1
|
Li J, Wu W, Kong X, Yang X, Li K, Jiang Z, Zhang C, Zou J, Liang Y. Roles of gut microbiome-associated metabolites in pulmonary fibrosis by integrated analysis. NPJ Biofilms Microbiomes 2024; 10:154. [PMID: 39702426 DOI: 10.1038/s41522-024-00631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Lung diseases often coincide with imbalances in gut microbiota, but the role of gut microbiota in pulmonary fibrosis (PF) remains unclear. This study investigates the impact of gut microbiota and their metabolites on PF. Serum and lung tissues of normal, bleomycin (BLM)- and silica-induced mice showed significant differences in gut microbiota. L-Tryptophan was upregulated within pulmonary tissue and serum metabolites both in the BLM and Silica groups. The dominant gut microbiota associated with L-tryptophan metabolism included Lachnospiraceae_NK4A136_Group, Allobaculum, Alistipes, and Candidatus_Saccharimonas. L-Tryptophan promoted BLM- and silica-induced pathological damage in PF mice. L-Tryptophan promoted TGF-β1-induced EMT and fibroblast activation in vitro via activating the mTOR/S6 pathway. In conclusion, PF mice exhibited alterations in gut microbiota and serum and lung tissue metabolites. L-Tryptophan level was associated with changes in gut microbiota, and L-tryptophan promoted PF progression in both in vivo and in vitro models, potentially through activation of the mTOR/S6 pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Internal Medicine, Jiangxi Chest Hospital, The Third Affiliated Hospital of Nanchang Medical College, Key Laboratory of Health of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Wenqing Wu
- Medical Affairs, Johnson & Johnson Innovative Medicine, Beijing, 100025, China
| | - Xinyi Kong
- Department of Cardiovascular Intervention, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Xia Yang
- Department of Internal Medicine, Jiangxi Chest Hospital, The Third Affiliated Hospital of Nanchang Medical College, Key Laboratory of Health of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Kui Li
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| | - Zicheng Jiang
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| | - Chunlan Zhang
- Department of Infectious Diseases, Wuming Hospital of Guangxi Medical University, Nanning, 530199, Guangxi, China
| | - Jun Zou
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, 530002, Guangxi, China.
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, P.R. China.
| |
Collapse
|
2
|
Hou S, Wang X, Guo J, Han Y, You J, Tian Z, Zheng X, Zheng S, Ling Y, Pei L, Wu E. Triangle correlations of lung microbiome, host physiology and gut microbiome in a rat model of idiopathic pulmonary fibrosis. Sci Rep 2024; 14:28743. [PMID: 39567656 PMCID: PMC11579350 DOI: 10.1038/s41598-024-80023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
Changes in lung and gut microbial communities have been associated with idiopathic pulmonary fibrosis (IPF). This study aimed to investigate correlations between microbial changes in the lung and gut and host physiological indices in an IPF model, exploring potential mechanisms of the lung-gut axis in IPF pathogenesis. IPF model rats were established via trans-tracheal injection of bleomycin, with assessments of hematological indices, serum cytokines, lung histopathology, and microbiome alterations. Significant differences in microbial structure and composition were observed in the IPF model compared to controls, with 14 lung and 7 gut microbial genera showing significant abundance changes. Further analysis revealed 20 significant correlations between pulmonary and gut genera. Notably, 11 pairs of correlated genera were linked to the same IPF-related physiological indices, such as hydroxyproline, mean corpuscular volume (MCV), and red cell distribution width-standard deviation (RDW-SD). We identified 24 instances where a lung and a gut genus were each associated with the same physiological index, forming "lung genus-index-gut genus" relationships. Mediation analysis showed that indices like hydroxyproline, MCV, and RDW-SD mediated correlations between 10 lung genera (e.g., Cetobacterium, Clostridium XVIII ) and the gut genus Allobaculum. This study first describes gut-lung microbial interactions in pulmonary fibrosis. Mediation analysis suggests pathways underlying "lung genus-host index-gut genus" and "gut genus-host index-lung genus" correlations, thus providing clues to further elucidate the mechanisms of the "gut-lung axis" in IPF pathogenesis.
Collapse
Affiliation(s)
- Sihan Hou
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xueer Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Jiarui Guo
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Yue Han
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Jia You
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, Beijing, 100081, China
| | - Zhigang Tian
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, No.804 Shenglijie, Xingqing District, Yinchuan, 750004, China
| | - Xiwei Zheng
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, No.804 Shenglijie, Xingqing District, Yinchuan, 750004, China
| | - Siriguleng Zheng
- Department of Information Technology, Polytechnic College, Beijing, China
| | - Yaqing Ling
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Lingpeng Pei
- School of Pharmacy, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China.
| | - Enqi Wu
- School of Pharmacy, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China.
| |
Collapse
|
3
|
Yao Q, Tan W, Bai F. Gut microbiome and metabolomics in systemic sclerosis: feature, link and mechanisms. Front Immunol 2024; 15:1475528. [PMID: 39559369 PMCID: PMC11570262 DOI: 10.3389/fimmu.2024.1475528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Systemic sclerosis (SSc) is a rare and highly heterogeneous chronic autoimmune disease characterized by multi-organ and tissue fibrosis, often accompanied by a poor prognosis and high mortality rates. The primary pathogenic mechanisms of SSc are considered to involve tissue fibrosis, autoimmune dysfunction, and microvascular abnormalities. Recent studies have shed light on the gut microbiota (GM) and metabolites in SSc patients, revealing their association with gastrointestinal symptoms and disease phenotypes. However, further elucidation is needed on the specific mechanisms underlying the interactions between GM, metabolites, and the immune system and their roles in the pathogenesis of SSc. This review outlines the characteristics of GM and metabolites in SSc patients, exploring their interrelationships and analyzing their correlations with the clinical phenotypes of SSc. The findings indicate that while the α-diversity of GM in SSc patients resembles that of healthy individuals, notable differences exist in the β-diversity and the abundance of specific bacterial genera, which are closely linked to gastrointestinal symptoms. Moreover, alterations in the levels of amino acids and lipid metabolites in SSc patients are prominently observed and significantly associated with clinical phenotypes. Furthermore, this review delves into the potential immunopathological mechanisms of GM and metabolites in SSc, emphasizing the critical role of interactions between GM, metabolites, and the immune system in comprehending the immunopathological processes of SSc. These insights may offer new scientific evidence for the development of future treatment strategies.
Collapse
Affiliation(s)
- Qicen Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Nanjing Medical University, Nanjing, China
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Wang J, Li K, Hao D, Li X, Zhu Y, Yu H, Chen H. Pulmonary fibrosis: pathogenesis and therapeutic strategies. MedComm (Beijing) 2024; 5:e744. [PMID: 39314887 PMCID: PMC11417429 DOI: 10.1002/mco2.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive lung disease characterized by extensive alterations of cellular fate and function and excessive accumulation of extracellular matrix, leading to lung tissue scarring and impaired respiratory function. Although our understanding of its pathogenesis has increased, effective treatments remain scarce, and fibrotic progression is a major cause of mortality. Recent research has identified various etiological factors, including genetic predispositions, environmental exposures, and lifestyle factors, which contribute to the onset and progression of PF. Nonetheless, the precise mechanisms by which these factors interact to drive fibrosis are not yet fully elucidated. This review thoroughly examines the diverse etiological factors, cellular and molecular mechanisms, and key signaling pathways involved in PF, such as TGF-β, WNT/β-catenin, and PI3K/Akt/mTOR. It also discusses current therapeutic strategies, including antifibrotic agents like pirfenidone and nintedanib, and explores emerging treatments targeting fibrosis and cellular senescence. Emphasizing the need for omni-target approaches to overcome the limitations of current therapies, this review integrates recent findings to enhance our understanding of PF and contribute to the development of more effective prevention and management strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jianhai Wang
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Kuan Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - De Hao
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
| | - Xue Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Yu Zhu
- Department of Clinical LaboratoryNankai University Affiliated Third Central HospitalTianjinChina
- Department of Clinical LaboratoryThe Third Central Hospital of TianjinTianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesArtificial Cell Engineering Technology Research Center of TianjinTianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Hongzhi Yu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Huaiyong Chen
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| |
Collapse
|
5
|
Chen YZ, Zhao L, Wei W, Gu J, Liu ZH, Shan WY, Dong J, Li C, Qin LQ, Xu JY. The Effect of Metformin on Radiation-Induced Lung Fibrosis in Mice. Dose Response 2024; 22:15593258241308051. [PMID: 39664837 PMCID: PMC11632958 DOI: 10.1177/15593258241308051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction: Radiation-induced lung fibrosis (RILF) is a common complication of thoracic radiotherapy. Metformin has been suggested to have a radioprotective effect. Objective: This study explored the radioprotective effects of metformin on RILF and its mechanisms. Methods: C57BL/6J mice were randomly divided into control, ionizing radiation (IR), low-dose metformin (L-Met), and high-dose metformin (H-Met) groups. The IR, L-Met, and H-Met groups received 15 Gy chest irradiation. The L-Met and H-Met groups were administrated 100 or 200 mg/kg metformin from 3 days before irradiation and continued for 6 months. The mice were then sacrificed, and samples were collected for further analysis. Results: RILF was induced in the irradiated mice. Metformin improved lung pathology, inhibited collagen deposition, and reduced inflammatory factors such as high mobility group box 1 (HMGB1), interleukin-1 beta, interleukin-6, tumor necrosis factor alpha in lung tissue, lavage fluid, and serum. Western blot and quantitative real-time PCR analyses revealed that metformin downregulated HMGB1, toll-like receptor 4 (TLR4), and nuclear factor kappaB (NF-κB) expression. Additionally, metformin reversed the irradiation-induced reduction in the abundance of Lactobacillus and Lachnospiraceae at the genus level. Conclusion: Our findings indicated that metformin ameliorates RILF by downregulating the inflammatory-related HMGB1/TLR4/NF-κB pathway and improving intestinal flora disorder.
Collapse
Affiliation(s)
- Yu-Zhong Chen
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Yancheng Municipal Center for Disease Control and Prevention, Yancheng, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wei Wei
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jia Gu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhen-Hua Liu
- Department of Radiotherapy, The Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of Yancheng, Yancheng, China
| | - Wen-Yue Shan
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jie Dong
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Li
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Guo X, Xu K, Wang Q, Han Z, Yu G. Assessing the impact of triiodothyronine treatment on the lung microbiome of mice with pulmonary fibrosis. BMC Pulm Med 2024; 24:405. [PMID: 39180004 PMCID: PMC11344337 DOI: 10.1186/s12890-024-03214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF), an interstitial lung disease, is characterized by the exacerbation of progressive pulmonary fibrosis (PF). IPF primarily affects older individuals and can lead to respiratory failure. This study aimed to assess the effects of triiodothyronine (T3) treatment on the lung microbiome of mice with PF. METHODS Mice were perfused with bleomycin (BLM) to establish a PF model. Using a randomized design, 40 female specific pathogen-free (SPF) C57BL6/N mice were divided into four groups: saline, saline + T3, BLM, and BLM + T3. Histological morphology was assessed through Hematoxylin and Eosin staining as well as Masson's Trichrome staining. For the identification of lung bacteria, 16S rRNA gene sequencing was employed. An Enzyme-Linked Immunosorbent Assay was used to measure total T3 (TT3), free T3 (FT3, and reverse T3 (rT3) levels in the peripheral serum. RESULTS T3 treatment ameliorated BLM-induced lung fibrosis and structural damage. The microbiome experienced a decrease in the abundance of Proteobacteria, Bacteroides, and Actinomycetes and an increase in the abundance of Firmicutes when exposed to BLM; however, T3 treatment reversed this effect. The four groups showed no significant difference in alpha microbiome diversity (P > 0.05). Serum concentrations of TT3 and FT3 were positively correlated with microbiome abundance (P < 0.05). Administration of T3 enhanced the microbiota in PF without affecting the diversity and biological functions of the microbiome (P > 0.05). CONCLUSION The administration of T3 demonstrated a favorable impact on the lung microbiota of mice afflicted with PF, thereby partially substantiating the potential role of T3 as a therapeutic agent in the management of PF.
Collapse
Affiliation(s)
- Xiaoshu Guo
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; Pingyuan Laboratory; College of Life Science , Henan Normal University, No.46 Jianshe Road, Xinxiang City, 453007, Henan, China.
- Department of Physiology, Department of Fundamental Medicine, Changzhi Medical College, Changzhi, 046000, Shanxi, China.
| | - Kai Xu
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; Pingyuan Laboratory; College of Life Science , Henan Normal University, No.46 Jianshe Road, Xinxiang City, 453007, Henan, China
| | - Qiwen Wang
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; Pingyuan Laboratory; College of Life Science , Henan Normal University, No.46 Jianshe Road, Xinxiang City, 453007, Henan, China
| | - Zongyuan Han
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; Pingyuan Laboratory; College of Life Science , Henan Normal University, No.46 Jianshe Road, Xinxiang City, 453007, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; Pingyuan Laboratory; College of Life Science , Henan Normal University, No.46 Jianshe Road, Xinxiang City, 453007, Henan, China.
| |
Collapse
|
7
|
Fan S, Xue B, Ma J. Causal relationship between gut microbiota and idiopathic pulmonary fibrosis: A two-sample Mendelian randomization. Medicine (Baltimore) 2024; 103:e39013. [PMID: 39029004 PMCID: PMC11398756 DOI: 10.1097/md.0000000000039013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
To explore the causal relationship between gut microbiota (GM) and Idiopathic pulmonary fibrosis (IPF), we performed a two-sample Mendelian randomization (MR). GM was used as an exposure factor, and instrumental variables were determined from the GWAS of 18,340 participants. GWAS of IPF (including 1028 IPF patients and 196,986 controls) from the FinnGen was used as the outcome factor. The primary analysis method is the inverse variance weighted (IVW) method, and sensitivity analysis was used to validate the reliability. Family Bacteroidaceae (OR = 1.917 95% CI = 1.083-3.393, P = .026), order Gastranaerophilales (OR = 1.441 95% CI = 1.019-2.036, P = .039), genus Senegalimassilia (OR = 2.28 95% CI = 1.174-4.427, P = .015), phylum Cyanobacteria (OR = 1.631 95% CI = 1.035-2.571, P = .035) were positively correlated with IPF. FamilyXIII(OR = 0.452 95% CI = 0.249-0.82, P = .009), order Selenomonadale (OR = 0.563 95% CI = 0.337-0.941, P = .029), genus Veillonella (OR = 0.546 95% CI = 0.304-0.982, P = .043) (OR = 0.717 95% CI = 0.527-0.976, P = .034), genus Ruminococcusgnavus (OR = 0.717 95% CI = 0.527-0.976, P = .034), genus Oscillibacter (OR = 0.571 95% CI = 0.405-0.806, P = .001) was negatively correlated with IPF. Sensitivity analysis showed no evidence of pleiotropy or heterogeneity (P > .05). The results of MR demonstrated a causal relationship between GM and IPF. Further studies are needed to investigate the intrinsic mechanisms of the GM in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Shiqin Fan
- Department of Intensive Care Medicine, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Baorui Xue
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Ma
- Department of Intensive Care Medicine, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Song X, Fu X, Niu S, Wang P, Qi J, Shi S, Chang H, Bai W. Exploring the effects of Saorilao-4 on the gut microbiota of pulmonary fibrosis model rats based on 16S rRNA sequencing. J Appl Microbiol 2024; 135:lxae178. [PMID: 39020259 DOI: 10.1093/jambio/lxae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
AIMS Pulmonary fibrosis (PF) is a progressive and incurable lung disease for which treatment options are limited. Here, we aimed to conduct an exploratory study on the effects of the Mongolian medicine Saorilao-4 (SRL) on the gut microbiota structure, species abundance, and diversity of a rat PF model as well as the mechanisms underlying such effects. METHODS AND RESULTS Rat fecal samples were analyzed using 16S rRNA sequencing technology. Bioinformatic and correlation analyses were performed on microbiota data to determine significant associations. SRL substantially attenuated the adverse effects exerted by PF on the structure and diversity of gut microbiota while regulating its alpha and beta diversities. Linear discriminant analysis effect size enabled the identification of 62 differentially abundant microbial taxa. Gut microbiota abundance analysis revealed that SRL significantly increased the relative abundance of bacterial phyla such as Firmicutes and Bacteroidetes. Moreover, SRL increased the proportion of beneficial bacteria, such as Lactobacillus and Bifidobacteriales, decreased the proportion of pathogenic bacteria, such as Rikenellaceae, and balanced the gut microbiota by regulating metabolic pathways. CONCLUSIONS SRL may attenuate PF by regulating gut microbiota. This exploratory study establishes the groundwork for investigating the metagenomics of PF.
Collapse
Affiliation(s)
- Xinni Song
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Xinyue Fu
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Shufang Niu
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Peng Wang
- The Second Affiliated Hospital of Baotou Medical College, Baotou 014030, China
| | - Jun Qi
- The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
| | - Songli Shi
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Hong Chang
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Wanfu Bai
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| |
Collapse
|
9
|
Wu W, Wu X, Qiu L, Wan R, Zhu X, Chen S, Yang X, Liu X, Wu J. Quercetin influences intestinal dysbacteriosis and delays alveolar epithelial cell senescence by regulating PTEN/PI3K/AKT signaling in pulmonary fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4809-4822. [PMID: 38153514 PMCID: PMC11166760 DOI: 10.1007/s00210-023-02913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Pulmonary fibrosis is a chronic and progressive lung disease with high mortality. This study aims to explore the protective mechanism of quercetin against pulmonary fibrosis regarding cell senescence and gut microbiota. Rats were intratracheally injected with bleomycin (BLM) to establish a pulmonary fibrosis rat model. RLE-6TN cells were stimulated with BLM to build the model of alveolar epithelial cell senescence, and RLE-6TN-derived conditional medium (CM) was harvested to further culture fibroblasts. Histopathological changes were assessed by H&E and Masson staining. α-SMA expression was assessed by immunofluorescence assay. Senescence-associated β-galactosidase (SA-β-gal) staining and senescence-associated secretory phenotype (SASP) cytokine assay were conducted to assess cellular senescence. Gut microbiota was analyzed by 16S rRNA gene sequencing. The fibrosis-, senescence-, and PTEN/PI3K/AKT signaling-related proteins were examined by western blot. In BLM-induced pulmonary fibrosis rats, quercetin exerted its protective effects by reducing histological injury and collagen deposition, lessening cellular senescence, and regulating gut microbiota. In BLM-induced alveolar epithelial cell senescence, quercetin inhibited senescence, lessened SASP cytokine secretion of alveolar epithelial cells, and further ameliorated collagen deposition in fibroblasts. In addition, quercetin might exert its functional effects by regulating the PTEN/PI3K/AKT signaling pathway. Moreover, quercetin regulated intestinal dysbacteriosis in BLM-induced pulmonary fibrosis rats, especially boosting the abundance of Akkermansia. To conclude, our findings provide an in-depth understanding of the potential mechanism behind the protective role of quercetin against pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenjuan Wu
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou University, Jinshui District, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China.
| | - Xinhui Wu
- Department of Traditional Chinese Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, 450000, Henan, China
| | - Lingxiao Qiu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Ruijie Wan
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou University, Jinshui District, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Xiaoming Zhu
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xinying Yang
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou University, Jinshui District, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Xueya Liu
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou University, Jinshui District, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Jizhen Wu
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou University, Jinshui District, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| |
Collapse
|
10
|
Ren Y, Zhang Y, Cheng Y, Qin H, Zhao H. Genetic liability of gut microbiota for idiopathic pulmonary fibrosis and lung function: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1348685. [PMID: 38841114 PMCID: PMC11150651 DOI: 10.3389/fcimb.2024.1348685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
Background The microbiota-gut-lung axis has elucidated a potential association between gut microbiota and idiopathic pulmonary fibrosis (IPF). However, there is a paucity of population-level studies with providing robust evidence for establishing causality. This two-sample Mendelian randomization (MR) analysis aimed to investigate the causal relationship between the gut microbiota and IPF as well as lung function. Materials and methods Adhering to Mendel's principle of inheritance, this MR analysis utilized summary-level data from respective genome-wide association studies (GWAS) involving 211 gut microbial taxa, IPF, and lung function indicators such as FEV1, FVC, and FEV1/FVC. A bidirectional two-sample MR design was employed, utilizing multiple MR analysis methods, including inverse variance-weighted (IVW), weighted median, MR-Egger, and weighted mode. Multivariable MR (MVMR) was used to uncover mediating factors connecting the exposure and outcome. Additionally, comprehensive sensitivity analyses were conducted to ensure the robustness of the results. Results The MR results confirmed four taxa were found causally associated with the risk of IPF. Order Bifidobacteriales (OR=0.773, 95% CI: 0.610-0.979, p=0.033), Family Bifidobacteriaceae (OR=0.773, 95% CI: 0.610-0.979, p=0.033), and Genus RuminococcaceaeUCG009 (OR=0.793, 95% CI: 0.652-0.965, p=0.020) exerted protective effects on IPF, while Genus Coprococcus2 (OR=1.349, 95% CI: 1.021-1.783, p=0.035) promote the development of IPF. Several taxa were causally associated with lung function, with those in Class Deltaproteobacteria, Order Desulfovibrionales, Family Desulfovibrionaceae, Class Verrucomicrobiae, Order Verrucomicrobiales and Family Verrucomicrobiaceae being the most prominent beneficial microbiota, while those in Family Lachnospiraceae, Genus Oscillospira, and Genus Parasutterella were associated with impaired lung function. As for the reverse analysis, MR results confirmed the effects of FEV1 and FVC on the increased abundance of six taxa (Phylum Actinobacteria, Class Actinobacteria, Order Bifidobacteriales, Family Bifidobacteriaceae, Genus Bifidobacterium, and Genus Ruminiclostridium9) with a boosted level of evidence. MVMR suggested monounsaturated fatty acids, total fatty acids, saturated fatty acids, and ratio of omega-6 fatty acids to total fatty acids as potential mediating factors in the genetic association between gut microbiota and IPF. Conclusion The current study suggested the casual effects of the specific gut microbes on the risk of IPF and lung function. In turn, lung function also exerted a positive role in some gut microbes. A reasonable dietary intake of lipid substances has a certain protective effect against the occurrence and progression of IPF. This study provides novel insights into the potential role of gut microbiota in IPF and indicates a possible gut microbiota-mediated mechanism for the prevention of IPF.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- The Second Clinical Mediccal college, Shanxi Medical University, Taiyuan, China
| | - Yao Zhang
- The Second Clinical Mediccal college, Shanxi Medical University, Taiyuan, China
| | - Yanan Cheng
- The Second Clinical Mediccal college, Shanxi Medical University, Taiyuan, China
| | - Hao Qin
- The Second Clinical Mediccal college, Shanxi Medical University, Taiyuan, China
| | - Hui Zhao
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Zeng Q, Hu D, Li Y, Zhou Z, Wu J, Li X, Yu X. Evaluating the causal association between bronchiectasis and different types of inflammatory bowel disease: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1365108. [PMID: 38638444 PMCID: PMC11024297 DOI: 10.3389/fimmu.2024.1365108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Background and objectives Previous observational studies have established a connection between bronchiectasis and inflammatory bowel disease (IBD), but none of these studies have provided a clear explanation for the underlying cause of this relationship. The present study thus implemented Mendelian randomization (MR) design to explore possible bidirectional relationships between IBD and bronchiectasis risk, with an additional focus on Crohn's disease (CD) and ulcerative colitis (UC) as IBD subtypes. Materials and methods A large genome-wide association study (GWAS)-derived data pool was leveraged to examine the relationships between bronchiectasis and IBD, CD, and UC. Two-sample MR analyses were performed with an inverse variance weighted (IVW) approach supplemented with the MR-Egger and weighted median methods. Sensitivity analyses were used to further assess the reliability of the main MR study findings. The possibility of reverse causation was also evaluated using a reverse MR approach. Results The IVW MR analytical approach revealed that IBD (p = 0.074), UC (p = 0.094), and CD (p = 0.644) had no significant impact on the incidence of bronchiectasis, with the converse also being true (p = 0.471, p = 0.700, and p = 0.099, respectively). Conclusion This MR analysis demonstrated that the higher occurrence of bronchiectasis in patients with IBD is not caused by genetic predisposition.
Collapse
Affiliation(s)
- Qian Zeng
- Department of General Practice, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Da Hu
- Department of General Practice, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yuan Li
- Department of General Practice, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Zhiwei Zhou
- Department of Gastroenterology, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Jinfeng Wu
- Department of Gastroenterology, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaodong Li
- Department of Gastroenterology, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiqiu Yu
- Department of Gastroenterology, Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Che J, Shi J, Fang C, Zeng X, Wu Z, Du Q, Tu M, Pan D. Elimination of Pathogen Biofilms via Postbiotics from Lactic Acid Bacteria: A Promising Method in Food and Biomedicine. Microorganisms 2024; 12:704. [PMID: 38674648 PMCID: PMC11051744 DOI: 10.3390/microorganisms12040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Pathogenic biofilms provide a naturally favorable barrier for microbial growth and are closely related to the virulence of pathogens. Postbiotics from lactic acid bacteria (LAB) are secondary metabolites and cellular components obtained by inactivation of fermentation broth; they have a certain inhibitory effect on all stages of pathogen biofilms. Postbiotics from LAB have drawn attention because of their high stability, safety dose parameters, and long storage period, which give them a broad application prospect in the fields of food and medicine. The mechanisms of eliminating pathogen biofilms via postbiotics from LAB mainly affect the surface adhesion, self-aggregation, virulence, and QS of pathogens influencing interspecific and intraspecific communication. However, there are some factors (preparation process and lack of target) which can limit the antibiofilm impact of postbiotics. Therefore, by using a delivery carrier and optimizing process parameters, the effect of interfering factors can be eliminated. This review summarizes the concept and characteristics of postbiotics from LAB, focusing on their preparation technology and antibiofilm effect, and the applications and limitations of postbiotics in food processing and clinical treatment are also discussed.
Collapse
Affiliation(s)
- Jiahao Che
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Jingjing Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Chenguang Fang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| |
Collapse
|
13
|
Dong Y, He L, Zhu Z, Yang F, Ma Q, Zhang Y, Zhang X, Liu X. The mechanism of gut-lung axis in pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1258246. [PMID: 38362497 PMCID: PMC10867257 DOI: 10.3389/fcimb.2024.1258246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Pulmonary fibrosis (PF) is a terminal change of a lung disease that is marked by damage to alveolar epithelial cells, abnormal proliferative transformation of fibroblasts, excessive deposition of extracellular matrix (ECM), and concomitant inflammatory damage. Its characteristics include short median survival, high mortality rate, and limited treatment effectiveness. More in-depth studies on the mechanisms of PF are needed to provide better treatment options. The idea of the gut-lung axis has emerged as a result of comprehensive investigations into the microbiome, metabolome, and immune system. This theory is based on the material basis of microorganisms and their metabolites, while the gut-lung circulatory system and the shared mucosal immune system act as the connectors that facilitate the interplay between the gastrointestinal and respiratory systems. The emergence of a new view of the gut-lung axis is complementary and cross-cutting to the study of the mechanisms involved in PF and provides new ideas for its treatment. This article reviews the mechanisms involved in PF, the gut-lung axis theory, and the correlation between the two. Exploring the gut-lung axis mechanism and treatments related to PF from the perspectives of microorganisms, microbial metabolites, and the immune system. The study of the gut-lung axis and PF is still in its early stages. This review systematically summarizes the mechanisms of PF related to the gut-lung axis, providing ideas for subsequent research and treatment of related mechanisms.
Collapse
Affiliation(s)
- Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lanlan He
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Quan Ma
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuhui Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Ren Z, Zheng Z, Feng X. Role of gut microbes in acute lung injury/acute respiratory distress syndrome. Gut Microbes 2024; 16:2440125. [PMID: 39658851 PMCID: PMC11639474 DOI: 10.1080/19490976.2024.2440125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
Acute lung injury (ALI) is an acute, diffuse inflammatory lung condition triggered by factors of severe infections, trauma, shock, burns, ischemia-reperfusion, and mechanical ventilation. It is primarily characterized by refractory hypoxemia and respiratory distress. The more severe form, acute respiratory distress syndrome (ARDS), can progress to multi-organ failure and has a high mortality rate. Despite extensive research, the exact pathogenesis of ALI and ARDS remains complex and not fully understood. Recent advancements in studying the gut microecology of patients have revealed the critical role that gut microbes play in ALI/ARDS onset and progression. While the exact mechanisms are still under investigation, evidence increasingly points to the influence of gut microbes and their metabolites on ALI/ARDS. This review aims to summarize the role of gut microbes and their metabolites in ALI/ARDS caused by various triggers. Moreover, it explores potential mechanisms and discusses how gut microbe-targeting interventions might offer new clinical strategies for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Zixuan Ren
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
15
|
Drakopanagiotakis F, Stavropoulou E, Tsigalou C, Nena E, Steiropoulos P. The Role of the Microbiome in Connective-Tissue-Associated Interstitial Lung Disease and Pulmonary Vasculitis. Biomedicines 2022; 10:biomedicines10123195. [PMID: 36551951 PMCID: PMC9775480 DOI: 10.3390/biomedicines10123195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The microbiome can trigger and maintain immune-mediated diseases and is associated with the severity and prognosis of idiopathic pulmonary fibrosis, which is the prototype of interstitial lung diseases (ILDs). The latter can be a major cause of morbidity and mortality in patients with connective-tissue diseases (CTD). In the present review, we discuss the current evidence regarding microbiome in CTD-ILD and pulmonary vasculitis. In patients with rheumatoid arthritis (RA) the BAL microbiota is significantly less diverse and abundant, compared to healthy controls. These changes are associated with disease severity. In systemic sclerosis (SSc), gastrointestinal (GI)-dysbiosis is associated with ILD. Butyrate acid administration as a means of restoration of GI-microbiota has reduced the degree of lung fibrosis in animal models. Although related studies are scarce for SLE and Sjögren's syndrome, studies of the gut, oral and ocular microbiome provide insights into the pathogenesis of these diseases. In ANCA-associated vasculitis, disease severity and relapses have been associated with disturbed nasal mucosa microbiota, with immunosuppressive treatment restoring the microbiome changes. The results of these studies suggest however no causal relation. More studies of the lung microbiome in CTD-ILDs are urgently needed, to provide a better understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Fotios Drakopanagiotakis
- Department of Pulmonology, Medical School, Democritus University of Thrace, 69100 Alexandroupolis, Greece
- Correspondence: (F.D.); (E.S.)
| | - Elisavet Stavropoulou
- Service of Infectious Diseases, Department of Medicine, Lausanne University Hospital, University of Lausanne (Centre Hospitalier Universitaire Vaudois—CHUV), 1011 Lausanne, Switzerland
- Correspondence: (F.D.); (E.S.)
| | - Christina Tsigalou
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| | - Evangelia Nena
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| | - Paschalis Steiropoulos
- Department of Pulmonology, Medical School, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| |
Collapse
|