1
|
Wang Y, Huang Y, Zeng Q, Liu D, An S. Biogeographic distribution of autotrophic bacteria was more affected by precipitation than by soil properties in an arid area. Front Microbiol 2023; 14:1303469. [PMID: 38173682 PMCID: PMC10761425 DOI: 10.3389/fmicb.2023.1303469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Autotrophic bacteria play an important role in carbon dioxide fixation and are widespread in terrestrial ecosystems. However, the biogeographic patterns of autotrophic bacteria and the driving factors still remain poorly understood. Methods Herein, we conducted a 391-km north to south transect (mean annual precipitation <600 mm) survey in the Loess Plateau of China, to investigate the biogeographic distributions of autotrophic bacteria (RubisCO cbbL and cbbM genes) and the environmental drivers across different latitude sites with clear vegetational and climatic gradients. Results and discussion The soils in northern region with lower precipitation are dominated by grassland/forest, which is typically separated from the soils in southern region with higher precipitation. The community structure of autotrophic bacterial cbbL and cbbM genes generally differed between the soils in the southern and northern Loess Plateau, suggesting that precipitation and its related land use practices/ecosystem types, rather than local soil properties, are more important in shaping the soil autotrophic microorganisms. The cbbL-containing generalist OTUs were almost equally abundant across the northern and southern Loess Plateau, while the cbbM-containing bacterial taxa were more prevalent in the low precipitation northern region. Such differences indicate differentiate distribution patterns of cbbM- and cbbL-containing bacteria across the north to south transect. Our results suggest that the community composition and the differentiate distributions of soil cbbL- and cbbM-containing bacterial communities depend on precipitation and the related ecosystem types in the north to south transect in the Loess Plateau of China.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Yimei Huang
- College of Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Quanchao Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi Province, China
| |
Collapse
|
2
|
Zhang N, Chen K, Wang S, Qi D, Zhou Z, Xie C, Liu X. Dynamic Response of the cbbL Carbon Sequestration Microbial Community to Wetland Type in Qinghai Lake. BIOLOGY 2023; 12:1503. [PMID: 38132329 PMCID: PMC10740943 DOI: 10.3390/biology12121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The soil carbon storage in the Qinghai-Tibet Plateau wetlands is affected by microbiota and wetland types, but the response mechanisms of carbon sequestration microorganisms on the Qinghai-Tibet Plateau to different wetland types are still poorly described. To explore the differences in carbon sequestration microbial communities in different wetlands and the main influencing factors, this study took a marsh wetland, river source wetland and lakeside wetland of Qinghai Lake as the research objects and used high-throughput sequencing to study the functional gene, cbbL, of carbon sequestration microorganisms. The results showed that the dominant bacterial group of carbon sequestration microorganisms in marsh and river source wetlands was Proteobacteria, and the dominant bacterial group in the lakeside wetland was Cyanobacteria. The alpha diversity, relative abundance of Proteobacteria and total carbon content were the highest in the marsh wetland, followed by the river source wetland, and they were the lowest in the lakeside wetland. In addition, the physical and chemical characteristics of the three wetland types were significantly different, and the soil temperature and moisture and total carbon content were the most important factors affecting the community structures of carbon-sequestering microorganisms. There was little difference in the total nitrogen contents between the marsh wetland and river source wetland. However, the total nitrogen content was also an important factor affecting the diversity of the carbon sequestration microbial community. In summary, the wetland type significantly affects the process of soil carbon sequestration. Compared with the riverhead and lakeside wetlands, the marsh wetland has the highest carbon storage.
Collapse
Affiliation(s)
- Ni Zhang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (S.W.); (D.Q.); (Z.Z.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Kelong Chen
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (S.W.); (D.Q.); (Z.Z.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Siyu Wang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (S.W.); (D.Q.); (Z.Z.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Desheng Qi
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (S.W.); (D.Q.); (Z.Z.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Zhiyun Zhou
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (S.W.); (D.Q.); (Z.Z.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Chuanyou Xie
- Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China; (C.X.); (X.L.)
| | - Xunjie Liu
- Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China; (C.X.); (X.L.)
| |
Collapse
|
3
|
Yang C, Zhang H, Feng Y, Hu Y, Chen S, Guo S, Zeng Z. Effect of microbial communities on nitrogen and phosphorus metabolism in rivers with different heavy metal pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87398-87411. [PMID: 37421527 DOI: 10.1007/s11356-023-28688-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Small urban and rural rivers usually face heavy metal pollution as a result of urbanization and industrial and agricultural activities. To elucidate the metabolic capacity of microbial communities on nitrogen and phosphorus cycle in river sediments under different heavy metal pollution backgrounds, this study collected samples in situ from two typical rivers, Tiquan River and Mianyuan River, with different heavy metal pollution levels. The microbial community structure and metabolic capacity of nitrogen and phosphorus cycles of sediment microorganisms were analyzed by high-throughput sequencing. The results showed that the major heavy metals in the sediments of the Tiquan River were Zn, Cu, Pb, and Cd with the contents of 103.80, 30.65, 25.95, and 0.44 mg/kg, respectively, while the major heavy metals in the sediments of the Mianyuan River were Cd and Cu with the contents of 0.60 and 27.81 mg/kg, respectively. The dominant bacteria Steroidobacter, Marmoricola, and Bacillus in the sediments of the Tiquan River had positive correlations with Cu, Zn, and Pb while are negatively correlated with Cd. Cd had a positive correlation with Rubrivivax, and Cu had a positive correlation with Gaiella in the sediments of the Mianyuan River. The dominant bacteria in the sediments of the Tiquan River showed strong phosphorus metabolic ability, and the dominant bacteria in the sediments of the Mianyuan River showed strong nitrogen metabolic ability, corresponding to the lower total phosphorus content in the Tiquan River and the higher total nitrogen content in the Mianyuan River. The results of this study showed that resistant bacteria became dominant bacteria due to the stress of heavy metals, and these bacteria showed strong nitrogen and phosphorus metabolic ability. It can provide theoretical support for the pollution prevention and control of small urban and rural rivers and have positive significance for maintaining the healthy development of rivers.
Collapse
Affiliation(s)
- Cheng Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuanyuan Feng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sikai Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shanshan Guo
- China 19th Metallurgical Corporation, Chengdu, 610031, China
| | - Zhuo Zeng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|