1
|
Chen Z, Mao K, Chen Z, Feng R, Du W, Zhang H, Tu C. Isothermal nucleic acid amplification for monitoring hand-foot-and-mouth disease: current status and future implications. Mikrochim Acta 2024; 192:31. [PMID: 39720958 DOI: 10.1007/s00604-024-06899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
With the global prevalence of the hand-foot-and-mouth disease (HFMD) epidemic, the development of reliable point-of-care testing (POCT) is crucial for the timely identification and prevention of outbreaks. Isothermal nucleic acid amplification techniques (INAATs) have attracted much attention because of their high efficiency for rapid diagnosis. In this work, we systematically summarize the current status of INAATs for HFMD and discuss advantages and drawbacks of various INAATs for HFMD. The INAATs for HFMD detection mainly include loop-mediated isothermal amplification (LAMP), simultaneous amplification and testing (SAT), and recombinase polymerase amplification (RPA). Among them, LAMP has excelled in several diagnostic metrics and has made significant progress in the field of POCT. SAT has been effective in overcoming the problem of RNA degradation. RPA is suited for on-site testing due to its rapid amplification rate and low reaction temperature. In addition, this study explores the potential of INAATs in lateral flow strips (LFS) test and microfluidic devices for HFMD. LFS is typically used for qualitative analysis and supports multiple detection. Microfluidics can integrate necessary processes of sample pre-processing, amplification, and signal output, enabling high-throughput qualitative or quantitative detection and demonstrating the potential of monitoring HFMD. We hope the current work will provide insights into INAATs for monitoring HFMD and serve as a reference for the implementation of on-site EV detection for public health.
Collapse
Affiliation(s)
- Zhen Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Chenglong Tu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China.
- Toxicity Testing Center, Guizhou Medical University, Guian New Region, 561113, China.
| |
Collapse
|
2
|
Chen X, Shi Y, Zhao Q, Wang Y, Yang X, Tan Y, Wang Y, Dong S, Xiao Z. One-step, rapid, nanoparticle-based biosensor platform for the simultaneous identification of hepatitis B virus and hepatitis C virus in clinical applications. BMC Microbiol 2024; 24:455. [PMID: 39506675 PMCID: PMC11539254 DOI: 10.1186/s12866-024-03610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES Viral hepatitis caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) infections remain a major global public health challenge, particularly in low- and middle-income countries. It is crucial to utilize a pointof-care (POC) testing platform that is sensitive, specific, rapid, and user-friendly for screening and diagnosis of the two infections. Here, a novel molecular diagnostic assay, integrating multiplex loop-mediated isothermal amplification with a gold nanoparticle-based lateral flow biosensor (mLAMP-AuNPs-LFB) was developed and applied for one-step, visual, rapid, sensitive, and specific identification of HBV and HCV. METHODS The AuNPs-based LFB was devised and constructed for the simultaneous detection of HBV and HCV. The HBV-LAMP and HCV-LAMP primers were designed against the S and 5'-untranslated region (5'-UTR) genes from the major HBV genotypes (B, C, D, B/C recombinant, and C/D recombinant) and HCV subtypes (1b, 2a, 3a, 3b, and 6a) in China, respectively. Our assay conditions, both multiplex-LAMP amplification temperature and time were optimized. The sensitivity and specificity of our assay were tested, and the feasibility of our assay was verified through clinical samples. RESULTS The AuNPs-based LFB used here was successfully manufactured according to our devise manual. The two unique independent primer pairs were successfully designed based on the S and 5'-UTR genes, respectively. The optimal mLAMP-AuNPs-LFB detection process, involving rapid nucleic acid isolation (10 min), mLAMP (63 °C for 35 min), and visual AuNPs-LFB interpretation (less than 2 min), could be completed within 50 min. The HBV&HCV-mLAMP-AuNPs-LFB assay can detect the target genes (HBV-S and HCV-5'-UTR) with as low as 20 copies of plasmid template per test, and the specificity was 100% for the experimental pathogens. CONCLUSIONS The preliminary results manifested that our mLAMP-AuNPs-LFB assay is a valuable tool and has tremendous potential as a POC testing approach for HBV and HCV identification, especially in undeveloped regions.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
- Department of Scientific Research, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Yuanfang Shi
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Qi Zhao
- Department of gastroenterology, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Yu Wang
- Department of Clinical Laboratory Centre, The First People's Hospital of Guiyang, Guiyang, Guizhou, 55004, People's Republic of China
| | - Xinggui Yang
- Experimental Center, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, 550004, People's Republic of China
| | - Yan Tan
- Clinical Laboratory, Guizhou Provincial Center for Clinical Laboratory, Guiyang, Guizhou, 550002, People's Republic of China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijng, 100020, People's Republic of China.
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People's Republic of China.
| | - Zhenghua Xiao
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
- Department of gastroenterology, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
| |
Collapse
|
3
|
Li R, Cao W, Yuan J, Li L, Zhou Y, Wang F, Wang Z, Tian X. Development of a visual detection method of porcine deltacoronavirus using loop-mediated isothermal amplification. Front Microbiol 2024; 15:1465923. [PMID: 39351303 PMCID: PMC11439776 DOI: 10.3389/fmicb.2024.1465923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The emergence of porcine deltacoronavirus (PDCoV) presents a significant threat to both human and animal health due to its ability to cause highly contagious enteric diseases. This underscores the crucial need for timely and accurate diagnosis to facilitate effective epidemiological investigation and clinical management. This research aimed to establish a visual detection method based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for PDCoV testing. In this study, six pairs of primers were designed according to the conserved sequences of PDCoV ORF1a/b genes. The primer sets and parameters that affect LAMP reaction were optimized. The visual RT-LAMP method was developed by incorporating methyl red into the optimized reaction system, it exclusively detected PDCoV without cross-reactivity with other viruses and the detection limits for PDCoV could reach 10 copies/μL. In comparison with RT-PCR for testing 132 clinical samples, the relative specificity and sensitivity of the visual RT-LAMP were found to be 99.2 and 100%, respectively, with a concordance rate of 99.2% and a kappa value of 0.959, indicating that the visual RT-LAMP is a reliable method for the application of PDCoV detection in clinical samples.
Collapse
Affiliation(s)
- Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Wenyan Cao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jiakang Yuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Linyue Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanlin Zhou
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Fangyu Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ziliang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
Parkhe VS, Tiwari AP. Gold nanoparticles-based biosensors: pioneering solutions for bacterial and viral pathogen detection-a comprehensive review. World J Microbiol Biotechnol 2024; 40:269. [PMID: 39009934 DOI: 10.1007/s11274-024-04072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Gold Nanoparticles (AuNPs) have gained significant attention in biosensor development due to their unique physical, chemical, and optical properties. When incorporated into biosensors, AuNPs offer several advantages, including a high surface area-to-volume ratio, excellent biocompatibility, ease of functionalization, and tunable optical properties. These properties make them ideal for the detection of various biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Traditional methods for detecting bacteria and viruses, such as RT-PCR and ELISA, often suffer from complexities, time consumption, and labor intensiveness. Consequently, researchers are continuously exploring novel devices to address these limitations and effectively detect a diverse array of infectious pathogenic microorganisms. In light of these challenges, nanotechnology has been instrumental in refining the architecture and performance of biosensors. By leveraging advancements in nanomaterials and strategies of biosensor fabrication the sensitivity and specificity of biosensors can be enhanced, enabling more precise detection of pathogenic bacteria and viruses. This review explores the versatility of AuNPs in detecting a variety of biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Furthermore, it evaluates recent advancements in AuNPs-based biosensors for the detection of pathogens, utilizing techniques such as optical biosensors, lateral flow immunoassays, colorimetric immunosensors, electrochemical biosensors, and fluorescence nanobiosensors. Additionally, the study discusses the existing challenges in the field and proposes future directions to improve AuNPs-based biosensors, with a focus on enhancing sensitivity, selectivity, and their utility in clinical and diagnostic applications.
Collapse
Affiliation(s)
- Vishakha Suryakant Parkhe
- Department of Medical Biotechnology and Stem Cells and Regenerative Medicine, Centre for Interdisciplinary Research, D.Y. Patil Education Society, Deemed to be University, Kolhapur, Maharashtra, 416006, India
| | - Arpita Pandey Tiwari
- Department of Medical Biotechnology and Stem Cells and Regenerative Medicine, Centre for Interdisciplinary Research, D.Y. Patil Education Society, Deemed to be University, Kolhapur, Maharashtra, 416006, India.
| |
Collapse
|
5
|
Cea-Callejo P, Arca-Lafuente S, Gomez-Lucia E, Doménech A, Biarnés M, Blanco A, Benítez L, Madrid R. An affordable detection system based on RT-LAMP and DNA-nanoprobes for avian metapneumovirus. Appl Microbiol Biotechnol 2024; 108:414. [PMID: 38985204 PMCID: PMC11236856 DOI: 10.1007/s00253-024-13243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
Airborne animal viral pathogens can rapidly spread and become a global threat, resulting in substantial socioeconomic and health consequences. To prevent and control potential epidemic outbreaks, accurate, fast, and affordable point-of-care (POC) tests are essential. As a proof-of-concept, we have developed a molecular system based on the loop-mediated isothermal amplification (LAMP) technique for avian metapneumovirus (aMPV) detection, an airborne communicable agent mainly infecting turkeys and chickens. For this purpose, a colorimetric system was obtained by coupling the LAMP technique with specific DNA-functionalized AuNPs (gold nanoparticles). The system was validated using 50 different samples (pharyngeal swabs and tracheal tissue) collected from aMPV-infected and non-infected chickens and turkeys. Viral detection can be achieved in about 60 min with the naked eye, with 100% specificity and 87.88% sensitivity for aMPV. In summary, this novel molecular detection system allows suitable virus testing in the field, with accuracy and limit of detection (LOD) values highly close to qRT-PCR-based diagnosis. Furthermore, this system can be easily scalable to a platform for the detection of other viruses, addressing the current gap in the availability of POC tests for viral detection in poultry farming. KEY POINTS: •aMPV diagnosis using RT-LAMP is achieved with high sensitivity and specificity. •Fifty field samples have been visualized using DNA-nanoprobe validation. •The developed system is a reliable, fast, and cost-effective option for POCT.
Collapse
Affiliation(s)
- Pablo Cea-Callejo
- BioAssays SL. Parque Científico de Madrid, Madrid, Spain
- Research Group of "Animal Viruses" of Complutense University of Madrid, Madrid, Spain
| | | | - Esperanza Gomez-Lucia
- Research Group of "Animal Viruses" of Complutense University of Madrid, Madrid, Spain
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
| | - Ana Doménech
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
| | - Mar Biarnés
- Centro de Sanidad Avícola de Cataluña y Aragón (CESAC), Reus, Spain
| | - Angela Blanco
- Centro de Sanidad Avícola de Cataluña y Aragón (CESAC), Reus, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), Madrid, Spain.
| | - Ricardo Madrid
- BioAssays SL. Parque Científico de Madrid, Madrid, Spain.
- Research Group of "Animal Viruses" of Complutense University of Madrid, Madrid, Spain.
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), Madrid, Spain.
| |
Collapse
|
6
|
Chen X, Dong S, Shi Y, Wu Z, Wu X, Zeng X, Yang X, Zhao Q, Xiao Z, Zhou Q. Biosensor-based multiple cross displacement amplification platform for visual and rapid identification of hepatitis C virus. J Med Virol 2024; 96:e29481. [PMID: 38425184 DOI: 10.1002/jmv.29481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Hepatitis C remains a global health problem, especially in poverty-stricken areas. A rapid and sensitive point-of-care (POC) diagnostic tool is critical for the early detection and timely treatment of hepatitis C virus (HCV) infection. Here, for the first time, we reported a novel molecular diagnostic assay, termed reverse transcription multiple cross displacement amplification integrated with a gold-nanoparticle-based lateral flow biosensor (RT-MCDA-AuNPs-LFB), which was developed for rapid, sensitive, specific, and visual identification of HCV. HCV-RT-MCDA induced rapid isothermal amplification through a specific primer set targeting the 5'untranslated region gene from the major HCV genotypes 1b, 2a, 3b, 6a, and 3a that are prevalent in China. The optimal reaction temperature and time for RT-MCDA-AuNPs-LFB were 68°C and 25 min, respectively. The limit of detection of the assay was 10 copies per test, and the specificity was 100% for the experimental strains. The whole detection procedure, including crude nucleic acid isolation (~5 min), RT-MCDA (68°C, 25 min), and visual AuNPs-LFB result confirmation (less than 2 min), was performed within 35 min. The preliminary results indicated that the HCV-RT-MCDA-AuNPs-LFB assay could be a valuable tool for sensitive, specific, visual, cost-saving, and rapid detection of HCV and has potential as a POC diagnostic platform for field screening and early clinical detection of HCV infection.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
- Department of Scientific Research, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Yuanfang Shi
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Zengguang Wu
- Department of Scientific Research, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Xue Wu
- Department of Scientific Research, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Xiaoyan Zeng
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Xinggui Yang
- Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People's Republic of China
| | - Qi Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Zhenghua Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Qingxue Zhou
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Shi Y, Zhou Q, Dong S, Zhao Q, Wu X, Yang P, Zeng X, Yang X, Tan Y, Luo X, Xiao Z, Chen X. Rapid, visual, label-based biosensor platform for identification of hepatitis C virus in clinical applications. BMC Microbiol 2024; 24:68. [PMID: 38413863 PMCID: PMC10900634 DOI: 10.1186/s12866-024-03220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVES In the current study, for the first time, we reported a novel HCV molecular diagnostic approach termed reverse transcription loop-mediated isothermal amplification integrated with a gold nanoparticles-based lateral flow biosensor (RT-LAMP-AuNPs-LFB), which we developed for rapid, sensitive, specific, simple, and visual identification of HCV. METHODS A set of LAMP primer was designed according to 5'untranslated region (5'UTR) gene from the major HCV genotypes 1b, 2a, 3b, 6a, and 3a, which are prevalent in China. The HCV-RT-LAMP-AuNPs-LFB assay conditions, including HCV-RT-LAMP reaction temperature and time were optimized. The sensitivity, specificity, and selectivity of our assay were evaluated in the current study. The feasibility of HCV-RT-LAMP-AuNPs-LFB was confirmed through clinical serum samples from patients with suspected HCV infections. RESULTS An unique set of HCV-RT-LAMP primers were successfully designed targeting on the 5'UTR gene. The optimal detection process, including crude nucleic acid extraction (approximately 5 min), RT-LAMP reaction (67℃, 30 min), and visual interpretation of AuNPs-LFB results (~ 2 min), could be performed within 40 min without specific instruments. The limit of detection was determined to be 20 copies per test. The HCV-RT-LAMP-AuNPs-LFB assay exhibited high specificity and anti-interference. CONCLUSIONS These preliminary results confirmed that the HCV-RT-LAMP-AuNPs-LFB assay is a sensitive, specific, rapid, visual, and cost-saving assay for identification of HCV. This diagnostic approach has great potential value for point-of-care (POC) diagnostic of HCV, especially in resource-challenged regions.
Collapse
Affiliation(s)
- Yuanfang Shi
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Qingxue Zhou
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zhejiang, 310008, People's Republic of China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Qi Zhao
- Department of gastroenterology, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Xue Wu
- Department of Scientific Research, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Peng Yang
- Clinical Laboratory, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Xiaoyan Zeng
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Xinggui Yang
- Experiment Center, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, 550004, People's Republic of China
| | - Yan Tan
- Clinical Laboratory, Guizhou Provincial Center for Clinical Laboratory, Guiyang, Guizhou, 550002, People's Republic of China
| | - Xinhua Luo
- Department of Infectious Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, People's Republic of China
| | - Zhenghua Xiao
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
- Department of gastroenterology, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
| | - Xu Chen
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
- Department of Scientific Research, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
| |
Collapse
|