1
|
Rasul M, Yahya M, Suleman M, Hakim S, Mirza BS, Mirza MS, Reitz T, Tarkka MT, Yasmin S. Diversity and functional traits based indigenous rhizosphere associated phosphate solubilizing bacteria for sustainable production of rice. Front Microbiol 2024; 15:1470019. [PMID: 39735185 PMCID: PMC11671494 DOI: 10.3389/fmicb.2024.1470019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/14/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Rice, particularly Basmati rice, holds significant global importance as a staple food. The indiscriminate use of phosphate-based fertilizers during rice production has led to high residual levels of these chemicals in soil, impacting soil health and fertility. This study aimed to address this challenge by investigating the potential of phosphate solubilizing bacteria (PSB) in improving soil fertility and boosting the growth of Basmati rice. Methods Using amplicon-based 16S rDNA sequencing, bacterial isolation and cultivation, conducting greenhouse and field experiments, and PSB localization, we optimized the search for PSB inoculants to enhance Basmati rice growth. Results and discussion Rice rhizosphere prokaryote communities showed significant differences in microbial diversity and composition between between basmati and non-basmati rice cultivated areas. Dominant bacterial phyla included Proteobacteria, Acidobacteria, Actinobacteria, and Firmicutes, with Actinobacteria and Proteobacteria playing a crucial role in nutrient recycling. Isolation and optimization of PSB strains, including Acinetobacter sp. MR5 and Pseudomonas sp. R7, were carried out and soil microcosm studies confirmed their efficacy in increasing soil available phosphorus concentration. Response surface methodology revealed the relative importance of factors such as pH, inoculum density and incubation temperature in maximising phosphate solubilization. Microplot experiments demonstrated the effectiveness of optimized PSB inoculants in promoting Basmati rice growth, with significant increases in plant height, tiller number, biomass, and grain yield compared to uninoculated controls. A consortium of PSB proved superior to single-strain inoculants, even with reduced chemical fertilizer application. Field trials at several rice growing sites confirmed the positive impact of the PSB consortium on grain yield, soil phosphorus availability, and plant phosphorus uptake. The competence and persistence of the inoculated strains in the rhizosphere was confirmed by FISH and BOX Polymerase Chain Reaction (BOX-PCR). This work highlights the potential of PSB-based biofertilizers to improve soil fertility, promote sustainable rice production and reduce the negative environmental impacts of chemical fertilizers. Future research would focus on scaling up these findings for widespread adoption in agriculture and exploring their applicability to other crops and agroecosystems.
Collapse
Affiliation(s)
- Maria Rasul
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Mahreen Yahya
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Suleman
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Sughra Hakim
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Babur S. Mirza
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Muhammad Sajjad Mirza
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Thomas Reitz
- Department of Soil Ecology, UFZ - Helmholtz-Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mika Tapio Tarkka
- Department of Soil Ecology, UFZ - Helmholtz-Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sumera Yasmin
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
2
|
Viana RDSR, Figueiredo CCD, Chagas JKM, Paz-Ferreiro J. Combined use of biochar and phosphate rocks on phosphorus and heavy metal availability: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120204. [PMID: 38278116 DOI: 10.1016/j.jenvman.2024.120204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Biochar (BC) and phosphate rocks (PR) are alternative nutrient sources with multiple benefits for sustainable agriculture. The combination of these soil amendments serves two main purposes: to increase soil phosphorus (P) availability and to remediate heavy metal (HM) contamination. However, a further demonstration of the benefits and risks associated with the combined use of BC and PR (BC + PR) is needed, considering the specific characteristics of raw materials, soil types, experimental conditions, and climatic contexts. This meta-analysis is based on data from 28 selected studies, including 581 paired combinations evaluating effects on extraction and fractionation of cadmium (Cd) and lead (Pb), and 290 paired combinations for soil labile and non-labile P. The results reveal that BC, PR, and BC + PR significantly increase soil labile and non-labile P, with BC + PR showing a 150% greater increase compared to BC alone. In tropical regions, substantial increases in P levels were observed with BC, PR, and BC + PR exhibiting increments of 317, 798, and 288%, respectively. In contrast, temperate climate conditions showed lower increases, with BC, PR, and BC + PR indicating 54, 123, and 88% rises in soil P levels. Moreover, BC, PR, and BC + PR effectively reduce the bioavailability of Cd and Pb in soil, with BC + PR demonstrating the highest efficacy in immobilizing Cd. The synergistic effect of BC + PR highlights their potential for Cd remediation. BC + PR effectively reduces the exchangeable fraction of Cd and Pb in soil, leading to their immobilization in more stable forms, such as the residual fraction. This study provides valuable insights into the remediation potential and P management benefits of BC and PR, highlighting their importance for sustainable agriculture and soil remediation practices.
Collapse
Affiliation(s)
| | | | - Jhon Kenedy Moura Chagas
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, DF, Brazil
| | - Jorge Paz-Ferreiro
- School of Engineering, RMIT University, GPO Box 2476, 3001, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Quiroga S, Rosado-Porto D, Ratering S, Rekowski A, Schulz F, Krutych M, Zörb C, Schnell S. Long-term detection of Hartmannibacter diazotrophicus on winter wheat and spring barley roots under field conditions revealed positive correlations on yield parameters with the bacterium abundance. FEMS Microbiol Ecol 2024; 100:fiae023. [PMID: 38366928 PMCID: PMC10939331 DOI: 10.1093/femsec/fiae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Monitoring of bioinoculants once released into the field remains largely unexplored; thus, more information is required about their survival and interactions after root colonization. Therefore, specific primers were used to perform a long-term tracking to elucidate the effect of Hartmannibacter diazotrophicus on wheat and barley production at two experimental organic agriculture field stations. Three factors were evaluated: organic fertilizer application (with and without), row spacing (15 and 50 cm), and bacterial inoculation (H. diazotrophicus and control without bacteria). Hartmannibacter diazotrophicus was detected by quantitative polymerase chain reaction on the roots (up to 5 × 105 copies g-1 dry weight) until advanced developmental stages under field conditions during two seasons, and mostly in one farm. Correlation analysis showed a significant effect of H. diazotrophicus copy numbers on the yield parameters straw yield (increase of 453 kg ha-1 in wheat compared to the mean) and crude grain protein concentration (increase of 0.30% in wheat and 0.80% in barley compared to the mean). Our findings showed an apparently constant presence of H. diazotrophicus on both wheat and barley roots until 273 and 119 days after seeding, respectively, and its addition and concentration in the roots are associated with higher yields in one crop.
Collapse
Affiliation(s)
- Santiago Quiroga
- Institute of Applied Microbiology, IFZ, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - David Rosado-Porto
- Institute of Applied Microbiology, IFZ, Justus-Liebig University Giessen, 35392 Giessen, Germany
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, 080002 Barranquilla, Colombia
| | - Stefan Ratering
- Institute of Applied Microbiology, IFZ, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Azin Rekowski
- Institute of Crop Science, Quality of Plant Products, 340e, University of Hohenheim, 70593 Stuttgart, Germany
| | - Franz Schulz
- Department of Agronomy and Plant Breeding II, Justus-Liebig University Giessen, 35394 Giessen, Germany
| | - Marina Krutych
- Institute of Applied Microbiology, IFZ, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, 340e, University of Hohenheim, 70593 Stuttgart, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, IFZ, Justus-Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
4
|
Wang C, Pan G, Lu X, Qi W. Phosphorus solubilizing microorganisms: potential promoters of agricultural and environmental engineering. Front Bioeng Biotechnol 2023; 11:1181078. [PMID: 37251561 PMCID: PMC10213388 DOI: 10.3389/fbioe.2023.1181078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Phosphate solubilizing microorganisms (PSMs) are known as bacteria or fungi that make insoluble phosphorus in soil available to plants. To date, as beneficial microbes, studies on PSMs indicated they have potential applications in agriculture, environmental engineering, bioremediation, and biotechnology. Currently high cost and competition from local microbe are the most important factors hindering PSMs commercialization and application as for instance biofertilizer, soil conditioner or remediation agent, etc. There are several technical strategies can be engaged to approach the solutions of these issues, for instance mass production, advance soil preparation, genetic engineering, etc. On the other hand, further studies are needed to improve the efficiency and effectiveness of PSMs in solubilizing phosphates, promoting plant growth, soil remediation preferably. Hopefully, PSMs are going to be developed into ecofriendly tools for sustainable agriculture, environment protection and management in the future.
Collapse
Affiliation(s)
- Chengdong Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guojun Pan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Lu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Weicong Qi
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
5
|
Yahya M, Rasul M, Hussain SZ, Dilawar A, Ullah M, Rajput L, Afzal A, Asif M, Wubet T, Yasmin S. Integrated analysis of potential microbial consortia, soil nutritional status, and agro-climatic datasets to modulate P nutrient uptake and yield effectiveness of wheat under climate change resilience. FRONTIERS IN PLANT SCIENCE 2023; 13:1074383. [PMID: 36714699 PMCID: PMC9878846 DOI: 10.3389/fpls.2022.1074383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Climate change has a devastating effect on wheat production; therefore, crop production might decline by 2030. Phosphorus (P) nutrient deficiency is another main limiting factor of reduced yield. Hence, there is a dire need to judiciously consider wheat yield, so that human requirements and nutrition balance can be sustained efficiently. Despite the great significance of biostimulants in sustainable agriculture, there is still a lack of integrated technology encompassing the successful competitiveness of inoculated phosphate-solubilizing bacteria (PSB) in agricultural systems in the context of climatic conditions/meteorological factors and soil nutritional status. Therefore, the present study reveals the modulation of an integrated P nutrient management approach to develop potential PSB consortia for recommended wheat varieties by considering the respective soil health and agro-climatic conditions. The designed consortia were found to maintain adequate viability for up to 9 months, verified through field emission scanning electron microscopy and viable count. Furthermore, a significant increase in grain yield (5%-8%) and seed P (4%) content was observed in consortia-inoculated wheat plants with 20% reduced Diammonium phosphate (DAP) application under net house conditions. Fluorescence in situ hybridization analysis of roots and amplification of the gcd gene of Ochrobactrum sp. SSR indicated the survival and rhizosphere competency of the inoculated PSB. Categorical principal component analysis (CAT-PCA) showed a positive correlation of inoculated field-grown wheat varieties in native soils to grain yield, soil P content, and precipitation for sites belonging to irrigated plains and seed P content, soil organic matter, and number of tillers for sites belonging to Northern dry mountains. However, the impact of inoculation at sites belonging to the Indus delta was found significantly correlated to soil potassium (K) content, electrical conductivity (EC), and temperature. Additionally, a significant increase in grain yield (15%) and seed P (14%) content was observed in inoculated wheat plants. Thus, the present study demonstrates for the first time the need to integrate soil biological health and agro-climatic conditions for consistent performance of augmented PSB and enhanced P nutrient uptake to curtail soil pollution caused by the extensive use of agrochemicals. This study provides innovative insights and identifies key questions for future research on PSB to promote its successful implementation in agriculture.
Collapse
Affiliation(s)
- Mahreen Yahya
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
| | - Maria Rasul
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
- Department of Environment and Energy, Sejong University, Neungdong-ro, Gwangjin-gu, Republic of Korea
| | - Sayed Zajif Hussain
- Department of Chemistry and Chemical Engineering, Syed Babar Ali-School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Punjab, Pakistan
| | - Adil Dilawar
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Khyber Pakhtunkhwa, Pakistan
| | - Lubna Rajput
- Plant Physiology and Biotechnology Agricultural Research Centre, Sindh, Pakistan
| | - Aftab Afzal
- Department of Botany, Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
| | - Tesfaye Wubet
- Department of Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, Pakistan
| |
Collapse
|
6
|
Li Q, Yang X, Li J, Li M, Li C, Yao T. In-depth characterization of phytase-producing plant growth promotion bacteria isolated in alpine grassland of Qinghai-Tibetan Plateau. Front Microbiol 2023; 13:1019383. [PMID: 36687657 PMCID: PMC9846362 DOI: 10.3389/fmicb.2022.1019383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
The use of plant growth promoting bacteria (PGPB) express phytase (myo-inositol hexakisphosphate phosphohydrolase) capable of hydrolyzing inositol phosphate in soil was a sustainable approach to supply available phosphorus (P) to plants. A total of 73 bacterial isolates with extracellular phytase activity were selected from seven dominant grass species rhizosphere in alpine grassland of Qinghai-Tibetan Plateau. Then, the plant growth promoting (PGP) traits of candidate bacteria were screened by qualitative and quantitative methods, including organic/inorganic Phosphorus solubilization (P. solubilization), plant hormones (PHs) production, nitrogen fixation, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity and antimicrobial activity. Further experiment were conducted to test their growth promoting effect on Lolium perenne L. under P-limitation. Our results indicated that these bacteria as members of phyla Proteobacteria (90.41%) and Actinobacteria (9.59%) were related to 16 different genera. The isolates of Pseudomonas species showed the highest isolates number (36) and average values of phytase activity (0.267 ± 0.012 U mL-1), and showed a multiple of PGP traits, which was a great candidate for PGPBs. In addition, six strains were positive in phytase gene (β-propeller phytase, bpp) amplification, which significantly increased the shoot length, shoot/root fresh weight, root average diameter and root system phytase activity of Lolium perenne L. under P-limitation, and the expression of phytase gene (bppP) in root system were verified by qPCR. Finally, the PHY101 gene encoding phytase from Pseudomonas mandelii GS10-1 was cloned, sequenced, and recombinantly expressed in Escherichia coli. Biochemical characterization demonstrated that the recombinant phytase PHY101 revealed the highest activity at pH 6 and 40°C temperature. In particular, more than 60% of activity was retained at a low temperature of 15°C. This study demonstrates the opportunity for commercialization of the phytase-producing PGPB to developing localized microbial inoculants and engineering rhizobacteria for sustainable use in alpine grasslands.
Collapse
|
7
|
High-Throughput Sequencing as a Tool for the Quality Control of Microbial Bioformulations for Agriculture. Processes (Basel) 2022. [DOI: 10.3390/pr10112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microbial bioformulations, due to their positive impact on the growth and development of plants, as well as the absence of harmful effects on the environment and humans, have a vast potential for mass introduction into agriculture. Assessing the quality of bioformulations, especially complex ones, is a difficult task. In this study, we show that high-throughput sequencing can be an effective tool for the quality control and safety of microbial bioformulations. By the method of high-throughput sequencing on the MiSeq platform, we studied 20 samples of commercially available microbial bioformulations. In parallel with this, bioformulations were studied by classical microbiological methods. The analysis showed the presence of extraneous undeclared bacterial genera by the manufacturer. Only 10% of the bioformulations fully corresponded to the commercial composition, and another 10% of the bioformulations did not contain the bacteria declared by the manufacturer in their composition at all. The bacterial composition of 80% of the bioformulations partially corresponded to the composition indicated on the package. The most frequent microbial bioformulations contaminants were Enterococcus, Lactobacillaceae, Klebsiella, Escherichia-Shigella and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium. Universal methods for the quality control of bioformulations are needed. The advantages of high-throughput sequencing for the evaluation of bioformulations are considered in this work.
Collapse
|