S.); (A.S.V.)
| |
Collapse
|
20
|
Ajay Castro S, Dorfmueller HC. Update on the development of Group A Streptococcus vaccines. NPJ Vaccines 2023; 8:135. [PMID: 37709900 PMCID: PMC10502077 DOI: 10.1038/s41541-023-00730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Sowmya Ajay Castro
- Division of Molecular Microbiology, School of Life Sciences, Dow Street, Dundee, DD1 5EH, UK
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
21
|
National Surveillance of Tetracycline, Erythromycin, and Clindamycin Resistance in Invasive Streptococcus pyogenes: A Retrospective Study of the Situation in Spain, 2007-2020. Antibiotics (Basel) 2023; 12:antibiotics12010099. [PMID: 36671301 PMCID: PMC9854882 DOI: 10.3390/antibiotics12010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND This work reports on antimicrobial resistance data for invasive Streptococcus pyogenes in Spain, collected by the 'Surveillance Program for Invasive Group A Streptococcus', in 2007-2020. METHODS emm typing was determined by sequencing. Susceptibility to penicillin, tetracycline, erythromycin, and clindamycin was determined via the E-test. tetM, tetO, msrD, mefA, ermB, ermTR, and ermT were sought by PCR. Macrolide-resistant phenotypes (M, cMLSB, and iMLSB) were detected using the erythromycin-clindamycin double-disk test. Resistant clones were identified via their emm type, multilocus sequence type (ST), resistance genotype, and macrolide resistance phenotype. RESULTS Penicillin susceptibility was universal. Tetracycline resistance was recorded for 237/1983 isolates (12.0%) (152 carried only tetM, 48 carried only tetO, and 33 carried both). Erythromycin resistance was detected in 172/1983 isolates (8.7%); ermB was present in 83, mefA in 58, msrD in 51, ermTR in 46, and ermT in 36. Clindamycin resistance (methylase-mediated) was present in 78/1983 isolates (3.9%). Eight main resistant clones were identified: two that were tetracycline-resistant only (emm22/ST46/tetM and emm77/ST63/tetO), three that were erythromycin-resistant only (emm4/ST39/mefA-msrD/M, emm12/ST36/mefA-msrD/M, and emm28/ST52/ermB/cMLSB), and three that were tetracycline-erythromycin co-resistant (emm11/ST403/tetM-ermB/cMLSB, emm77/ST63/tetO-ermTR/iMLSB, and emm77/ST63/tetM-tetO-ermTR/iMLSB). CONCLUSIONS Tetracycline, erythromycin, and clindamycin resistance rates declined between 2007 and 2020. Temporal variations in the proportion of resistant clones determined the change in resistance rates.
Collapse
|
22
|
He LY, Yu YB, Liu Y, Le YJ, Li S, Yang XY. Immunization with the lipoprotein FtsB stimulates protective immunity against Streptococcus pyogenes infection in mice. Front Microbiol 2022; 13:969490. [PMID: 36016779 PMCID: PMC9396372 DOI: 10.3389/fmicb.2022.969490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes is one of the main pathogenic bacteria that causes disease in humans. It is reported that over 18 million cases of S. pyogenes disease occurred in the world, and more than 500,000 deaths occur annually worldwide. An effective vaccine is widely regarded as the most reliable way to control and prevent streptococcal infections. However, there is currently no approved vaccine for S. pyogenes. In this study, we evaluated the potential of lipoprotein FtsB as a new vaccine candidate to prevent S. pyogenes infection. Mice vaccinated with purified FtsB protein elicited high titers of IgG, IgG1 and IgG2a antibodies in mouse serum. Vaccinated with FtsB can reduce bacterial systemic dissemination in the blood, heart, and spleen and reduce organ damage in the mouse bacteremia model. In addition, active immunization with FtsB protected against streptococcal abscess formation. Furthermore, immunization with FtsB was efficient in inducing a mixed cellular immune response and promoting the maturation of dendritic cells in mice. The lipoprotein HtsA was served as a positive control because it has been reported to protect mice from S. pyogenes infection in both active and passive immunization. These findings demonstrated that lipoprotein FtsB may serve as a candidate vaccine for the prevention of S. pyogenes infection.
Collapse
|
23
|
Tait JR, Barnett TC, Rogers KE, Lee WL, Page-Sharp M, Manning L, Boyd BJ, Carapetis JR, Nation RL, Landersdorfer CB. Penicillin G concentrations required for prophylaxis against Group A Streptococcus infection evaluated using a hollow fibre model and mathematical modelling. J Antimicrob Chemother 2022; 77:1923-1930. [PMID: 35470370 PMCID: PMC9244232 DOI: 10.1093/jac/dkac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Acute rheumatic fever (ARF), an autoimmune reaction to Group A Streptococcus (Streptococcus pyogenes; Strep A) infection, can cause rheumatic heart disease (RHD). New formulations of long-acting penicillins are being developed for secondary prophylaxis of ARF and RHD. OBJECTIVES To evaluate the penicillin G concentrations required to suppress growth of Strep A. METHODS Broth microdilution MIC and MBC for Strep A strains M75611024, M1T15448 and M18MGAS8232 were determined. All strains were studied in a hollow fibre model (initial inoculum 4 log10 cfu/mL). Constant penicillin G concentrations of 0.008, 0.016 and 0.05 mg/L were examined against all strains, plus 0.012 mg/L against M18MGAS8232. Viable counts were determined over 144 h. Subsequently, all penicillin G-treated cartridges were emptied, reinoculated with 5 log10 cfu/mL and counts determined over a further 144 h. Mathematical modelling was performed. RESULTS MIC and MBC were 0.008 mg/L for all strains; small subpopulations of M75611024 and M1T15448, but not M18MGAS8232, grew at 1× MIC. Following the first inoculation, 0.008 mg/L achieved limited killing and/or stasis against M75611024 and M1T15448, with subsequent growth to ∼6 log10 cfu/mL. Following both inocula, concentrations ≥0.016 mg/L suppressed M75611024 and M1T15448 to <1 log10 cfu/mL from 6 h onwards with eradication. Concentrations ≥0.008 mg/L suppressed M18MGAS8232 to <1 log10 cfu/mL from 24 h onwards with eradication after both inoculations. Mathematical modelling well described all strains using a single set of parameter estimates, except for different maximum bacterial concentrations and proportions of bacteria growing at 1× MIC. CONCLUSIONS In the absence of validated animal and human challenge models, the study provides guidance on penicillin G target concentrations for development of new penicillin formulations.
Collapse
Affiliation(s)
- Jessica R Tait
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Timothy C Barnett
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Kate E Rogers
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Wee Leng Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Madhu Page-Sharp
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Laurens Manning
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jonathan R Carapetis
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Infectious Diseases, Perth Children’s Hospital, Perth, Western Australia, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
24
|
He W, Wu C, Zhong Y, Li J, Wang G, Yu B, Xu P, Xiao Y, Tang T. Case Report: Therapeutic Strategy With Delayed Debridement for Culture-Negative Invasive Group A Streptococcal Infections Diagnosed by Metagenomic Next-Generation Sequencing. Front Public Health 2022; 10:899077. [PMID: 35646803 PMCID: PMC9130855 DOI: 10.3389/fpubh.2022.899077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcal toxic shock syndrome (STSS) caused by group A streptococcus is a rare condition that rapidly developed to multiple organ failure even death. Therefore, prompt diagnosis, initiate appropriate antibiotics and other supportive treatments are critical. Here we reported a case of STSS caused by group A streptococcus infection. A healthy 39-year-old man presented a sudden pain in the left lower extremity, followed by a high fever (40.0 °C) with dizziness, nausea, and shortness of breath. Twenty-four hours before the visit, the patient showed anuria. The patient was then admitted to the intensive care unit. Blood examination revealed elevated levels of inflammatory markers and creatinine. He suffered from septic shock, dysfunction of coagulation, acute kidney dysfunction, acute respiratory distress syndrome, and acute liver function injury. The diagnosis was obtained through clinical manifestation and metagenomic next-generation sequencing (mNGS) drawn from the pustule and deep soft tissue (lower limb) samples while all bacterial cultures came back negative. The pustule mNGS report detected a total of 132 unique group A streptococcus sequence reads, representing 96.3% of microbial reads while the soft tissue mNGS report identified a total of 142474 unique group A streptococcus sequence reads, representing 100% of microbial reads. The patient was treated with aggressive fluid resuscitation, antibiotics comprising piperacillin/tazobactam and clindamycin, respiratory support, following the delayed surgical debridement. Intravenous immunoglobulin was also used for 5 days. On the 14th day after admission, he was transferred to the general ward for follow-up treatment. Our case highlighted, for the first time, the key role of mNGS in the early diagnosis of culture-negative invasive group A streptococcal infection. The case also suggested that clindamycin combined with beta-lactam antibiotics and adjunction of intravenous immunoglobulin therapy with delayed debridement performed well in the management of unstable STSS patients.
Collapse
Affiliation(s)
- Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo Yu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yiwen Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- *Correspondence: Tiantian Tang
| |
Collapse
|
25
|
McEwan TBD, Sanderson-Smith ML, Sluyter R. Purinergic Signalling in Group A Streptococcus Pathogenesis. Front Immunol 2022; 13:872053. [PMID: 35422801 PMCID: PMC9002173 DOI: 10.3389/fimmu.2022.872053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- T B-D McEwan
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - M L Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - R Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|