1
|
Dutta S, Srivatsan SG. Enzymatic Functionalization of RNA Oligonucleotides by Terminal Uridylyl Transferase Using Fluorescent and Clickable Nucleotide Analogs. Chem Asian J 2024; 19:e202400475. [PMID: 38949615 DOI: 10.1002/asia.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
We report a systematic study on controlling the enzyme activity of a terminal uridylyl transferase (TUTase) called SpCID1, which provides methods to effect site-specific incorporation of a single modified nucleotide analog at the 3'-end of an RNA oligonucleotide (ON). Responsive heterocycle-modified fluorescent UTP probes that are useful in analyzing non-canonical nucleic acid structures and azide- and alkyne-modified UTP analogs that are compatible for chemoenzymatic functionalization were used as study systems. In the first strategy, we balanced the concentration of essential metal ion cofactors (Mg2+ and Mn2+ ions) to restrict the processivity of the enzyme, which gave a very good control on the incorporation of clickable nucleotide analogs. In the second approach, borate that complexes with 2' and 3' oxygen atoms of a ribose sugar was used as a reversibly binding chelator to block repeated addition of nucleotide analogs. Notably, in the presence of heterocycle-modified fluorescent UTPs, we obtained single-nucleotide incorporated RNA products in reasonable yields, while with clickable nucleotides yields were very good. Further, 3'-end azide- and alkyne-labeled RNA ONs were post-enzymatically functionalized by CuAAC and SPAAC reactions with fluorescent probes. These strategies broaden the scope of TUTase in site-specifically installing modifications of different types onto RNA for various applications.
Collapse
Affiliation(s)
- Swagata Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
2
|
Yu Z, Wang J. Strategies and procedures to generate chimeric DNA polymerases for improved applications. Appl Microbiol Biotechnol 2024; 108:445. [PMID: 39167106 PMCID: PMC11339088 DOI: 10.1007/s00253-024-13276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Chimeric DNA polymerase with notable performance has been generated for wide applications including DNA amplification and molecular diagnostics. This rational design method aims to improve specific enzymatic characteristics or introduce novel functions by fusing amino acid sequences from different proteins with a single DNA polymerase to create a chimeric DNA polymerase. Several strategies prove to be efficient, including swapping homologous domains between polymerases to combine benefits from different species, incorporating additional domains for exonuclease activity or enhanced binding ability to DNA, and integrating functional protein along with specific protein structural pattern to improve thermal stability and tolerance to inhibitors, as many cases in the past decade shown. The conventional protocol to develop a chimeric DNA polymerase with desired traits involves a Design-Build-Test-Learn (DBTL) cycle. This procedure initiates with the selection of a parent polymerase, followed by the identification of relevant domains and devising a strategy for fusion. After recombinant expression and purification of chimeric polymerase, its performance is evaluated. The outcomes of these evaluations are analyzed for further enhancing and optimizing the functionality of the polymerase. This review, centered on microorganisms, briefly outlines typical instances of chimeric DNA polymerases categorized, and presents a general methodology for their creation. KEY POINTS: • Chimeric DNA polymerase is generated by rational design method. • Strategies include domain exchange and addition of proteins, domains, and motifs. • Chimeric DNA polymerase exhibits improved enzymatic properties or novel functions.
Collapse
Affiliation(s)
- Zhuoxuan Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Steinek C, Guirao-Ortiz M, Stumberger G, Tölke AJ, Hörl D, Carell T, Harz H, Leonhardt H. Generation of densely labeled oligonucleotides for the detection of small genomic elements. CELL REPORTS METHODS 2024; 4:100840. [PMID: 39137784 PMCID: PMC11384094 DOI: 10.1016/j.crmeth.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The genome contains numerous regulatory elements that may undergo complex interactions and contribute to the establishment, maintenance, and change of cellular identity. Three-dimensional genome organization can be explored with fluorescence in situ hybridization (FISH) at the single-cell level, but the detection of small genomic loci remains challenging. Here, we provide a rapid and simple protocol for the generation of bright FISH probes suited for the detection of small genomic elements. We systematically optimized probe design and synthesis, screened polymerases for their ability to incorporate dye-labeled nucleotides, and streamlined purification conditions to yield nanoscopy-compatible oligonucleotides with dyes in variable arrays (NOVA probes). With these probes, we detect genomic loci ranging from genome-wide repetitive regions down to non-repetitive loci below the kilobase scale. In conclusion, we introduce a simple workflow to generate densely labeled oligonucleotide pools that facilitate detection and nanoscopic measurements of small genomic elements in single cells.
Collapse
Affiliation(s)
- Clemens Steinek
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Miguel Guirao-Ortiz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gabriela Stumberger
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Annika J Tölke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - David Hörl
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hartmann Harz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
4
|
Hernández-Rollán C, Ehrmann AK, Vlassis A, Kandasamy V, Nørholm MHH. Neq2X7: a multi-purpose and open-source fusion DNA polymerase for advanced DNA engineering and diagnostics PCR. BMC Biotechnol 2024; 24:17. [PMID: 38566117 PMCID: PMC10988834 DOI: 10.1186/s12896-024-00844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10-5 bp-1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity - an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.
Collapse
Affiliation(s)
- Cristina Hernández-Rollán
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Anja K Ehrmann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Arsenios Vlassis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Vijayalakshmi Kandasamy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Morten H H Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark.
- Mycropt ApS, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
5
|
Enzymatic Synthesis of Vancomycin-Modified DNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248927. [PMID: 36558056 PMCID: PMC9782525 DOI: 10.3390/molecules27248927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Many potent antibiotics fail to treat bacterial infections due to emergence of drug-resistant strains. This surge of antimicrobial resistance (AMR) calls in for the development of alternative strategies and methods for the development of drugs with restored bactericidal activities. In this context, we surmised that identifying aptamers using nucleotides connected to antibiotics will lead to chemically modified aptameric species capable of restoring the original binding activity of the drugs and hence produce active antibiotic species that could be used to combat AMR. Here, we report the synthesis of a modified nucleoside triphosphate equipped with a vancomycin moiety on the nucleobase. We demonstrate that this nucleotide analogue is suitable for polymerase-mediated synthesis of modified DNA and, importantly, highlight its compatibility with the SELEX methodology. These results pave the way for bacterial-SELEX for the identification of vancomycin-modified aptamers.
Collapse
|
6
|
Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology. Int J Mol Sci 2022; 23:ijms232314969. [PMID: 36499296 PMCID: PMC9738464 DOI: 10.3390/ijms232314969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Thermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology. The broad application of these XNA molecules in the production of novel drugs, materials, and catalysts greatly relies on the capability of enzymatic synthesis, reverse transcription, and amplification of them, which have been partially achieved with natural or artificially tailored thermophilic nucleic acid polymerases. In this review, we first systematically summarize representative thermophilic and hyperthermophilic polymerases that have been extensively studied and utilized, followed by the introduction of methods and approaches in the engineering of these polymerases for the efficient synthesis, reverse transcription, and amplification of XNAs. The application of XNAs facilitated by these polymerases and their mutants is then discussed. In the end, a perspective for the future direction of further development and application of unnatural nucleic acid polymerases is provided.
Collapse
|
7
|
Selective RNA Labeling by RNA-Compatible Type II Restriction Endonuclease and RNA-Extending DNA Polymerase. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101674. [PMID: 36295109 PMCID: PMC9605241 DOI: 10.3390/life12101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
RNAs not only offer valuable information regarding our bodies but also regulate cellular functions, allowing for their specific manipulations to be extensively explored for many different biological and clinical applications. In particular, rather than temporary hybridization, permanent labeling is often required to introduce functional tags to target RNAs; however, direct RNA labeling has been revealed to be challenging, as native RNAs possess unmodifiable chemical moieties or indefinable dummy sequences at the ends of their strands. In this work, we demonstrate the combinatorial use of RNA-compatible restriction endonucleases (REs) and RNA-extending polymerases for sequence-specific RNA cleavage and subsequent RNA functionalization. Upon the introduction of complementary DNAs to target RNAs, Type II REs, such as AvrII and AvaII, could precisely cut the recognition site in the RNA-DNA heteroduplexes with exceptionally high efficiency. Subsequently, the 3′ ends of the cleaved RNAs were selectively and effectively modified when Therminator DNA polymerase template-dependently extended the RNA primers with a variety of modified nucleotides. Based on this two-step RNA labeling, only the target RNA could be chemically labeled with the desired moieties, such as bioconjugation tags or fluorophores, even in a mixture of various RNAs, demonstrating the potential for efficient and direct RNA modifications.
Collapse
|
8
|
Gomez-Raya-Vilanova MV, Leskinen K, Bhattacharjee A, Virta P, Rosenqvist P, Smith JLR, Bayfield O, Homberger C, Kerrinnes T, Vogel J, Pajunen M, Skurnik M. The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucleic Acids Res 2022; 50:3985-3997. [PMID: 35357498 PMCID: PMC9023294 DOI: 10.1093/nar/gkac203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Yersinia phage YerA41 is morphologically similar to jumbo bacteriophages. The isolated genomic material of YerA41 could not be digested by restriction enzymes, and used as a template by conventional DNA polymerases. Nucleoside analysis of the YerA41 genomic material, carried out to find out whether this was due to modified nucleotides, revealed the presence of a ca 1 kDa substitution of thymidine with apparent oligosaccharide character. We identified and purified the phage DNA polymerase (DNAP) that could replicate the YerA41 genomic DNA even without added primers. Cryo-electron microscopy (EM) was used to characterize structural details of the phage particle. The storage capacity of the 131 nm diameter head was calculated to accommodate a significantly longer genome than that of the 145 577 bp genomic DNA of YerA41 determined here. Indeed, cryo-EM revealed, in contrast to the 25 Å in other phages, spacings of 33-36 Å between shells of the genomic material inside YerA41 heads suggesting that the heavily substituted thymidine increases significantly the spacing of the DNA packaged inside the capsid. In conclusion, YerA41 appears to be an unconventional phage that packages thymidine-modified genomic DNA into its capsids along with its own DNAP that has the ability to replicate the genome.
Collapse
Affiliation(s)
- Miguel V Gomez-Raya-Vilanova
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
| | - Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
| | - Arnab Bhattacharjee
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
- Drug Discovery, Herantis Pharma Ltd. Bertel Jungin Aukio 1, 02600 Espoo, Finland
| | - Pasi Virta
- Department of Chemistry, 20014 University of Turku, Turku, Finland
| | - Petja Rosenqvist
- Department of Chemistry, 20014 University of Turku, Turku, Finland
| | - Jake L R Smith
- York Structural Biology Laboratory, University of York, YO10 5DD York, United Kingdom
| | - Oliver W Bayfield
- York Structural Biology Laboratory, University of York, YO10 5DD York, United Kingdom
| | - Christina Homberger
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Tobias Kerrinnes
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Maria I Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
- Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| |
Collapse
|
9
|
Xue Y, Braslavsky I, Quake SR. Temperature effect on polymerase fidelity. J Biol Chem 2021; 297:101270. [PMID: 34695416 PMCID: PMC8592868 DOI: 10.1016/j.jbc.2021.101270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
The discovery of extremophiles helped enable the development of groundbreaking technology such as PCR. Temperature variation is often an essential step of these technology platforms, but the effect of temperature on the error rate of polymerases from different origins is underexplored. Here, we applied high-throughput sequencing to profile the error rates of DNA polymerases from psychrophilic, mesophilic, and thermophilic origins with single-molecule resolution. We found that the reaction temperature substantially increases substitution and deletion error rates of psychrophilic and mesophilic DNA polymerases. Our motif analysis shows that the substitution error profiles cluster according to phylogenetic similarity of polymerases, not the reaction temperature, thus suggesting that the reaction temperature increases the global error rate of polymerases independent of the sequence context. Intriguingly, we also found that the DNA polymerase I of psychrophilic bacteria exhibits higher polymerization activity than its mesophilic ortholog across all temperature ranges, including down to -19 °C, which is well below the freezing temperature of water. Our results provide a useful reference for how the reaction temperature, a crucial parameter of biochemistry, can affect DNA polymerase fidelity in organisms adapted to a wide range of thermal environments.
Collapse
Affiliation(s)
- Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, California, USA; Department of Applied Physics, Stanford University, Stanford, California, USA; Chan Zuckerberg Biohub, Mission Bay, California, USA.
| |
Collapse
|
10
|
Li Q, Maola VA, Chim N, Hussain J, Lozoya-Colinas A, Chaput JC. Synthesis and Polymerase Recognition of Threose Nucleic Acid Triphosphates Equipped with Diverse Chemical Functionalities. J Am Chem Soc 2021; 143:17761-17768. [PMID: 34637287 DOI: 10.1021/jacs.1c08649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Expanding the chemical space of evolvable non-natural genetic polymers (XNAs) to include functional groups that enhance protein target binding affinity offers a promising route to therapeutic aptamers with high biological stability. Here we describe the chemical synthesis and polymerase recognition of 10 chemically diverse functional groups introduced at the C-5 position of α-l-threofuranosyl uridine nucleoside triphosphate (tUTP). We show that the set of tUTP substrates is universally recognized by the laboratory-evolved polymerase Kod-RSGA. Insights into the mechanism of TNA synthesis were obtained from a high-resolution X-ray crystal structure of the postcatalytic complex bound to the primer-template duplex. A structural analysis reveals a large cavity in the enzyme active site that can accommodate the side chain of C-5-modified tUTP substrates. Our findings expand the chemical space of evolvable nucleic acid systems by providing a synthetic route to artificial genetic polymers that are uniformly modified with diversity-enhancing functional groups.
Collapse
|
11
|
Medina E, Yik EJ, Herdewijn P, Chaput JC. Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology. ACS Synth Biol 2021; 10:1429-1437. [PMID: 34029459 DOI: 10.1021/acssynbio.1c00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Artificial genetic polymers (XNAs) have enormous potential as new materials for synthetic biology, biotechnology, and molecular medicine; yet, very little is known about the biochemical properties of XNA polymerases that have been developed to synthesize and reverse-transcribe XNA polymers. Here, we compare the substrate specificity, thermal stability, reverse transcriptase activity, and fidelity of laboratory-evolved polymerases that were established to synthesize RNA, 2'-fluoroarabino nucleic acid (FANA), arabino nucleic acid (ANA), hexitol nucleic acid (HNA), threose nucleic acid (TNA), and phosphonomethylthreosyl nucleic acid (PMT). We find that the mutations acquired to facilitate XNA synthesis increase the tolerance of the enzymes for sugar-modified substrates with some sacrifice to protein-folding stability. Bst DNA polymerase was found to have weak reverse transcriptase activity on ANA and uncontrolled reverse transcriptase activity on HNA, differing from its known recognition of FANA and TNA templates. These data benchmark the activity of current XNA polymerases and provide opportunities for generating new polymerase variants that function with greater activity and substrate specificity.
Collapse
Affiliation(s)
| | | | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Herestraat 49-bus 1041, 3000 Leuven, Belgium
| | | |
Collapse
|
12
|
Abstract
Genomes can be viewed as constantly updated memory systems where information propagated in cells is refined over time by natural selection. This process, commonly known as heredity and evolution, has been the sole domain of DNA since the origin of prokaryotes. Now, some 3.5 billion years later, the pendulum of discovery has swung in a new direction, with carefully trained practitioners enabling the replication and evolution of "xeno-nucleic acids" or "XNAs"-synthetic genetic polymers in which the natural sugar found in DNA and RNA has been replaced with a different type of sugar moiety. XNAs have attracted significant attention as new polymers for synthetic biology, biotechnology, and medicine because of their unique physicochemical properties that may include increased biological stability, enhanced chemical stability, altered helical geometry, or even elevated thermodynamics of Watson-Crick base pairing.This Account describes our contribution to the field of synthetic biology, where chemical synthesis and polymerase engineering have allowed my lab and others to extend the concepts of heredity and evolution to synthetic genetic polymers with backbone structures that are distinct from those found in nature. I will begin with a discussion of α-l-threofuranosyl nucleic acid (TNA), a specific type of XNA that was chosen as a model system to represent any XNA system. I will then proceed to discuss advances in organic chemistry that were made to enable the synthesis of gram quantities of TNA phosphoramidites and nucleoside triphosphates, the monomers used for solid-phase and polymerase-mediated TNA synthesis, respectively. Next, I will recount our development of droplet-based optical sorting (DrOPS), a single-cell microfluidic technique that was established to evolve XNA polymerases in the laboratory. This section will conclude with structural insights that have been gained by solving X-ray crystal structures of a laboratory-evolved TNA polymerase and a natural DNA polymerase that functions with general reverse transcriptase activity on XNA templates.The final passage of this Account will examine the role that XNAs have played in synthetic biology by highlighting examples in which engineered polymerases have enabled the evolution of biologically stable affinity reagents (aptamers) and catalysts (XNAzymes) as well as the storage and retrieval of binary information encoded in electronic word and picture file formats. Because these examples provide only a glimpse of what the future may have in store for XNA, I will conclude the Account with my thoughts on how synthetic genetic polymers could help drive new innovations in synthetic biology and molecular medicine.
Collapse
Affiliation(s)
- John C. Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
13
|
Ouaray Z, Benner SA, Georgiadis MM, Richards NGJ. Building better polymerases: Engineering the replication of expanded genetic alphabets. J Biol Chem 2020; 295:17046-17059. [PMID: 33004440 PMCID: PMC7863901 DOI: 10.1074/jbc.rev120.013745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
DNA polymerases are today used throughout scientific research, biotechnology, and medicine, in part for their ability to interact with unnatural forms of DNA created by synthetic biologists. Here especially, natural DNA polymerases often do not have the "performance specifications" needed for transformative technologies. This creates a need for science-guided rational (or semi-rational) engineering to identify variants that replicate unnatural base pairs (UBPs), unnatural backbones, tags, or other evolutionarily novel features of unnatural DNA. In this review, we provide a brief overview of the chemistry and properties of replicative DNA polymerases and their evolved variants, focusing on the Klenow fragment of Taq DNA polymerase (Klentaq). We describe comparative structural, enzymatic, and molecular dynamics studies of WT and Klentaq variants, complexed with natural or noncanonical substrates. Combining these methods provides insight into how specific amino acid substitutions distant from the active site in a Klentaq DNA polymerase variant (ZP Klentaq) contribute to its ability to replicate UBPs with improved efficiency compared with Klentaq. This approach can therefore serve to guide any future rational engineering of replicative DNA polymerases.
Collapse
Affiliation(s)
- Zahra Ouaray
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom; Foundation for Applied Molecular Evolution, Alachua, Florida, USA.
| |
Collapse
|
14
|
Zatopek KM, Alpaslan E, Evans T, Sauguet L, Gardner A. Novel ribonucleotide discrimination in the RNA polymerase-like two-barrel catalytic core of Family D DNA polymerases. Nucleic Acids Res 2020; 48:12204-12218. [PMID: 33137176 PMCID: PMC7708050 DOI: 10.1093/nar/gkaa986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Family D DNA polymerase (PolD) is the essential replicative DNA polymerase for duplication of most archaeal genomes. PolD contains a unique two-barrel catalytic core absent from all other DNA polymerase families but found in RNA polymerases (RNAPs). While PolD has an ancestral RNA polymerase catalytic core, its active site has evolved the ability to discriminate against ribonucleotides. Until now, the mechanism evolved by PolD to prevent ribonucleotide incorporation was unknown. In all other DNA polymerase families, an active site steric gate residue prevents ribonucleotide incorporation. In this work, we identify two consensus active site acidic (a) and basic (b) motifs shared across the entire two-barrel nucleotide polymerase superfamily, and a nucleotide selectivity (s) motif specific to PolD versus RNAPs. A novel steric gate histidine residue (H931 in Thermococcus sp. 9°N PolD) in the PolD s-motif both prevents ribonucleotide incorporation and promotes efficient dNTP incorporation. Further, a PolD H931A steric gate mutant abolishes ribonucleotide discrimination and readily incorporates a variety of 2' modified nucleotides. Taken together, we construct the first putative nucleotide bound PolD active site model and provide structural and functional evidence for the emergence of DNA replication through the evolution of an ancestral RNAP two-barrel catalytic core.
Collapse
Affiliation(s)
| | - Ece Alpaslan
- New England Biolabs, 240 County Road Ipswich, MA 01938, USA
| | - Thomas C Evans
- New England Biolabs, 240 County Road Ipswich, MA 01938, USA
| | - Ludovic Sauguet
- Institut Pasteur, Unité de Dynamique Structurale des Macromolécules, 75015 Paris, France
| | | |
Collapse
|
15
|
Flamme M, Röthlisberger P, Levi-Acobas F, Chawla M, Oliva R, Cavallo L, Gasser G, Marlière P, Herdewijn P, Hollenstein M. Enzymatic Formation of an Artificial Base Pair Using a Modified Purine Nucleoside Triphosphate. ACS Chem Biol 2020; 15:2872-2884. [PMID: 33090769 DOI: 10.1021/acschembio.0c00396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expansion of the genetic alphabet with additional, unnatural base pairs (UBPs) is an important and long-standing goal in synthetic biology. Nucleotides acting as ligands for the coordination of metal cations have advanced as promising candidates for such an expansion of the genetic alphabet. However, the inclusion of artificial metal base pairs in nucleic acids mainly relies on solid-phase synthesis approaches, and very little is known about polymerase-mediated synthesis. Herein, we report the selective and high yielding enzymatic construction of a silver-mediated base pair (dImC-AgI-dPurP) as well as a two-step protocol for the synthesis of DNA duplexes containing such an artificial metal base pair. Guided by DFT calculations, we also shed light into the mechanism of formation of this artificial base pair as well as into the structural and energetic preferences. The enzymatic synthesis of the dImC-AgI-dPurP artificial metal base pair provides valuable insights for the design of future, more potent systems aiming at expanding the genetic alphabet.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
- Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l’École de Médecine, 75006 Paris, France
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900 Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900 Saudi Arabia
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Philippe Marlière
- University of Paris Saclay, CNRS, iSSB, UEVE, Genopole, 5 Rue Henri Desbrueres, 91030 Evry, France
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat, 3000 Leuven, Belgium
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
16
|
Flood D, Knouse KW, Vantourout JC, Kitamura S, Sanchez BB, Sturgell EJ, Chen JS, Wolan DW, Baran PS, Dawson PE. Synthetic Elaboration of Native DNA by RASS (SENDR). ACS CENTRAL SCIENCE 2020; 6:1789-1799. [PMID: 33145415 PMCID: PMC7596865 DOI: 10.1021/acscentsci.0c00680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 05/11/2023]
Abstract
Controlled site-specific bioconjugation through chemical methods to native DNA remains an unanswered challenge. Herein, we report a simple solution to achieve this conjugation through the tactical combination of two recently developed technologies: one for the manipulation of DNA in organic media and another for the chemoselective labeling of alcohols. Reversible adsorption of solid support (RASS) is employed to immobilize DNA and facilitate its transfer into dry acetonitrile. Subsequent reaction with P(V)-based Ψ reagents takes place in high yield with exquisite selectivity for the exposed 3' or 5' alcohols on DNA. This two-stage process, dubbed SENDR for Synthetic Elaboration of Native DNA by RASS, can be applied to a multitude of DNA conformations and sequences with a variety of functionalized Ψ reagents to generate useful constructs.
Collapse
Affiliation(s)
- Dillon
T. Flood
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kyle W. Knouse
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Julien C. Vantourout
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Seiya Kitamura
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Brittany B. Sanchez
- Automated
Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Emily J. Sturgell
- Automated
Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jason S. Chen
- Automated
Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dennis W. Wolan
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Philip E. Dawson
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
17
|
Beck KM, Krogh MB, Hornum M, Ludford PT, Tor Y, Nielsen P. Double-headed nucleotides as xeno nucleic acids: information storage and polymerase recognition. Org Biomol Chem 2020; 18:7213-7223. [PMID: 32909574 PMCID: PMC7517788 DOI: 10.1039/d0ob01426e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Xeno nucleic acids (XNAs) are artificial genetic systems based on sugar-modified nucleotides. Herein, we investigate double-headed nucleotides as a new XNA. A new monomer, AT, is presented, and together with previous double-headed nucleotide monomers, new nucleic acid motifs consisting of up to five consecutive A·T base pairs have been obtained. Sections composed entirely of double-headed nucleotides are well-tolerated within a DNA duplex and can condense the genetic information. For instance, a 13-mer duplex is condensed to an 11-mer modified duplex containing four double-headed nucleotides while simultaneously improving duplex thermal stability with +14.0 °C. Also, the transfer of information from double-headed to natural nucleotides by DNA polymerases has been examined. The first double-headed nucleoside triphosphate was prepared but could not be recognized and incorporated by the tested DNA polymerases. On the other hand, it proved possible for Therminator DNA polymerase to transfer the information of a double-headed nucleotide in a template sequence to natural DNA under controlled conditions.
Collapse
Affiliation(s)
- Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Marie B Krogh
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Paul T Ludford
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| |
Collapse
|
18
|
Abstract
DNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates. Moving beyond natural genetic polymers requires sophisticated enzyme-engineering technologies that can be used to direct the evolution of engineered polymerases that function with tailor-made activities. Such efforts are expected to uniquely drive emerging applications in synthetic biology by enabling the synthesis, replication, and evolution of synthetic genetic polymers with new physicochemical properties.
Collapse
|
19
|
Nikoomanzar A, Vallejo D, Yik EJ, Chaput JC. Programmed Allelic Mutagenesis of a DNA Polymerase with Single Amino Acid Resolution. ACS Synth Biol 2020; 9:1873-1881. [PMID: 32531152 DOI: 10.1021/acssynbio.0c00236] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most DNA polymerase libraries sample unknown portions of mutational space and are constrained by the limitations of random mutagenesis. Here we describe a programmed allelic mutagenesis (PAM) strategy to comprehensively evaluate all possible single-point mutations in the entire catalytic domain of a replicative DNA polymerase. By applying the PAM strategy with ultrafast high-throughput screening, we show how DNA polymerases can be mapped for allelic mutations that exhibit enhanced activity for unnatural nucleic acid substrates. We suggest that comprehensive missense mutational scans may aid the discovery of specificity determining residues that are necessary for reprogramming the biological functions of natural DNA polymerases.
Collapse
Affiliation(s)
- Ali Nikoomanzar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Derek Vallejo
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Eric J. Yik
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - John C. Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
- Department of Chemistry, University of California, Irvine, California 92697-3958, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
20
|
Zhukov SA, Fokina AA, Stetsenko DA, Vasilyeva SV. Methods for Molecular Evolution of Polymerases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|