1
|
Xiong H, Zhang X, Sun J, Xue Y, Yu W, Mou S, Hsia KJ, Wan H, Wang P. Recent advances in biosensors detecting biomarkers from exhaled breath and saliva for respiratory disease diagnosis. Biosens Bioelectron 2025; 267:116820. [PMID: 39374569 DOI: 10.1016/j.bios.2024.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
The global demand for rapid and non-invasive diagnostic methods for respiratory diseases has significantly intensified due to the wide spread of respiratory infectious diseases. Recent advancements in respiratory disease diagnosis through the analysis of exhaled breath and saliva has attracted great attention all over the world. Among various analytical methods, biosensors can offer non-invasive, efficient, and cost-effective diagnostic capabilities, emerging as promising tools in this area. This review intends to provide a comprehensive overview of various biosensors for the detection of respiratory disease related biomarkers in exhaled breath and saliva. Firstly, the characteristics of exhaled breath and saliva, including their generation, composition, and relevant biomarkers are introduced. Subsequently, the design and application of various biosensors for detecting these biomarkers are presented, along with the innovative materials employed as sensitive components. Different types of biosensors are reviewed, including electrochemical, optical, piezoelectric, semiconductor, and other novel biosensors. At last, the challenges, limitations, and future trends of these biosensors are discussed. It is anticipated that biosensors will play a significant role in respiratory disease diagnosis in the future.
Collapse
Affiliation(s)
- Hangming Xiong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Xiaojing Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jiaying Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingying Xue
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Weijie Yu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Shimeng Mou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - K Jimmy Hsia
- Schools of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Feng Z, Wang K, Huang J, Liu Z, Fu J, Shi J, Ma X, Li L, Wu Q. Exploration of the Active Components and Mechanism of Jiegeng (Platycodonis Radix) in the Treatment of Influenza Virus Pneumonia Through Network Pharmacology Analysis and Experimental Verification. Chem Biol Drug Des 2024; 104:e70007. [PMID: 39523498 DOI: 10.1111/cbdd.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/17/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to explore the pathogenesis of platycodin D and luteolin, which are both active components in Jiegeng (Platycodonis Radix), in the treatment of influenza virus pneumonia through network pharmacology analysis combined with experimental verification. The bioactive components of Jiegeng (Platycodonis Radix) were screened by TCMSP and literature mining, and the results were standardized via the UniProt database. The action targets for the disease were identified from databases including OMIM, GeneCards, TTD, DisGeNET, and PharmGKB. Then, the visualized key target regulatory network and protein-protein interaction (PPI) network for the active components were established using Cytoscape3.7.1 software. The findings were illustrated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The intervention concentrations of platycodin D and luteolin were screened by the CCK8 method, and the important signaling pathways of platycodin D and luteolin for treating influenza virus pneumonia were verified by RT-qPCR and Western blot tests. From data mining, 89 common drug-disease targets were screened out, and five major active components of Jiegeng (Platycodonis Radix), including platycodin D and luteolin, were obtained. Besides, 11 therapeutic targets including IL-17, IL-6, TNF-α, JUN, and MAKP1 were identified by PPI network analysis. GO and KEGG enrichment analyses showed that the pathways most related to the mechanisms of Jiegeng (Platycodonis Radix) against influenza virus pneumonia included the TNF and IL-17 signaling pathways and apoptosis. In vitro experiments demonstrated that the model group exhibited a notable elevation in mRNA levels of IL-6, IL-17, TNF-α, JUN, MAPK1, and the IL-17/-acting protein ratio, as compared to the control group (p < 0.05). In contrast to the model group, the IL-6, IL-17, TNF-α, JUN, MAPK1 mRNA expression levels, and the IL-17 protein ratio in both the platycodin D group and luteolin group were considerably decreased (p < 0.05). Combined with network pharmacology and experimental verification, this study revealed that platycodin D and luteolin in Jiegeng (Platycodonis Radix) may treat influenza virus pneumonia by regulating inflammation through the IL-17 signaling pathway.
Collapse
Affiliation(s)
- Zhiying Feng
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kangyu Wang
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiawang Huang
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhuolin Liu
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingmin Fu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianing Shi
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyue Ma
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ling Li
- Department of Postgraduate, Graduate School, College of Integrated Traditional Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qiong Wu
- Department of Traditional Chinese Medicine, College of Humanities and Management, Changsha, Hunan, China
| |
Collapse
|
3
|
da Costa HHM, Silva VO, Amorim GC, Guereschi MG, Sergio LM, Gomes CHR, Hong MA, de Oliveira EL, Brígido LFDM, Lindoso JAL, Prudencio CR. Assessment of an in-house IgG ELISA targeting SARS-CoV-2 RBD: Applications in infected and vaccinated individuals. J Immunol Methods 2024; 530:113683. [PMID: 38759864 DOI: 10.1016/j.jim.2024.113683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The study evoluated an in-house Spike Receptor Binding Domain Enzyme-Linked Immunosorbent Assay (RBD-IgG-ELISA) for detecting SARS-CoV-2 IgG antibodies in infected and vaccinated individuals. The assay demonstrated a sensitivity of 91%, specificity of 99.25%, and accuracy of 95.13%. Precision and reproducibility were highly consistent. The RBD-IgG-ELISA was able to detect 96.25% of Polymerase chain reaction (PCR) confirmed cases for SARS-CoV-2 infection, demonstrating positive and negative predictive values of 99,18% and 91,69%, respectively. In an epidemiological survey, ELISA, lateral flow immunochromatographic assay (LFIA), and electrochemiluminescence immunoassay (ECLIA) exhibited diagnostic sensitivities of 68.29%, 63.41%, and 70.73%, respectively, along with specificities of 82.93%, 80.49%, and 80.49%, respectively. Agreement between RBD-IgG-ELISA/PCR was moderate (k index 0.512). However, good agreement between different assays (RBD-IgG-ELISA/LFIA k index 0.875, RBD-IgG-ELISA/ECLIA k index 0.901). Test performance on individuals' samples were inferior due to seroconversion time and chronicity. The IgG-RBD-ELISA assay demonstrated its effectiveness in monitoring antibody levels among healthcare professionals, revealing significant differences both before and after the administration of the third vaccine dose, with heightened protection levels observed following the third dose in five Coronavirus disease (COVID-19) vaccine regimens. In conclusion, the RBD-IgG-ELISA exhibits high reproducibility, specificity, and sensitivity, making it a suitable assay validated for serosurveillance and for obtaining information about COVID-19 infections or vaccinations.
Collapse
Affiliation(s)
- Hernan Hermes Monteiro da Costa
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil; Program Interunits in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Valeria Oliveira Silva
- Virology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil; Postgraduate Program in Public Health Surveillance of the Disease Control Coordination, State Health Department, São Paulo 02146-901, Brazil
| | - Gustavo Carvalho Amorim
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil; Program Interunits in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil
| | | | | | | | - Marisa Ailin Hong
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil
| | | | | | - Jose Angelo Lauletta Lindoso
- Institute of Infectology Emilio Ribas, São Paulo 01246-900, Brazil; Department of Infectious Disease, School of Medicine, University of São Paulo, São Paulo 05403-000, Brazil; Laboratory of Protozoology, Institute of Tropical Medicine, São Paulo 05403-000, Brazil
| | - Carlos Roberto Prudencio
- Immunology Center, Institute Adolfo Lutz, São Paulo 01246-902, Brazil; Program Interunits in Biotechnology, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
4
|
Sam S, Ofoghi H, Farahmand B. Developing of SARS-CoV-2 fusion protein expressed in E. coli Shuffle T7 for enhanced ELISA detection sensitivity - an integrated experimental and bioinformatic approach. J Biomol Struct Dyn 2024:1-16. [PMID: 38234051 DOI: 10.1080/07391102.2024.2302941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
In the recent COVID-19 pandemic, developing effective diagnostic assays is crucial for controlling the spread of the SARS-CoV-2 virus. Multi-domain fusion proteins are a promising approach to detecting SARS-CoV-2 antibodies. In this study, we designed an antigen named CoV2-Pro, containing two RBD domains from SARS-CoV-2 Omicron and Delta variants and one CTD domain of the nucleoprotein in the order of RBD-RBD-N, linked by a super flexible glycine linker. We evaluated the suitability of E. coli Shuffle T7 and BL21 (DE3) strain for expressing CoV2-Pro. Moreover, Bioinformatic studies were conducted first to analyze the tertiary structure of CoV2-Pro. The CoV2-Pro sequences were cloned into a pET-32b (+) vector for expression in E. coli Shuffle T7 and BL21 (DE3). SDS-PAGE and western blot confirmed the protein expression and folding structure. The CoV2-Pro-TRX was purified by Ni-NTA affinity chromatography. Dot blot analysis was performed to evaluate the antigenic characterization of the CoV2-Pro. A molecular docking simulation was conducted to assess the binding affinity of CoV2-Pro with LY-COV555 (Bamlanivimab) monoclonal antibody. A molecular dynamic was performed to analyze the stability of the structure. Bioinformatic and experimental studies revealed a stable conformational 3D structure of the CoV2-Pro. The CoV2-Pro interacted with SARS-CoV-2 antibodies, confirming the correct antigenic structure. We assert with confidence that CoV2-Pro is ideal for developing an ELISA assay for precise diagnosis and rigorous vaccine evaluation during the COVID-19 prevalence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sohrab Sam
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Liu Y, Lu T, Li C, Wang X, Chen F, Yue L, Jiang C. Comparative transcriptome analysis of SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-229E identifying potential IFN/ISGs targets for inhibiting virus replication. Front Med (Lausanne) 2023; 10:1267903. [PMID: 38143441 PMCID: PMC10739311 DOI: 10.3389/fmed.2023.1267903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Since its outbreak in December 2019, SARS-CoV-2 has spread rapidly across the world, posing significant threats and challenges to global public health. SARS-CoV-2, together with SARS-CoV and MERS-CoV, is a highly pathogenic coronavirus that contributes to fatal pneumonia. Understanding the similarities and differences at the transcriptome level between SARS-CoV-2, SARS-CoV, as well as MERS-CoV is critical for developing effective strategies against these viruses. Methods In this article, we comparatively analyzed publicly available transcriptome data of human cell lines infected with highly pathogenic SARS-CoV-2, SARS-CoV, MERS-CoV, and lowly pathogenic HCoV-229E. The host gene expression profiles during human coronavirus (HCoV) infections were generated, and the pathways and biological functions involved in immune responses, antiviral efficacy, and organ damage were intensively elucidated. Results Our results indicated that SARS-CoV-2 induced a stronger immune response versus the other two highly pathogenic HCoVs. Specifically, SARS-CoV-2 induced robust type I and type III IFN responses, marked by higher upregulation of type I and type III IFNs, as well as numerous interferon-stimulated genes (ISGs). Further Ingenuity Pathway Analysis (IPA) revealed the important role of ISGs for impeding SARS-CoV-2 infection, and the interferon/ISGs could be potential targets for therapeutic interventions. Moreover, our results uncovered that SARS-CoV-2 infection was linked to an enhanced risk of multi-organ toxicity in contrast to the other two highly pathogenic HCoVs. Discussion These findings provided valuable insights into the pathogenic mechanism of SARS-CoV-2, which showed a similar pathological feature but a lower fatality rate compared to SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
- Yuzhuang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tianyi Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiaotong Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| | - Liya Yue
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Samimi Hashjin A, Sardari S, Rostamian M, Ahmadi K, Madanchi H, Khalaj V. A new multi-epitope vaccine candidate based on S and M proteins is effective in inducing humoral and cellular immune responses against SARS-CoV-2 variants: an in silico design approach. J Biomol Struct Dyn 2023; 42:12505-12522. [PMID: 37874075 DOI: 10.1080/07391102.2023.2270699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Available COVID-19 vaccines are primarily based on SARS-CoV-2 spike protein (S). Due to the emergence of new SARS-CoV-2 variants, other virus proteins with more conservancy, such as Membrane (M) protein, are desired for vaccine development. The reverse vaccinology approach was employed to design a multi-epitope SARS-CoV-2 vaccine candidate based on S and M proteins. Cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), linear B-lymphocyte (LBL) and conformational B-lymphocyte (CBL) of S and M proteins were predicted and screened to choose the best epitopes. A multi-epitope vaccine candidate was constructed using selected CTL, HTL and LBL epitopes. The efficiency of the construct in binding to some immune receptors and an RBD-potent neutralizing monoclonal antibody (bebtelovimab) was predicted, and its immunogenicity was simulated. Finally, in silico cloning of the constructed gene was performed. The potency of our construct as a SARS-CoV-2 vaccine was validated using several bioinformatics tools. The simulation results showed that the construct can induce both cellular and humoral immune responses by producing appropriate cytokines, and it can even create an excellent immune memory response. Furthermore, the designed construct interacts with innate immune receptors such as TLR2 and TLR4 and the terminal variable domain of bebtelovimab with high affinity. We developed a multi-epitope construct based on the S and M proteins of the SARS-CoV-2 virus with high immunogenicity potential using the most up-to-date immunoinformatics and computational biology approaches. The actual efficiency of this multi-epitope vaccine should be further evaluated via in vitro and in vivo studies.Communicated by Ramaswamy H. Sarma.
Collapse
MESH Headings
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/chemistry
- Humans
- Immunity, Humoral/immunology
- Immunity, Cellular
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19/virology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Antibodies, Neutralizing/immunology
- Coronavirus M Proteins/immunology
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/chemistry
- Computer Simulation
- Molecular Docking Simulation
- Antibodies, Viral/immunology
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/chemistry
- Molecular Dynamics Simulation
- Epitopes/immunology
- Epitopes/chemistry
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Amir Samimi Hashjin
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Souroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Vahid Khalaj
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Wang D, Chen Y, Xiang S, Hu H, Zhan Y, Yu Y, Zhang J, Wu P, Liu FY, Kai T, Ding P. Recent advances in immunoassay technologies for the detection of human coronavirus infections. Front Cell Infect Microbiol 2023; 12:1040248. [PMID: 36683684 PMCID: PMC9845787 DOI: 10.3389/fcimb.2022.1040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the seventh coronavirus (CoV) that has spread in humans and has become a global pandemic since late 2019. Efficient and accurate laboratory diagnostic methods are one of the crucial means to control the development of the current pandemic and to prevent potential future outbreaks. Although real-time reverse transcription-polymerase chain reaction (rRT-PCR) is the preferred laboratory method recommended by the World Health Organization (WHO) for diagnosing and screening SARS-CoV-2 infection, the versatile immunoassays still play an important role for pandemic control. They can be used not only as supplemental tools to identify cases missed by rRT-PCR, but also for first-line screening tests in areas with limited medical resources. Moreover, they are also indispensable tools for retrospective epidemiological surveys and the evaluation of the effectiveness of vaccination. In this review, we summarize the mainstream immunoassay methods for human coronaviruses (HCoVs) and address their benefits, limitations, and applications. Then, technical strategies based on bioinformatics and advanced biosensors were proposed to improve the performance of these methods. Finally, future suggestions and possibilities that can lead to higher sensitivity and specificity are provided for further research.
Collapse
Affiliation(s)
- Danqi Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yuejun Chen
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shan Xiang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Huiting Hu
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Fei Yue Liu
- Department of Economics and Management, ChangSha University, Changsha, Hunan, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Zhang X, Yuan H, Yang Z, Hu X, Mahmmod YS, Zhu X, Zhao C, Zhai J, Zhang XX, Luo S, Wang XH, Xue M, Zheng C, Yuan ZG. SARS-CoV-2: An Updated Review Highlighting Its Evolution and Treatments. Vaccines (Basel) 2022; 10:2145. [PMID: 36560555 PMCID: PMC9780920 DOI: 10.3390/vaccines10122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Since the SARS-CoV-2 outbreak, pharmaceutical companies and researchers worldwide have worked hard to develop vaccines and drugs to end the SARS-CoV-2 pandemic. The potential pathogen responsible for Coronavirus Disease 2019 (COVID-19), SARS-CoV-2, belongs to a novel lineage of beta coronaviruses in the subgenus arbovirus. Antiviral drugs, convalescent plasma, monoclonal antibodies, and vaccines are effective treatments for SARS-CoV-2 and are beneficial in preventing infection. Numerous studies have already been conducted using the genome sequence of SARS-CoV-2 in comparison with that of other SARS-like viruses, and numerous treatments/prevention measures are currently undergoing or have already undergone clinical trials. We summarize these studies in depth in the hopes of highlighting some key details that will help us to better understand the viral origin, epidemiology, and treatments of the virus.
Collapse
Affiliation(s)
- Xirui Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hao Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zipeng Yang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xiaoyu Hu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yasser S. Mahmmod
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Veterinary Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Abu Dhabi 17155, United Arab Emirates
| | - Xiaojing Zhu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Cuiping Zhao
- The 80th Army Hospital of the Chinese people’s Liberation Army, Weifang 261021, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xiu-Xiang Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shengjun Luo
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xiao-Hu Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Zi-Guo Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Lin C, Wang W, Li M, Lin Y, Yang Z, Urbina AN, Assavalapsakul W, Thitithanyanont A, Chen K, Kuo C, Lin Y, Hsiao H, Lin K, Lin S, Chen Y, Yu M, Su L, Wang S. Boosting the detection performance of severe acute respiratory syndrome coronavirus 2 test through a sensitive optical biosensor with new superior antibody. Bioeng Transl Med 2022; 8:e10410. [PMID: 36248235 PMCID: PMC9538096 DOI: 10.1002/btm2.10410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus emerged in late 2019 leading to the COVID-19 disease pandemic that triggered socioeconomic turmoil worldwide. A precise, prompt, and affordable diagnostic assay is essential for the detection of SARS-CoV-2 as well as its variants. Antibody against SARS-CoV-2 spike (S) protein was reported as a suitable strategy for therapy and diagnosis of COVID-19. We, therefore, developed a quick and precise phase-sensitive surface plasmon resonance (PS-SPR) biosensor integrated with a novel generated anti-S monoclonal antibody (S-mAb). Our results indicated that the newly generated S-mAb could detect the original SARS-CoV-2 strain along with its variants. In addition, a SARS-CoV-2 pseudovirus, which could be processed in BSL-2 facility was generated for evaluation of sensitivity and specificity of the assays including PS-SPR, homemade target-captured ELISA, spike rapid antigen test (SRAT), and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Experimentally, PS-SPR exerted high sensitivity to detect SARS-CoV-2 pseudovirus at 589 copies/ml, with 7-fold and 70-fold increase in sensitivity when compared with the two conventional immunoassays, including homemade target-captured ELISA (4 × 103 copies/ml) and SRAT (4 × 104 copies/ml), using the identical antibody. Moreover, the PS-SPR was applied in the measurement of mimic clinical samples containing the SARS-CoV-2 pseudovirus mixed with nasal mucosa. The detection limit of PS-SPR is calculated to be 1725 copies/ml, which has higher accuracy than homemade target-captured ELISA (4 × 104 copies/ml) and SRAT (4 × 105 copies/ml) and is comparable with qRT-PCR (1250 copies/ml). Finally, the ability of PS-SPR to detect SARS-CoV-2 in real clinical specimens was further demonstrated, and the assay time was less than 10 min. Taken together, our results indicate that this novel S-mAb integrated into PS-SPR biosensor demonstrates high sensitivity and is time-saving in SARS-CoV-2 virus detection. This study suggests that incorporation of a high specific recognizer in SPR biosensor is an alternative strategy that could be applied in developing other emerging or re-emerging pathogenic detection platforms.
Collapse
Affiliation(s)
- Chih‐Yen Lin
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | - Wen‐Hung Wang
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- School of Medicine, College of MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Division of Infection Disease, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Meng‐Chi Li
- Thin Film Technology CenterNational Central UniversityTaoyuanTaiwan
- Optical Sciences CenterNational Central UniversityTaoyuanTaiwan
| | - Yu‐Ting Lin
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | - Zih‐Syuan Yang
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | | | | | - Kai‐Ren Chen
- Department of Optics and PhotonicsNational Central UniversityTaoyuanTaiwan
| | - Chien‐Cheng Kuo
- Thin Film Technology CenterNational Central UniversityTaoyuanTaiwan
- Department of Optics and PhotonicsNational Central UniversityTaoyuanTaiwan
| | | | - Hui‐Hua Hsiao
- Division of Hematology and Oncology, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Kun‐Der Lin
- Division of Endocrinology and MetabolismKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Shang‐Yi Lin
- Division of Infection Disease, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of Laboratory MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Yen‐Hsu Chen
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- School of Medicine, College of MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Division of Infection Disease, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Ming‐Lung Yu
- School of Medicine, College of MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Hepatobiliary Section, Department of Internal Medicine, and Hepatitis CenterKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Li‐Chen Su
- General Education CenterMing Chi University of TechnologyNew Taipei CityTaiwan
- Organic Electronics Research CenterMing Chi University of TechnologyNew Taipei CityTaiwan
| | - Sheng‐Fan Wang
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiungTaiwan
| |
Collapse
|
10
|
Kibria KMK, Faruque MO, Islam MSB, Ullah H, Mahmud S, Miah M, Saleh AA. A conserved subunit vaccine designed against SARS-CoV-2 variants showed evidence in neutralizing the virus. Appl Microbiol Biotechnol 2022; 106:4091-4114. [PMID: 35612630 PMCID: PMC9130996 DOI: 10.1007/s00253-022-11988-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/16/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023]
Abstract
Novel coronavirus (SARS-CoV-2) leads to coronavirus disease 19 (COVID-19), declared as a pandemic that outbreaks within almost 225 countries worldwide. For the time being, numerous mutations have been reported that led to the generation of numerous variants spread more rapidly. This study aims to establish an efficient multi-epitope subunit vaccine that could elicit both T-cell and B-cell responses sufficient to recognize three confirmed surface proteins of the virus. The sequences of the viral surface proteins, e.g., an envelope protein (E), membrane glycoprotein (M), and S1 and S2 domain of spike surface glycoprotein (S), were analyzed by an immunoinformatic approach. Top immunogenic epitopes have been selected based on the assessment of the affinity with MHC class-I and MHC class-II, population coverage, along with conservancy among wild type and new variants of SARS-CoV-2 genomes. Molecular docking and molecular dynamic simulation suggest that the proposed top peptides have the potential to interact with the highest number of both the MHC class I and MHC class II. The epitopes were assembled by the appropriate linkers to form a multi-epitope vaccine. Epitopes used in the vaccine construct are conserved in all the variants evolved till now. This in silico-designed multi-epitope vaccine is highly immunogenic and induces levels of SARS-CoV2-neutralizing antibodies in mice, which is detected by inhibition of cytopathic effect in Vero cell monolayer. Further studies are required to improve its efficiency in the prevention of virus replication in lung tissue, in addition to safety validation as a step for human application to combat SARS-CoV-2 variants. KEY POINTS: • We discovered five T-cell epitopes from three surface proteins of SARS-CoV-2. • These are conserved in the wild-type virus and variants, e.g., beta, delta, and omicron. • The multi-epitope vaccine can induce IgG in mice that can neutralize the virus.
Collapse
Affiliation(s)
- K. M. Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh
| | - Md. Omar Faruque
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh
| | - Md. Shaid bin Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh
| | - Hedayet Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Mojnu Miah
- Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Amani Ali Saleh
- Virology Department, Veterinary Serum and Vaccine Research Institute (VSVRI), Cairo, Egypt
| |
Collapse
|
11
|
Comparative study of SARS-CoV-2 antibody titers between male and female COVID-19 patients living in Kurdistan region of Iraq. GENE REPORTS 2021; 25:101409. [PMID: 34722951 PMCID: PMC8541827 DOI: 10.1016/j.genrep.2021.101409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022]
Abstract
Recently, there is increasing evidence that coronavirus disease 2019 (COVID-19) causes men to experience more serious symptoms and have a higher mortality rate than women, but the association between sex and immune response stays unknown till now, and weather patient’s prognosis associated with sex or not is another vague in COVID-19. In this study, the SARS-CoV-2-specific antibody titer test was performed for 727 patients who were a positive RT-PCR result for COVID-19 and we determined the difference in immune response in both genders. Patients were divided into two groups based on their genders, which were 383 males and 344 females. Plasma was collected from the patients after 17 days of diagnosis with COVID-19, and the concentrations of specific antibodies (IgG and IgM) was measured by multiparametric immunoassay system (VIDAS). Results demonstrated that there was no significant difference in both IgM and IgG production in male participants compared to women. Moreover, despite there was a weak significant positive association between age and IgM in male patients, while there was no significant correlation between IgG and age for the same gender. On the other hand, a slight positive correlation between IgM and IgG with age was observed in female participants. Finally, it concluded that there was no sex biases in patients with COVID-19 in Erbil, Iraq. So, these findings are crucial to treat and care male and female’s patients infected with COVID-19 at hospitals.
Collapse
|