1
|
Liang M, Dong S, Guo Y, Zhang Y, Xiao X, Ma J, Jiang X, Yu W. Exploration of the potential mechanism of aqueous extract of Artemisia capillaris for the treatment of non-alcoholic fatty liver disease based on network pharmacology and experimental verification. J Pharm Pharmacol 2024; 76:1328-1339. [PMID: 39186724 DOI: 10.1093/jpp/rgae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a nutritional and metabolic disease with a high prevalence today. Artemisia capillaris has anti-inflammatory, antioxidant, and other effects. However, the mechanism of A. capillaris in treating NAFLD is still poorly understood. METHODS This study explored the mechanism of A. capillaris in the treatment of NAFLD through network pharmacology and molecular docking, and verified the results through in vivo experiments using a high-fat diet-induced mouse model and in vitro experiments using an oleic acid-induced HepG2 cell model. KEY FINDINGS Aqueous extract of A. capillaris (AEAC) can reduce blood lipids, reduce liver lipid accumulation and liver inflammation in NAFLD mice, and improve NAFLD. Network pharmacology analysis revealed that 51 drug ingredients in A. capillaris correspond to 370 targets that act on NAFLD. GEO data mining obtained 93 liver differentially expressed genes related to NAFLD. In the UHPLC-MS detection results, 36 components were characterized and molecular docked with JNK. Verified in vitro and in vivo, the results show that JNK and the phosphorylation levels of IL-6, IL-1β, c-Jun, c-Fos, and CCL2 are key targets and pathways. CONCLUSIONS This study confirmed that AEAC reduces lipid accumulation and inflammation in the liver of NAFLD mice by inhibiting the JNK/AP-1 pathway.
Collapse
Affiliation(s)
- Meng Liang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siyu Dong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yi Guo
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yuyi Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiao Xiao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jun Ma
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial Key Laboratory for Prevention and Control of Common Animal Diseases, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial Key Laboratory for Prevention and Control of Common Animal Diseases, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
2
|
Yang X, Yao S, Jiang Q, Chen H, Liu S, Shen G, Xiang X, Chen L. Exploring the Regulatory Effect of Tegillarca granosa Polysaccharide on High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice Based on Intestinal Flora. Mol Nutr Food Res 2024; 68:e2300453. [PMID: 38389187 DOI: 10.1002/mnfr.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/21/2023] [Indexed: 02/24/2024]
Abstract
To explore the potential mechanism of action of Tegillarca granosa polysaccharide (TGP) in treating nonalcoholic fatty liver disease (NAFLD), the study conducts in vivo experiments using male C57BL/6 mice fed a high-fat diet while administering TGP for 16 weeks. The study measures body weight, liver weight, serum biochemical markers, pathological histology, liver lipid accumulation, oxidative stress and inflammation-related factors, lipid synthesis and metabolism-related gene and protein expression, and the composition and abundance of intestinal flora. Additionally, short-chain fatty acid (SCFAs) content and the correlation between intestinal flora and environmental factors are measured. The results show that TGP effectively reduces excessive hepatic lipid accumulation, dyslipidemia, abnormal liver function, and steatosis in the mice with NAFLD. Moreover, TGP effectively regulates intestinal flora disorder, increases the diversity of intestinal flora, and affects the relative abundance of specific bacteria while also increasing the content of SCFAs. These findings provide a basis for exploring the regulatory effect of T. granosa polysaccharide on NAFLD based on intestinal flora and highlight its potential as a natural liver nutraceutical.
Collapse
Affiliation(s)
- Xingwen Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China
| | - Shiwei Yao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| |
Collapse
|
3
|
Tian C, Huang R, Xiang M. SIRT1: Harnessing multiple pathways to hinder NAFLD. Pharmacol Res 2024; 203:107155. [PMID: 38527697 DOI: 10.1016/j.phrs.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Cai T, Song X, Xu X, Dong L, Liang S, Xin M, Huang Y, Zhu L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Li J, Zheng Y, Sun W, Li L. Effects of plant natural products on metabolic-associated fatty liver disease and the underlying mechanisms: a narrative review with a focus on the modulation of the gut microbiota. Front Cell Infect Microbiol 2024; 14:1323261. [PMID: 38444539 PMCID: PMC10912229 DOI: 10.3389/fcimb.2024.1323261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by the excessive accumulation of fat in hepatocytes. However, due to the complex pathogenesis of MAFLD, there are no officially approved drugs for treatment. Therefore, there is an urgent need to find safe and effective anti-MAFLD drugs. Recently, the relationship between the gut microbiota and MAFLD has been widely recognized, and treating MAFLD by regulating the gut microbiota may be a new therapeutic strategy. Natural products, especially plant natural products, have attracted much attention in the treatment of MAFLD due to their multiple targets and pathways and few side effects. Moreover, the structure and function of the gut microbiota can be influenced by exposure to plant natural products. However, the effects of plant natural products on MAFLD through targeting of the gut microbiota and the underlying mechanisms are poorly understood. Based on the above information and to address the potential therapeutic role of plant natural products in MAFLD, we systematically summarize the effects and mechanisms of action of plant natural products in the prevention and treatment of MAFLD through targeting of the gut microbiota. This narrative review provides feasible ideas for further exploration of safer and more effective natural drugs for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Linghui Zhu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Gao Q, Li G, Zu Y, Xu Y, Wang C, Xiang D, He W, Shang T, Cheng X, Liu D, Zhang C. Ginsenoside Rg1 alleviates ANIT-induced cholestatic liver injury by inhibiting hepatic inflammation and oxidative stress via SIRT1 activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117089. [PMID: 37634749 DOI: 10.1016/j.jep.2023.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Mey) is a common traditional Chinese medicine used for anti-inflammation, treating colitis, type 2 diabetes, diarrhea, and recovering hepatobiliary function. Ginsenosides, the main active components isolated from ginseng, possess liver and gallbladder diseases therapeutic potential. AIMS OF THE STUDY Cholestatic liver injury (CLI) is a liver disease induced by intrahepatic accumulation of toxic bile acids and currently lacks clinically effective drugs. Our previous study found that ginsenosides alleviated CLI by activating sirtuin 1 (SIRT1), but the effective ingredients and the underlying mechanism have not been clarified. This study aimed to identify an effective ingredient with the most significant activation effect on SIRT1 from the five major monomer saponins of ginsenosides: Rb1, Rd, Rg1, 20s-Rg3, and Rc further explore its protective effects on CLI, and elaborate its underlying mechanism. MATERIALS AND METHODS Discovery Studio 3.0 was used to conduct molecular docking between monomer saponins and SIRT1, and further detect the influence of monomer saponins on SIRT1 activity in vitro. Finally, it was determined that Rg1 had the most significant stimulative effect on SIRT1, and the hepatoprotective activity of Rg1 in CLI was explored in vivo. Wild-type mice were intragastrically α-naphthylisothiocyanate (ANIT) to establish an experimental model of intrahepatic cholestasis and Rg1 intervention, and then liver injury and cholestasis related indexes were detected. In addition, Liver-specific SIRT1 gene knockout (SIRT1-/-) mice were administered with ANIT and/or Rg1 to further investigate the mechanism of action of Rg1. RESULTS The results of molecular docking and in vitro experiments showed that all the five ginsenoside monomers could bind to the active site of SIRT1 and promote SIRT1 activity in HepG2 cells. Among them, Rg1 exhibited the most significant stimulation of SIRT1 activity in cholestasis. Besides, it could ameliorate ANIT-induced inflammation and oxidative stress in HepG2 cells. Therefore, we investigated the hepatoprotective effect and mechanism of Rg1 on CLI. Results showed that Rg1 reversed the ANIT-induced increase in biochemical parameters, improved liver pathological injury, and decreased liver lipid accumulation, reactive oxygen species and pro-inflammatory factor levels. Mechanistically, Rg1 induced SIRT1 expression, followed by promoted the activity of Nrf2 and suppressed the activation of NF-κB. Interestingly, the hepatoprotective effect of Rg1 was blocked in SIRT1-/- mice. CONCLUSION Rg1 mitigated ANIT-induced CLI via upregulating SIRT1 expression, and our results suggested that Rg1 is a candidate compound for treating CLI.
Collapse
Affiliation(s)
- Qianyan Gao
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guodong Li
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Zu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Congyi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianze Shang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinwei Cheng
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Li Y, Liang X, Lyu Y, Wang K, Han L, Wang Y, Sun J, Chi C. Association between the gut microbiota and nonalcoholic fatty liver disease: A two-sample Mendelian randomization study. Dig Liver Dis 2023; 55:1464-1471. [PMID: 37543433 DOI: 10.1016/j.dld.2023.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Increasing studies have shown that there is a significant association between gut microbiota and non-alcoholic fatty liver disease. AIMS To show the potential association between gut microbiota and non-alcoholic fatty liver disease, we performed a two-sample Mendelian randomization analysis. METHODS We analyzed summary statistics from genome-wide association studies of gut microbiota and non-alcoholic fatty liver disease and conducted Mendelian randomization studies to evaluate relationships between these factors. RESULTS Of the 211 gut microbiota taxa examined, the inverse variance weighted method identified Lactobacillaceae (OR = 0.83, 95% CI = 0.72 - 0.95, P = 0.007), Christensenellaceae (OR = 0.74, 95% CI = 0.59 - 0.92, P = 0.007), and Intestinibacter (OR = 0.85, 95% CI = 0.73 - 0.99, P = 0.035) were negatively correlated with non-alcoholic fatty liver disease. And Coriobacteriia (OR = 1.22, 95% CI = 1.01 - 1.42, P = 0.038), Actinomycetales (OR = 1.25, 95% CI = 1.02 - 1.53, P = 0.031), Oxalobacteraceae (OR = 1.10, 95% CI = 1.01 - 1.21, P = 0.036), Ruminococcaceae_UCG005 (OR = 1.18, 95% CI = 1.01 - 1.38, P = 0.033) are positively associated with non-alcoholic fatty liver disease. CONCLUSIONS Our study found that the abundance of certain strains was associated with the progression of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yu Li
- School of Nursing, Jining Medical University, Jining, 272067, China; School of Nursing, Weifang Medical University, Weifang, 261042, China
| | - Xifeng Liang
- School of Nursing, Jining Medical University, Jining, 272067, China; School of Nursing, Weifang Medical University, Weifang, 261042, China
| | - Yaning Lyu
- School of Nursing, Jining Medical University, Jining, 272067, China; School of Nursing, Weifang Medical University, Weifang, 261042, China
| | - Kexue Wang
- Department of Critical Care Medicine, The People's Hospital of Zhaoyuan City, Yantai 265400, China
| | - Linjing Han
- School of Nursing, Jining Medical University, Jining, 272067, China
| | - Yuhan Wang
- School of Nursing, Jining Medical University, Jining, 272067, China
| | - Jing Sun
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, 4222, Australia; Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Queensland, 4019, Australia.
| | - Cheng Chi
- School of Nursing, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
7
|
Du T, Xiang L, Zhang J, Yang C, Zhao W, Li J, Zhou Y, Ma L. Vitamin D improves hepatic steatosis in NAFLD via regulation of fatty acid uptake and β-oxidation. Front Endocrinol (Lausanne) 2023; 14:1138078. [PMID: 37033263 PMCID: PMC10074590 DOI: 10.3389/fendo.2023.1138078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION The study aimed to explore the association of serum 25(OH)D3 and hepatic steatosis in non-alcoholic fatty liver disease (NAFLD) patients and to determine whether the effect of vitamin D (VD) is mediated by activation of the peroxisome proliferator-activated receptor α (PPARα) pathway. METHODS The study contained a case-control study, in vivo and in vitro experiments. A case-control study was conducted to compare serum parameters between NAFLD patients and controls and to evaluate the association of 25(OH)D3 and NAFLD. In vivo study, male Wistar rats were randomly divided into control and model groups, fed a standard chow diet and a high-fat diet (HFD), respectively, for 7 weeks to generate an NAFLD model. Then, the rats were treated with VD and a PPARα antagonist (MK886) for 7 weeks. Tissue and serum were collected and assessed by biochemical assays, morphological analysis, histological analysis, and western blot analysis. In vitro, HepG2 cells were incubated with oleic acid (OA) to induce steatosis, which was evaluated by staining. HepG2 cells were pretreated with MK886 followed by calcitriol treatment, and differences in lipid metabolism-related proteins were detected by western blot. RESULTS NAFLD patients were characterized by impaired liver function, dyslipidemia, and insulin resistance. Serum 25(OH)D3 was negatively associated with alanine aminotransferase (ALT) in NAFLD. VD deficiency was a risk factor for patients with no advanced fibrosis. Adequate VD status (25(OH)D3 >20 ng/mL) had a protective effect in patients after adjustment for confounding variables. NAFLD rats showed hyperlipidemia with severe hepatic steatosis, systematic inflammation, and lower serum 25(OH)D3. VD treatment ameliorated hepatic steatosis both in NAFLD rats and OA-induced HepG2 cells. Further, MK886 inhibited the anti-steatosis effect of VD. CONCLUSION The study revealed that an adequate VD level may act as a protective factor in NAFLD and that VD may alleviate hepatic steatosis via the PPARα signaling pathway.
Collapse
Affiliation(s)
- Tingwan Du
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Lian Xiang
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Jingjing Zhang
- Department of Clinical Nutrition, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunmei Yang
- Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenxin Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Jialu Li
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Southwest Medical University, Luzhou, China
- *Correspondence: Yong Zhou, ; Ling Ma,
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
- *Correspondence: Yong Zhou, ; Ling Ma,
| |
Collapse
|