1
|
Kew C, Prieto-Garcia C, Bhattacharya A, Tietgen M, MacNair CR, Carfrae LA, Mello-Vieira J, Klatt S, Cheng YL, Rathore R, Gradhand E, Fleming I, Tan MW, Göttig S, Kempf VAJ, Dikic I. The aryl hydrocarbon receptor and FOS mediate cytotoxicity induced by Acinetobacter baumannii. Nat Commun 2024; 15:7939. [PMID: 39261458 PMCID: PMC11390868 DOI: 10.1038/s41467-024-52118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Acinetobacter baumannii is a pathogenic and multidrug-resistant Gram-negative bacterium that causes severe nosocomial infections. To better understand the mechanism of pathogenesis, we compare the proteomes of uninfected and infected human cells, revealing that transcription factor FOS is the host protein most strongly induced by A. baumannii infection. Pharmacological inhibition of FOS reduces the cytotoxicity of A. baumannii in cell-based models, and similar results are also observed in a mouse infection model. A. baumannii outer membrane vesicles (OMVs) are shown to activate the aryl hydrocarbon receptor (AHR) of host cells by inducing the host enzyme tryptophan-2,3-dioxygenase (TDO), producing the ligand kynurenine, which binds AHR. Following ligand binding, AHR is a direct transcriptional activator of the FOS gene. We propose that A. baumannii infection impacts the host tryptophan metabolism and promotes AHR- and FOS-mediated cytotoxicity of infected cells.
Collapse
Affiliation(s)
- Chun Kew
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Cristian Prieto-Garcia
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Anshu Bhattacharya
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Manuela Tietgen
- Institute for Medical Microbiology and Infection Control, Hospital of the Goethe University, Frankfurt, Germany
- University Center of Competence for Infection Control of the State of Hesse, Frankfurt, Germany
| | - Craig R MacNair
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Lindsey A Carfrae
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - João Mello-Vieira
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Stephan Klatt
- Institute for Vascular Signalling, Department of Molecular Medicine, CPI, Goethe University, Frankfurt, Germany
| | - Yi-Lin Cheng
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rajeshwari Rathore
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Elise Gradhand
- Department of Pathology, Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Department of Molecular Medicine, CPI, Goethe University, Frankfurt, Germany
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, Hospital of the Goethe University, Frankfurt, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, Hospital of the Goethe University, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch Translational Medicine and Pharmacology, Frankfurt, Germany.
- Max Planck Institute of Biophysics, Frankfurt, Germany.
| |
Collapse
|
2
|
Tang D, Qiu R, Qiu X, Sun M, Su M, Tao Z, Zhang L, Tao S. Dietary restriction rescues 5-fluorouracil-induced lethal intestinal toxicity in old mice by blocking translocation of opportunistic pathogens. Gut Microbes 2024; 16:2355693. [PMID: 38780487 PMCID: PMC11123560 DOI: 10.1080/19490976.2024.2355693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Chemotherapy remains a major treatment for malignant tumors, yet the application of standard dose intensity chemotherapy is limited due to the side effects of cytotoxic drugs, especially in old populations. The underlying mechanisms of cytotoxicity and strategies to increase the safety and tolerance of chemotherapy remain to be explored. Using 5-fluorouracil (5-FU), a cornerstone chemotherapeutic drug, we demonstrate that the main cause of death in ad libitum (AL) fed mice after 5-FU chemotherapy was infection caused by translocation of intestinal opportunistic pathogens. We show that these opportunistic pathogens greatly increase in the intestine after chemotherapy, which was closely related to loss of intestinal lysozyme. Of note, two weeks of dietary restriction (DR) prior to chemotherapy significantly protected the loss of lysozyme and increased the content of the beneficial Lactobacillus genera, resulting in a substantial inhibition of intestinal opportunistic pathogens and their translocation. The rescue effect of DR could be mimicked by Lysozyme or Lactobacillus gavage. Our study provides the first evidence that DR achieved a comprehensive protection of the intestinal physical, biological and chemical barriers, which significantly improved the overall survival of 5-FU-treated mice. Importantly, the above findings were more prominent in old mice. Furthermore, we show that patients over 65 years old have enriched opportunistic pathogens in their gut microbiota, especially after 5-FU based chemotherapy. Our study reveals important mechanisms for the poor chemotherapy tolerance of the elderly population, which can be significantly improved by short-term DR. This study generates new insights into methods for improving the chemotherapeutic prognosis by increasing the chemotherapy tolerance and safety of patients with malignant tumors.
Collapse
Affiliation(s)
- Duozhuang Tang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rongrong Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingxing Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Man Sun
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mingyue Su
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Yao Y, Chen Q, Zhou H. Virulence Factors and Pathogenicity Mechanisms of Acinetobacter baumannii in Respiratory Infectious Diseases. Antibiotics (Basel) 2023; 12:1749. [PMID: 38136783 PMCID: PMC10740465 DOI: 10.3390/antibiotics12121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) has become a notorious pathogen causing nosocomial and community-acquired infections, especially ventilator-associated pneumonia. This opportunistic pathogen is found to possess powerful genomic plasticity and numerous virulence factors that facilitate its success in the infectious process. Although the interactions between A. baumannii and the pulmonary epitheliums have been extensively studied, a complete and specific description of its overall pathogenic process is lacking. In this review, we summarize the current knowledge of the antibiotic resistance and virulence factors of A. baumannii, specifically focusing on the pathogenic mechanisms of this detrimental pathogen in respiratory infectious diseases. An expansion of the knowledge regarding A. baumannii pathogenesis will contribute to the development of effective therapies based on immunopathology or intracellular signaling pathways to eliminate this harmful pathogen during infections.
Collapse
Affiliation(s)
| | | | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.Y.); (Q.C.)
| |
Collapse
|
4
|
Maure A, Robino E, Van der Henst C. The intracellular life of Acinetobacter baumannii. Trends Microbiol 2023; 31:1238-1250. [PMID: 37487768 DOI: 10.1016/j.tim.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic bacterium responsible for nosocomial and community-acquired infections. This pathogen is globally disseminated and associated with high levels of antibiotic resistance, which makes it an important threat to human health. Recently, new evidence showed that several A. baumannii isolates can survive and proliferate within eukaryotic professional and/or nonprofessional phagocytic cells, with in vivo consequences. This review provides updated information and describes the tools that A. baumannii possesses to adhere, colonize, and replicate in host cells. Additionally, we emphasize the high genetic and phenotypic heterogeneity detected amongst A. baumannii isolates and its impact on the bacterial intracellular features. We also discuss the need for standardized methods to characterize this pathogen robustly and consequently consider some strains as facultative intracellular bacteria.
Collapse
Affiliation(s)
- Alexandra Maure
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Etienne Robino
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
5
|
Wang S, Li J, Dai J, Zhang X, Tang W, Li J, Liu Y, Wu X, Fan X. Establishment and Validation of Models for the Risk of Multi-Drug Resistant Bacteria Infection and Prognosis in Elderly Patients with Pulmonary Infection: A Multicenter Retrospective Study. Infect Drug Resist 2023; 16:6549-6566. [PMID: 37817839 PMCID: PMC10561615 DOI: 10.2147/idr.s422564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Purpose The aim of this study was to establish risk prediction and prognosis models for multidrug-resistant bacterial infections (MDRB) in elderly patients with pulmonary infections in a multicenter setting. Patients and Methods This study is a retrospective cohort analysis in Anhui province of China. Data dimension reduction and feature selection were performed using the lasso regression model. Multifactorial regression analysis to identify risk factors associated with MDRB infection and prognosis. The relevant risks of each patient in the prognostic training cohort were scored based on prognostic independent risk factors. Subsequently, patients were classified into high-risk and low-risk groups, and survival differences were compared between them. Finally, models were established based on independent risk factors for infection, risk groups, and independent prognostic factors, and were presented on nomograms. The predictive accuracy of the model was assessed using corresponding external validation set data. Results The study cohort comprised 994 elderly patients with pulmonary infection. Multivariate analysis revealed that endotracheal intubation, previous antibiotic use beyond 2 weeks, and concurrent respiratory failure or cerebrovascular disease were independent risk factors associated with the incidence of MDRB infection. Cox regression analysis identified respiratory failure, malnutrition, an APACHE II score of at least 20, and higher blood creatinine levels as independent prognostic risk factors. The models were validated using an external validation dataset from multiple centers, which demonstrated good diagnostic ability and a good fit with a fair benefit. Conclusion In conclusion, our study provides an appropriate and generalisable assessment of risk factors affecting infection and prognosis in patients with MDRB, contributing to improved early identification of patients at higher risk of infection and death, and appropriately guiding clinical management.
Collapse
Affiliation(s)
- Shu Wang
- The Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
- Department of Geriatrics, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui Province, People’s Republic of China
| | - Jing Li
- Department of Geriatrics, Hefei Binhu Hospital, Hefei, Anhui Province, People’s Republic of China
- Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jinghong Dai
- Department of Geriatrics, Hefei Binhu Hospital, Hefei, Anhui Province, People’s Republic of China
| | - Xuemin Zhang
- The Department of Respiratory and Critical Care Medicine, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui Province, People’s Republic of China
| | - Wenjuan Tang
- The Department of Respiratory and Critical care medicine, Anqing Municipal Hospital, Anqing, Anhui Province, People’s Republic of China
| | - Jing Li
- Department of Geriatrics, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, Anhui Province, People’s Republic of China
| | - Yu Liu
- Department of Geriatrics, Hefei Binhu Hospital, Hefei, Anhui Province, People’s Republic of China
| | - Xufeng Wu
- Department of Intensive Care Unit, Hefei Binhu Hospital, Hefei, Anhui Province, People’s Republic of China
| | - Xiaoyun Fan
- The Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
- Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, 230022, People’s Republic of China
| |
Collapse
|
6
|
Abstract
Metabolites produced by commensal gut microbes impact host health through their recognition by the immune system and their influence on numerous metabolic pathways. Notably, the gut microbiota can both transform and synthesize lipids as well as break down dietary lipids to generate secondary metabolites with host modulatory properties. Although lipids have largely been consigned to structural roles, particularly in cell membranes, recent research has led to an increased appreciation of their signaling activities, with potential impacts on host health and physiology. This review focuses on studies that highlight the functions of bioactive lipids in mammalian physiology, with a special emphasis on immunity and metabolism.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|