1
|
Oka T, Smith SS, Son HG, Lee T, Oliver-Garcia VS, Mortaja M, Trerice KE, Isakoff LS, Conrad DN, Azin M, Raval NS, Tabacchi M, Emdad L, Das SK, Fisher PB, Cornelius LA, Demehri S. T helper 2 cell-directed immunotherapy eliminates precancerous skin lesions. J Clin Invest 2025; 135:e183274. [PMID: 39744942 PMCID: PMC11684800 DOI: 10.1172/jci183274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/08/2024] [Indexed: 01/06/2025] Open
Abstract
The continuous rise in skin cancer incidence highlights an imperative for improved skin cancer prevention. Topical calcipotriol-plus-5-fluorouracil (calcipotriol-plus-5-FU) immunotherapy effectively eliminates precancerous skin lesions and prevents squamous cell carcinoma (SCC) in patients. However, its mechanism of action remains unclear. Herein, we demonstrate that calcipotriol-plus-5-FU immunotherapy induces T helper type 2 (Th2) immunity, eliminating premalignant keratinocytes in humans. CD4+ Th2 cells were required and were sufficient downstream of thymic stromal lymphopoietin cytokine induction by calcipotriol to suppress skin cancer development. Th2-associated cytokines induced IL-24 expression in cancer cells, resulting in toxic autophagy and anoikis followed by apoptosis. Calcipotriol-plus-5-FU immunotherapy was dependent on IL-24 to suppress skin carcinogenesis in vivo. Collectively, our findings establish a critical role for Th2 immunity in cancer immunoprevention and highlight the Th2/IL-24 axis as an innovative target for skin cancer prevention and therapy.
Collapse
Affiliation(s)
- Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sabrina S. Smith
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Heehwa G. Son
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Truelian Lee
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Valeria S. Oliver-Garcia
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mahsa Mortaja
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kathryn E. Trerice
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lily S. Isakoff
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Danielle N. Conrad
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marjan Azin
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Neel S. Raval
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary Tabacchi
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Lynn A. Cornelius
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Chaurasia R, Kaur BP, Pandian N, Pahari S, Das S, Bhattacharya U, Majood M, Mukherjee M. Leveraging the Physicochemical Attributes of Biomimetic Hydrogel Nanocomposites in Stem Cell Differentiation. Biomacromolecules 2024; 25:7543-7562. [PMID: 39277809 DOI: 10.1021/acs.biomac.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The field of tissue engineering has witnessed significant advancements with the advent of hydrogel nanocomposites (HNC), emerging as a highly promising platform for regenerative medicine. HNCs provide a versatile platform that significantly enhances the differentiation of stem cells into specific cell lineages, making them highly suitable for tissue engineering applications. By incorporating nanoparticles, the mechanical properties of hydrogels, such as elasticity, porosity, and stiffness, are improved, addressing common challenges such as short-term stability, cytotoxicity, and scalability. These nanocomposites also exhibit enhanced biocompatibility and bioavailability, which are crucial to their effectiveness in clinical applications. Furthermore, HNCs are responsive to various triggers, allowing for precise control over their chemical properties, which is beneficial in creating 3D microenvironments, promoting wound healing, and enabling controlled drug delivery systems. This review provides a comprehensive overview of the production methods of HNCs and the factors influencing their physicochemical and biological properties, particularly in relation to stem cell differentiation and tissue repair. Additionally, it discusses the challenges in developing HNCs and highlights their potential to transform the field of regenerative medicine through improved mechanotransduction and controlled release systems.
Collapse
Affiliation(s)
- Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Bani Preet Kaur
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Nikhita Pandian
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Siddhartha Pahari
- Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Susmita Das
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Uddipta Bhattacharya
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
3
|
Noddeland HK, Canbay V, Lind M, Savickas S, Jensen LB, Petersson K, Malmsten M, Koch J, Auf dem Keller U, Heinz A. Matrix metalloproteinase landscape in the imiquimod-induced skin inflammation mouse model. Biochimie 2024; 226:99-106. [PMID: 38513823 DOI: 10.1016/j.biochi.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Inflammation and autoimmunity are known as central processes in many skin diseases, including psoriasis. It is therefore important to develop pre-clinical models that describe disease-related aspects to enable testing of pharmaceutical drug candidates and formulations. A widely accepted pre-clinical model of psoriasis is the imiquimod (IMQ)-induced skin inflammation mouse model, where topically applied IMQ provokes local skin inflammation. In this study, we investigated the abundance of a subset of matrix metalloproteinases (MMPs) in skin from mice with IMQ-induced skin inflammation and skin from naïve mice using targeted proteomics. Our findings reveal a significant increase in the abundance of MMP-2, MMP-7, MMP-8, and MMP-13 after treatment with IMQ compared to the control skin, while MMP-3, MMP-9, and MMP-10 were exclusively detected in the IMQ-treated skin. The increased abundance and broader representation of MMPs in the IMQ-treated skin provide valuable insight into the pathophysiology of skin inflammation in the IMQ model, adding to previous studies on cytokine levels using conventional immunochemical methods. Specifically, the changes in the MMP profiles observed in the IMQ-treated skin resemble the MMP patterns found in skin lesions of individuals with psoriasis. Ultimately, the differences in MMP abundance under IMQ-induced inflammation as compared to non-inflamed control skin can be exploited as a model to investigate drug efficacy or performance of drug delivery systems.
Collapse
Affiliation(s)
- Heidi Kyung Noddeland
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark; Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Vahap Canbay
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Simonas Savickas
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark
| | - Louise Bastholm Jensen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100, Lund, Sweden
| | - Janne Koch
- Translational Sciences, Research and Early Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Ulrich Auf dem Keller
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark; ETH Zürich, Department of Biology, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
4
|
Zhang Y, Yi D, Su M, Li Z, Li M. A Membrane-Confined Signal Amplification Strategy for Sensitive Monitoring of Extracellular Enzymatic Activity Upon Drug Stimulus. Anal Chem 2024. [PMID: 39074853 DOI: 10.1021/acs.analchem.4c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Extracellular enzymes are not only strongly correlated with disease development but also play critical roles in modulating immune responses. Therefore, real-time monitoring of extracellular enzymatic activity can afford straightforward insights into their spatiotemporal dynamics upon drug stimulus, and provide promising tools to unravel their key roles in modulating the cell signaling. Although DNA-based sensing probes have been frequently developed for the detection of a variety of biomolecules, there still lacks a modular design strategy for amplified imaging of extracellular enzymatic activity associated with live cells. Herein, we developed an enzymatically triggerable signal amplification strategy for real-time dynamic imaging of extracellular enzyme activity through a cell membrane-confined hybrid chain reaction (HCR). We demonstrated that, by modifying the initiator DNA with enzyme-specific incision sites and cholesterol tail, extracellular enzyme-trigged HCR could be fulfilled on the surface of the cellular membrane, facilitating amplified detection of extracellular enzymatic activity. Dynamic monitoring of enzyme secretion of cancer cells upon stimulus or macrophage cells upon inflammation challenge has also been achieved. We envision that the design strategy could provide valuable information for dissecting the role of extracellular enzymes in modulating cell responses to drug treatment.
Collapse
Affiliation(s)
- Yiyi Zhang
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Deyu Yi
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Meichan Su
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Fang F, Wang B, Lu X, Wang L, Chen X, Wang G, Yang Y. miR-126a-5p inhibits H1N1-induced inflammation and matrix protease secretion in lung fibroblasts by targeting ADAMTS-4. Arch Virol 2024; 169:164. [PMID: 38990242 DOI: 10.1007/s00705-024-06086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/26/2024] [Indexed: 07/12/2024]
Abstract
Upregulation of ADAMTS-4 has been reported to have an important role in lung injury, and ADAMTS-4 expression is regulated by miR-126a-5p in abdominal aortic aneurysms. The aim of this study was to investigate whether miR-126a-5p/ADAMTS-4 plays a role in influenza-virus-induced lung injury. Lung fibroblasts were infected with H1N1 influenza virus to detect changes in miR-126a-5p and ADAMTS-4 expression, and cell viability was measured by CCK-8 assay. Inflammatory factors and matrix protease levels were examined using ELISA kits, and cell apoptosis was assessed by measuring the levels of apoptosis-related proteins. A dual luciferase assay was used to verify the regulatory relationship between miR-126a-5p and ADAMTS-4. H1N1 influenza virus reduced fibroblast viability, inhibited miR-126a-5p expression, and promoted ADAMTS-4 expression. Overexpression of miR-126a-5p attenuated the cellular inflammatory response, apoptosis, matrix protease secretion, and virus replication. Luciferase reporter assays revealed that miR-126a-5p inhibited ADAMTS-4 expression by targeting ADAMTS-4 mRNA. Further experiments showed that overexpression of ADAMTS-4 significantly reversed the inhibitory effects of miR-126a-5p on fibroblast inflammation, apoptosis, matrix protease secretion, and virus replication. Upregulation of miR-126a-5p inhibits H1N1-induced apoptosis, inflammatory factors, and matrix protease secretion, as well as virus replication in lung fibroblasts.
Collapse
Affiliation(s)
- Fang Fang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Borong Wang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Xiang Lu
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Li Wang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Xiangjun Chen
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Guanghui Wang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Yifan Yang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China.
| |
Collapse
|
6
|
Cioates Negut C, Ilie-Mihai RM, Stefan-van Staden RI. Determination of Matrix Metalloproteinase 2 in Biological Samples Using a 3D Stochastic Microsensor Based on Graphene Oxide/AuNanoparticles/(Z)-N-(pyridin-4-yl-methyl) Octadec-9-enamide. Int J Mol Sci 2024; 25:6720. [PMID: 38928425 PMCID: PMC11203526 DOI: 10.3390/ijms25126720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The levels of the MMPs in the biological samples of confirmed patients with gastric cancer are significantly elevated compared to those found in healthy people. Therefore, a novel 3D stochastic microsensor based on graphene oxide, modified with gold nanoparticles and (Z)-N-(pyridin-4-yl-methyl) octadec-9-enamide (namely N2-AuNP/GO), was designed for the determination of MMP-2 in biological samples, and validated for the screening tests of biological samples in order to be used for the early diagnosis of gastric cancer. The proposed sensor presents a low limit of quantification (1.00 × 10-22 g mL-1), high sensitivity (1.84 × 107 s-1 g-1 mL), and a wide working concentration range (1.00 × 10-22-1.00 × 10-7 g mL-1). Recovery values higher than 99.15% were recorded for the assay of MMP-2 in whole blood, gastric tissue tumors, saliva, and urine samples.
Collapse
Affiliation(s)
| | - Ruxandra-Maria Ilie-Mihai
- Laboratory of Electrochemistry and PATLAB, National Institute for Research and Development in Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021 Bucharest, Romania;
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute for Research and Development in Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021 Bucharest, Romania;
| |
Collapse
|
7
|
Malchiodi ZX, Suter RK, Deshpande A, Peran I, Harris BT, Duttargi A, Chien MJ, Hariharan S, Wetherill L, Jablonski SA, Ho WJ, Fertig EJ, Weiner LM. Natural killer cells associate with epithelial cells in the pancreatic ductal adenocarcinoma tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.593868. [PMID: 38853982 PMCID: PMC11160576 DOI: 10.1101/2024.05.23.593868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer. PDAC's poor prognosis and resistance to immunotherapy are attributed in part to its dense, fibrotic tumor microenvironment (TME), which is known to inhibit immune cell infiltration. We recently demonstrated that PDAC patients with higher natural killer (NK) cell content and activation have better survival rates. However, NK cell interactions in the PDAC TME have yet to be deeply studied. We show here that NK cells are present and active in the human PDAC TME. Methods We used imaging mass cytometry (IMC) to assess NK cell content, function, and spatial localization in human PDAC samples. Then, we used CellChat, a tool to infer ligand-receptor interactions, on a human PDAC scRNAseq dataset to further define NK cell interactions in PDAC. Results Spatial analyses showed for the first time that active NK cells are present in the PDAC TME, and both associate and interact with malignant epithelial cell ducts. We also found that fibroblast-rich, desmoplastic regions limit NK cell infiltration in the PDAC TME. CellChat analysis identified that the CD44 receptor on NK cells interacts with PDAC extracellular matrix (ECM) components such as collagen, fibronectin and laminin expressed by fibroblasts and malignant epithelial cells. This led us to hypothesize that these interactions play roles in regulating NK cell motility in desmoplastic PDAC TMEs. Using 2D and 3D in vitro assays, we found that CD44 neutralization significantly increased NK cell invasion through matrix. Conclusions Targeting ECM-immune cell interactions may increase NK cell invasion into the PDAC TME.
Collapse
|
8
|
Schreiner TG, Schreiner OD, Ciobanu RC. Spinal Cord Injury Management Based on Microglia-Targeting Therapies. J Clin Med 2024; 13:2773. [PMID: 38792314 PMCID: PMC11122315 DOI: 10.3390/jcm13102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Spinal cord injury is a complicated medical condition both from the clinician's point of view in terms of management and from the patient's perspective in terms of unsatisfactory recovery. Depending on the severity, this disorder can be devastating despite the rapid and appropriate use of modern imaging techniques and convenient surgical spinal cord decompression and stabilization. In this context, there is a mandatory need for novel adjunctive therapeutic approaches to classical treatments to improve rehabilitation chances and clinical outcomes. This review offers a new and original perspective on therapies targeting the microglia, one of the most relevant immune cells implicated in spinal cord disorders. The first part of the manuscript reviews the anatomical and pathophysiological importance of the blood-spinal cord barrier components, including the role of microglia in post-acute neuroinflammation. Subsequently, the authors present the emerging therapies based on microglia modulation, such as cytokines modulators, stem cell, microRNA, and nanoparticle-based treatments that could positively impact spinal cord injury management. Finally, future perspectives and challenges are also highlighted based on the ongoing clinical trials related to medications targeting microglia.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Department of Medical Specialties III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- First Neurology Clinic, “Prof. Dr. N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania;
| | - Oliver Daniel Schreiner
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania;
- Medical Oncology Department, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania;
| |
Collapse
|
9
|
O’Dowd K, Isham IM, Vatandour S, Boulianne M, Dozois CM, Gagnon CA, Barjesteh N, Abdul-Careem MF. Host Immune Response Modulation in Avian Coronavirus Infection: Tracheal Transcriptome Profiling In Vitro and In Vivo. Viruses 2024; 16:605. [PMID: 38675946 PMCID: PMC11053446 DOI: 10.3390/v16040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.
Collapse
Affiliation(s)
- Kelsey O’Dowd
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (K.O.); (I.M.I.)
| | - Ishara M. Isham
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (K.O.); (I.M.I.)
| | - Safieh Vatandour
- Department of Animal and Poultry Science, Islamic Azad University, Qaemshahr Branch, Qaem Shahr 4765161964, Iran;
| | - Martine Boulianne
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
- Institut National de Recherche Scientifique-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Carl A. Gagnon
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
- Molecular Diagnostic and Virology Laboratories, Centre de Diagnostic Vétérinaire de l’Université de Montréal (CDVUM), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Neda Barjesteh
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
| | - Mohamed Faizal Abdul-Careem
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (K.O.); (I.M.I.)
| |
Collapse
|
10
|
Kim SI, Joung JG, Kim YN, Park J, Park E, Kim JW, Lee S, Lee JB, Kim S, Choi CH, Kim HS, Lim J, Chung J, Kim BG, Lee JY. Durvalumab with or without tremelimumab plus chemotherapy in HRR non-mutated, platinum-resistant ovarian cancer (KGOG 3045): A phase II umbrella trial. Gynecol Oncol 2024; 182:7-14. [PMID: 38246047 DOI: 10.1016/j.ygyno.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
AIM We investigated the efficacy and safety of durvalumab (D) with or without tremelimumab (T) in addition to single-agent chemotherapy (CT) in patients with platinum-resistant recurrent ovarian cancer (PROC) lacking homologous recombination repair (HRR) gene mutations. PATIENTS AND METHODS KGOG 3045 was an open-label, investigator-initiated phase II umbrella trial. Patients with PROC without HRR gene mutations who had received ≥2 prior lines of therapy were enrolled. Patients with high PD-L1 expression (TPS ≥25%) were assigned to arm A (D + CT), whereas those with low PD-L1 expression were assigned to arm B (D + T75 + CT). After completing arm B recruitment, patients were sequentially assigned to arms C (D + T300 + CT) and D (D + CT). RESULTS Overall, 58 patients were enrolled (5, 18, 17, and 18 patients in arms A, B, C, and D, respectively). The objective response rates were 20.0, 33.3, 29.4, and 22.2%, respectively. Grade 3-4 treatment-related adverse events were observed in 20.0, 66.7, 47.1, and 66.7 of patients, respectively, but were effectively managed. Multivariable analysis demonstrated that adding T to D + CT improved progression-free survival (adjusted HR, 0.435; 95% CI, 0.229-0.824; P = 0.011). Favorable response to chemoimmunotherapy was associated with MUC16 mutation (P = 0.0214), high EPCAM expression (P = 0.020), high matrix remodeling gene signature score (P = 0.017), and low FOXP3 expression (P = 0.047). Patients showing favorable responses to D + T + CT exhibited significantly higher EPCAM expression levels (P = 0.008) and matrix remodeling gene signature scores (P = 0.031) than those receiving D + CT. CONCLUSIONS Dual immunotherapy with chemotherapy showed acceptable response rates and tolerable safety in HRR non-mutated PROC, warranting continued clinical investigation.
Collapse
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Je-Gun Joung
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Yoo-Na Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junsik Park
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunhyang Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Bok Lee
- Department of Clinical Epidemiology & Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinyeong Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | | | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Monaco CF, Plewes MR, Przygrodzka E, George JW, Qiu F, Xiao P, Wood JR, Cupp AS, Davis JS. Basic fibroblast growth factor induces proliferation and collagen production by fibroblasts derived from the bovine corpus luteum†. Biol Reprod 2023; 109:367-380. [PMID: 37283496 PMCID: PMC10502575 DOI: 10.1093/biolre/ioad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Cyclic regression of the ovarian corpus luteum, the endocrine gland responsible for progesterone production, involves rapid matrix remodeling. Despite fibroblasts in other systems being known for producing and maintaining extracellular matrix, little is known about fibroblasts in the functional or regressing corpus luteum. Vast transcriptomic changes occur in the regressing corpus luteum, among which are reduced levels of vascular endothelial growth factor A (VEGFA) and increased expression of fibroblast growth factor 2 (FGF2) after 4 and 12 h of induced regression, when progesterone is declining and the microvasculature is destabilizing. We hypothesized that FGF2 activates luteal fibroblasts. Analysis of transcriptomic changes during induced luteal regression revealed elevations in markers of fibroblast activation and fibrosis, including fibroblast activation protein (FAP), serpin family E member 1 (SERPINE1), and secreted phosphoprotein 1 (SPP1). To test our hypothesis, we treated bovine luteal fibroblasts with FGF2 to measure downstream signaling, type 1 collagen production, and proliferation. We observed rapid and robust phosphorylation of various signaling pathways involved in proliferation, such as ERK, AKT, and STAT1. From our longer-term treatments, we determined that FGF2 has a concentration-dependent collagen-inducing effect, and that FGF2 acts as a mitogen for luteal fibroblasts. FGF2-induced proliferation was greatly blunted by inhibition of AKT or STAT1 signaling. Our results suggest that luteal fibroblasts are responsive to factors that are released by the regressing bovine corpus luteum, an insight into the contribution of fibroblasts to the microenvironment in the regressing corpus luteum.
Collapse
Affiliation(s)
- Corrine F Monaco
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michele R Plewes
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| | - Emilia Przygrodzka
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jitu W George
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peng Xiao
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| |
Collapse
|
12
|
Mottais A, Riberi L, Falco A, Soccal S, Gohy S, De Rose V. Epithelial-Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target? Int J Mol Sci 2023; 24:12412. [PMID: 37569787 PMCID: PMC10418908 DOI: 10.3390/ijms241512412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a reversible process, in which epithelial cells lose their epithelial traits and acquire a mesenchymal phenotype. This transformation has been described in different lung diseases, such as lung cancer, interstitial lung diseases, asthma, chronic obstructive pulmonary disease and other muco-obstructive lung diseases, such as cystic fibrosis and non-cystic fibrosis bronchiectasis. The exaggerated chronic inflammation typical of these pulmonary diseases can induce molecular reprogramming with subsequent self-sustaining aberrant and excessive profibrotic tissue repair. Over time this process leads to structural changes with progressive organ dysfunction and lung function impairment. Although having common signalling pathways, specific triggers and regulation mechanisms might be present in each disease. This review aims to describe the various mechanisms associated with fibrotic changes and airway remodelling involved in chronic airway diseases. Having better knowledge of the mechanisms underlying the EMT process may help us to identify specific targets and thus lead to the development of novel therapeutic strategies to prevent or limit the onset of irreversible structural changes.
Collapse
Affiliation(s)
- Angélique Mottais
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Andrea Falco
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Simone Soccal
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
13
|
Dolmatov IY, Nizhnichenko VA. Extracellular Matrix of Echinoderms. Mar Drugs 2023; 21:417. [PMID: 37504948 PMCID: PMC10381214 DOI: 10.3390/md21070417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
This review considers available data on the composition of the extracellular matrix (ECM) in echinoderms. The connective tissue in these animals has a rather complex organization. It includes a wide range of structural ECM proteins, as well as various proteases and their inhibitors. Members of almost all major groups of collagens, various glycoproteins, and proteoglycans have been found in echinoderms. There are enzymes for the synthesis of structural proteins and their modification by polysaccharides. However, the ECM of echinoderms substantially differs from that of vertebrates by the lack of elastin, fibronectins, tenascins, and some other glycoproteins and proteoglycans. Echinoderms have a wide variety of proteinases, with serine, cysteine, aspartic, and metal peptidases identified among them. Their active centers have a typical structure and can break down various ECM molecules. Echinoderms are also distinguished by a wide range of proteinase inhibitors. The complex ECM structure and the variety of intermolecular interactions evidently explain the complexity of the mechanisms responsible for variations in the mechanical properties of connective tissue in echinoderms. These mechanisms probably depend not only on the number of cross-links between the molecules, but also on the composition of ECM and the properties of its proteins.
Collapse
Affiliation(s)
- Igor Yu Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| | - Vladimir A Nizhnichenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| |
Collapse
|
14
|
Nimbalkar VP, Snijesh VP, Rajarajan S, Alexander A, Kaluve R, Ramesh R, Srinath BS, Prabhu JS. Premenopausal women with breast cancer in the early post-partum period show molecular profiles of invasion and are associated with poor prognosis. Breast Cancer Res Treat 2023; 200:139-149. [PMID: 37160509 DOI: 10.1007/s10549-023-06956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/22/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE Young premenopausal women develop breast cancer (BC) within 5-10 years of the last childbirth, known as post-partum breast cancers (PPBC), often present with aggressive disease. The exact mechanisms that lead to poor prognosis in these patients are largely unknown. METHODS We have evaluated the association of clinical and reproductive factors with BC in a cohort of women ≤ 45 years (N = 155) with long-term follow-up. Based on duration since last childbirth (LCB), grouped patients into PPBC1 (LCB ≤ 5 years), PPBC2 (LCB between 6 and 10 years), PPBC3 (LCB > 10 years), and NPBC (age-matched nulliparous BC patients). We compared disease-free survival and hazard associated with recurrence/metastasis between the groups. RNA sequencing of tumor samples was performed from three parous groups (n = 10), and transcriptomic data were analyzed for differentially expressed genes and altered pathways. RESULTS Women in the PPBC1 group had an early menarche and late age at first and last childbirth compared to other groups. Survival analysis within lymph node-positive tumors showed that PPBC1 tumors had a worse prognosis than PPBC2 and NPBC tumors (p = 0.015 and p = 0.026, respectively). Clustering of the differentially expressed genes between the groups showed distinct expression in early PPBC (E-PPBC) tumors. Pathway analysis revealed upregulation of invasive-related pathways along with T cell exhaustion, extracellular matrix remodeling, angiogenesis, and epithelial-to-mesenchymal transition in E-PPBC tumors. CONCLUSION Early PPBC is a unique subtype with aggressive clinical features and distinct biology. Further research is needed to accurately project the risk of recurrence and optimal treatment strategies in these young patients.
Collapse
Affiliation(s)
- Vidya P Nimbalkar
- Division of Molecular Medicine, St. John's Medical College, St. John's Research Institute, Bangalore, Karnataka, India
| | - V P Snijesh
- Division of Molecular Medicine, St. John's Medical College, St. John's Research Institute, Bangalore, Karnataka, India
- Centre for Doctoral Studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Savitha Rajarajan
- Division of Molecular Medicine, St. John's Medical College, St. John's Research Institute, Bangalore, Karnataka, India
- Centre for Doctoral Studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Annie Alexander
- Division of Molecular Medicine, St. John's Medical College, St. John's Research Institute, Bangalore, Karnataka, India
| | - Rohini Kaluve
- Division of Molecular Medicine, St. John's Medical College, St. John's Research Institute, Bangalore, Karnataka, India
| | - Rakesh Ramesh
- Department of Surgical Oncology, St. John's Medical College and Hospital, Bangalore, Karnataka, India
| | - B S Srinath
- Department of Surgery, Sri Shankara Cancer Hospital and Research Centre, Bangalore, Karnataka, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Medical College, St. John's Research Institute, Bangalore, Karnataka, India.
| |
Collapse
|
15
|
Stierschneider A, Neuditschko B, Colleselli K, Hundsberger H, Herzog F, Wiesner C. Comparative and Temporal Characterization of LPS and Blue-Light-Induced TLR4 Signal Transduction and Gene Expression in Optogenetically Manipulated Endothelial Cells. Cells 2023; 12:697. [PMID: 36899833 PMCID: PMC10000987 DOI: 10.3390/cells12050697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In endothelial cells (ECs), stimulation of Toll-like receptor 4 (TLR4) by the endotoxin lipopolysaccharide (LPS) induces the release of diverse pro-inflammatory mediators, beneficial in controlling bacterial infections. However, their systemic secretion is a main driver of sepsis and chronic inflammatory diseases. Since distinct and rapid induction of TLR4 signaling is difficult to achieve with LPS due to the specific and non-specific affinity to other surface molecules and receptors, we engineered new light-oxygen-voltage-sensing (LOV)-domain-based optogenetic endothelial cell lines (opto-TLR4-LOV LECs and opto-TLR4-LOV HUVECs) that allow fast, precise temporal, and reversible activation of TLR4 signaling pathways. Using quantitative mass-spectrometry, RT-qPCR, and Western blot analysis, we show that pro-inflammatory proteins were not only expressed differently, but also had a different time course when the cells were stimulated with light or LPS. Additional functional assays demonstrated that light induction promoted chemotaxis of THP-1 cells, disruption of the EC monolayer and transmigration. In contrast, ECs incorporating a truncated version of the TLR4 extracellular domain (opto-TLR4 ΔECD2-LOV LECs) revealed high basal activity with fast depletion of the cell signaling system upon illumination. We conclude that the established optogenetic cell lines are well suited to induce rapid and precise photoactivation of TLR4, allowing receptor-specific studies.
Collapse
Affiliation(s)
- Anna Stierschneider
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Benjamin Neuditschko
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Katrin Colleselli
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Harald Hundsberger
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Franz Herzog
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| |
Collapse
|
16
|
Christopoulou ME, Papakonstantinou E, Stolz D. Matrix Metalloproteinases in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24043786. [PMID: 36835197 PMCID: PMC9966421 DOI: 10.3390/ijms24043786] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade proteins of the extracellular matrix and the basement membrane. Thus, these enzymes regulate airway remodeling, which is a major pathological feature of chronic obstructive pulmonary disease (COPD). Furthermore, proteolytic destruction in the lungs may lead to loss of elastin and the development of emphysema, which is associated with poor lung function in COPD patients. In this literature review, we describe and appraise evidence from the recent literature regarding the role of different MMPs in COPD, as well as how their activity is regulated by specific tissue inhibitors. Considering the importance of MMPs in COPD pathogenesis, we also discuss MMPs as potential targets for therapeutic intervention in COPD and present evidence from recent clinical trials in this regard.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Eleni Papakonstantinou
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital, 4031 Basel, Switzerland
| | - Daiana Stolz
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +49-(0)-761-270-37050
| |
Collapse
|
17
|
Long J, Qin Z, Chen G, Song B, Zhang Z. Decellularized extracellular matrix (d-ECM): the key role of the inflammatory process in pre-regeneration after implantation. Biomater Sci 2023; 11:1215-1235. [PMID: 36625281 DOI: 10.1039/d2bm01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clinical medicine is encountering the challenge of repairing soft-tissue defects. Currently, natural and synthetic materials have been developed as natural scaffolds. Among them, the decellularized extracellular matrix (d-ECM) can achieve tissue remodeling following injury and, thus, replace defects due to its advantages of the extensiveness of the source and excellent biological and mechanical properties. However, by analyzing the existing decellularization techniques, we found that different preparation methods directly affect the residual components of the d-ECM, and further have different effects on inflammation and regeneration of soft tissues. Therefore, we analyzed the role of different residual components of the d-ECM after decellularization. Then, we explored the inflammatory process and immune cells in an attempt to understand the mechanisms and causes of tissue degeneration and regeneration after transplantation. In this paper, we summarize the current studies related to updated protocols for the preparation of the d-ECM, biogenic and exogenous residual substances, inflammation, and immune cells influencing the fate of the d-ECM.
Collapse
Affiliation(s)
- Jie Long
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zijin Qin
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Guo Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Ziang Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
18
|
Räuber S, Schroeter CB, Strippel C, Nelke C, Ruland T, Dik A, Golombeck KS, Regner-Nelke L, Paunovic M, Esser D, Münch C, Rosenow F, van Duijn M, Henes A, Ruck T, Amit I, Leypoldt F, Titulaer MJ, Wiendl H, Meuth SG, Meyer Zu Hörste G, Melzer N. Cerebrospinal fluid proteomics indicates immune dysregulation and neuronal dysfunction in antibody associated autoimmune encephalitis. J Autoimmun 2023; 135:102985. [PMID: 36621173 DOI: 10.1016/j.jaut.2022.102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
Autoimmune Encephalitis (AE) spans a group of non-infectious inflammatory conditions of the central nervous system due to an imbalanced immune response. Aiming to elucidate the pathophysiological mechanisms of AE, we applied an unsupervised proteomic approach to analyze the cerebrospinal fluid (CSF) protein profile of AE patients with autoantibodies against N-methyl-d-aspartate receptor (NMDAR) (n = 9), leucine-rich glioma-inactivated protein 1 (LGI1) (n = 9), or glutamate decarboxylase 65 (GAD65) (n = 8) compared to 9 patients with relapsing-remitting multiple sclerosis as inflammatory controls, and 10 patients with somatic symptom disorder as non-inflammatory controls. We found a dysregulation of the complement system, a disbalance between pro-inflammatory and anti-inflammatory proteins on the one hand, and dysregulation of proteins involved in synaptic transmission, synaptogenesis, brain connectivity, and neurodegeneration on the other hand to a different extent in all AE subtypes compared to non-inflammatory controls. Furthermore, elevated levels of several proteases and reduction in protease inhibitors could be detected in all AE subtypes compared to non-inflammatory controls. Moreover, the different AE subtypes showed distinct protein profiles compared to each other and inflammatory controls which may facilitate future identification of disease-specific biomarkers. Overall, CSF proteomics provides insights into the complex pathophysiological mechanisms of AE, including immune dysregulation, neuronal dysfunction, neurodegeneration, and altered protease function.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Christopher Nelke
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Tillmann Ruland
- Department of Psychiatry, University of Münster, 48149, Münster, Germany; Department of Psychiatry, Maria Brunn Hospital, 48163, Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kristin S Golombeck
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Liesa Regner-Nelke
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Manuela Paunovic
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, 24105, Kiel, Lübeck, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Faculty of Medicine, Theodor-Stern-Kai 7, Building 75, 60590, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Frankfurt am Main, Germany; Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martijn van Duijn
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Antonia Henes
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, 24105, Kiel, Lübeck, Germany; Department of Neurology, Faculty of Medicine, Kiel University, 24105, Kiel, Germany
| | - Maarten J Titulaer
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Wang C, Wei Z, Yu T, Zhang L. Dysregulation of metalloproteinases in spinal ligament degeneration. Connect Tissue Res 2023:1-13. [PMID: 36600486 DOI: 10.1080/03008207.2022.2160327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Degenerative changes in the spinal ligaments, such as hypertrophy or ossification, are important pathophysiological mechanisms of secondary spinal stenosis and neurological compression. Extracellular matrix (ECM) remodeling is one of the major pathological changes in ligament degeneration, and in this remodeling, ECM proteinase-mediated degradation of elastin and collagen plays a vital role. Zinc-dependent endopeptidases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin-1 motifs (ADAMTSs) are key factors in ECM remodeling. This review aims to elucidate the underlying mechanisms of these metalloproteinases in the initiation and progression of spinal ligament degeneration. METHODS We clarify current literature on the dysregulation of MMPs/ADAMs/ADAMTS and their endogenous inhibitors in degenerative spinal ligament diseases. In addition, some instructive information was excavated from the raw data of the relevant high-throughput analysis. RESULTS AND CONCLUSIONS The dysregulation of metalloproteinases and their endogenous inhibitors may affect ligament degeneration by involving several interrelated processes, represented by ECM degradation, fibroblast proliferation, and osteogenic differentiation. Antagonists of the key targets of the processes may in turn ease ligament degeneration.
Collapse
Affiliation(s)
- Chao Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziran Wei
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Medical Research Centre, Institute of Orthopaedics and Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Biasella F, Plössl K, Baird PN, Weber BHF. The extracellular microenvironment in immune dysregulation and inflammation in retinal disorders. Front Immunol 2023; 14:1147037. [PMID: 36936905 PMCID: PMC10014728 DOI: 10.3389/fimmu.2023.1147037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Paul N. Baird
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| |
Collapse
|
21
|
Wang Q, Wang K, Tan X, Li Z, Wang H. Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol 2022; 13:1064033. [PMID: 36591235 PMCID: PMC9800621 DOI: 10.3389/fimmu.2022.1064033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Metalloproteinases (MPs) is a large family of proteinases with metal ions in their active centers. According to the different domains metalloproteinases can be divided into a variety of subtypes mainly including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteases (ADAMs) and ADAMs with Thrombospondin Motifs (ADAMTS). They have various functions such as protein hydrolysis, cell adhesion and remodeling of extracellular matrix. Metalloproteinases expressed in multiple types of cancers and participate in many pathological processes involving tumor genesis and development, invasion and metastasis by regulating signal transduction and tumor microenvironment. In this review, based on the current research progress, we summarized the structure of MPs, their expression and especially immunomodulatory role and mechanisms in cancers. Additionally, a relevant and timely update of recent advances and future directions were provided for the diagnosis and immunotherapy targeting MPs in cancers.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiaojing Tan
- Department of Oncology, Dongying People's Hospital, Dongying, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| |
Collapse
|
22
|
Hypoxia as a Double-Edged Sword to Combat Obesity and Comorbidities. Cells 2022; 11:cells11233735. [PMID: 36496995 PMCID: PMC9736735 DOI: 10.3390/cells11233735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The global epidemic of obesity is tightly associated with numerous comorbidities, such as type II diabetes, cardiovascular diseases and the metabolic syndrome. Among the key features of obesity, some studies have suggested the abnormal expansion of adipose-tissue-induced local endogenous hypoxic, while other studies indicated endogenous hyperoxia as the opposite trend. Endogenous hypoxic aggravates dysfunction in adipose tissue and stimulates secretion of inflammatory molecules, which contribute to obesity. In contrast, hypoxic exposure combined with training effectively generate exogenous hypoxic to reduce body weight and downregulate metabolic risks. The (patho)physiological effects in adipose tissue are distinct from those of endogenous hypoxic. We critically assess the latest advances on the molecular mediators of endogenous hypoxic that regulate the dysfunction in adipose tissue. Subsequently we propose potential therapeutic targets in adipose tissues and the small molecules that may reverse the detrimental effect of local endogenous hypoxic. More importantly, we discuss alterations of metabolic pathways in adipose tissue and the metabolic benefits brought by hypoxic exercise. In terms of therapeutic intervention, numerous approaches have been developed to treat obesity, nevertheless durability and safety remain the major concern. Thus, a combination of the therapies that suppress endogenous hypoxic with exercise plans that augment exogenous hypoxic may accelerate the development of more effective and durable medications to treat obesity and comorbidities.
Collapse
|
23
|
Joglekar MM, Nizamoglu M, Fan Y, Nemani SSP, Weckmann M, Pouwels SD, Heijink IH, Melgert BN, Pillay J, Burgess JK. Highway to heal: Influence of altered extracellular matrix on infiltrating immune cells during acute and chronic lung diseases. Front Pharmacol 2022; 13:995051. [PMID: 36408219 PMCID: PMC9669433 DOI: 10.3389/fphar.2022.995051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/19/2022] [Indexed: 10/31/2023] Open
Abstract
Environmental insults including respiratory infections, in combination with genetic predisposition, may lead to lung diseases such as chronic obstructive pulmonary disease, lung fibrosis, asthma, and acute respiratory distress syndrome. Common characteristics of these diseases are infiltration and activation of inflammatory cells and abnormal extracellular matrix (ECM) turnover, leading to tissue damage and impairments in lung function. The ECM provides three-dimensional (3D) architectural support to the lung and crucial biochemical and biophysical cues to the cells, directing cellular processes. As immune cells travel to reach any site of injury, they encounter the composition and various mechanical features of the ECM. Emerging evidence demonstrates the crucial role played by the local environment in recruiting immune cells and their function in lung diseases. Moreover, recent developments in the field have elucidated considerable differences in responses of immune cells in two-dimensional versus 3D modeling systems. Examining the effect of individual parameters of the ECM to study their effect independently and collectively in a 3D microenvironment will help in better understanding disease pathobiology. In this article, we discuss the importance of investigating cellular migration and recent advances in this field. Moreover, we summarize changes in the ECM in lung diseases and the potential impacts on infiltrating immune cell migration in these diseases. There has been compelling progress in this field that encourages further developments, such as advanced in vitro 3D modeling using native ECM-based models, patient-derived materials, and bioprinting. We conclude with an overview of these state-of-the-art methodologies, followed by a discussion on developing novel and innovative models and the practical challenges envisaged in implementing and utilizing these systems.
Collapse
Affiliation(s)
- Mugdha M. Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - YiWen Fan
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Sai Sneha Priya Nemani
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Markus Weckmann
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Simon D. Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Barbro N. Melgert
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
| | - Janesh Pillay
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Critical Care, Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, Netherlands
| |
Collapse
|
24
|
Vyas M, Peigney D, Demehri S. Extracellular matrix-natural killer cell interactome: an uncharted territory in health and disease. Curr Opin Immunol 2022; 78:102246. [PMID: 36174410 DOI: 10.1016/j.coi.2022.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 01/29/2023]
Abstract
Extracellular matrix (ECM) constantly undergoes remodeling to maintain the tissue homeostasis and an impaired ECM remodeling is a hallmark of many diseases, including cancer, infections, and inflammatory disorders. ECM has recently become recognized to regulate the immune response in peripheral tissues. Most immune cells express a diverse array of ECM receptors that, upon engagement by their cognate ECM ligands, can regulate their movement and effector functions. Natural killer (NK) cells are innate lymphocytes capable of mounting a swift cytotoxic immunity against cancer and virally infected cells using germline-encoded activating and inhibitory receptors. Regulation of NK cell effector function by ECM proteins in peripheral tissues is an emerging field with major implications for maintaining tolerance in normal tissues and controlling solid cancers, viral infections, and inflammatory diseases. The development of novel therapeutics targeting ECM-NK cell interplay represents a promising strategy to promote health and combat many diseases affecting solid organs.
Collapse
Affiliation(s)
- Maulik Vyas
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Domitille Peigney
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Agrawal S, Pathak E, Mishra R, Mishra V, Parveen A, Mishra SK, Byadgi PS, Dubey SK, Chaudhary AK, Singh V, Chaurasia RN, Atri N. Computational exploration of the dual role of the phytochemical fortunellin: Antiviral activities against SARS-CoV-2 and immunomodulatory abilities against the host. Comput Biol Med 2022; 149:106049. [PMID: 36103744 PMCID: PMC9452420 DOI: 10.1016/j.compbiomed.2022.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections generate approximately one million virions per day, and the majority of available antivirals are ineffective against it due to the virus's inherent genetic mutability. This necessitates the investigation of concurrent inhibition of multiple SARS-CoV-2 targets. We show that fortunellin (acacetin 7-O-neohesperidoside), a phytochemical, is a promising candidate for preventing and treating coronavirus disease (COVID-19) by targeting multiple key viral target proteins. Fortunellin supports protective immunity while inhibiting pro-inflammatory cytokines and apoptosis pathways and protecting against tissue damage. Fortunellin is a phytochemical found in Gojihwadi kwath, an Indian traditional Ayurvedic formulation with an antiviral activity that is effective in COVID-19 patients. The mechanistic action of its antiviral activity, however, is unknown. The current study comprehensively evaluates the potential therapeutic mechanisms of fortunellin in preventing and treating COVID-19. We have used molecular docking, molecular dynamics simulations, free-energy calculations, host target mining of fortunellin, gene ontology enrichment, pathway analyses, and protein-protein interaction analysis. We discovered that fortunellin reliably binds to key targets that are necessary for viral replication, growth, invasion, and infectivity including Nucleocapsid (N-CTD) (-54.62 kcal/mol), Replicase-monomer at NSP-8 binding site (-34.48 kcal/mol), Replicase-dimer interface (-31.29 kcal/mol), Helicase (-30.02 kcal/mol), Papain-like-protease (-28.12 kcal/mol), 2'-O-methyltransferase (-23.17 kcal/mol), Main-protease (-21.63 kcal/mol), Replicase-monomer at dimer interface (-22.04 kcal/mol), RNA-dependent-RNA-polymerase (-19.98 kcal/mol), Nucleocapsid-NTD (-16.92 kcal/mol), and Endoribonuclease (-16.81 kcal/mol). Furthermore, we identify and evaluate the potential human targets of fortunellin and its effect on the SARS-CoV-2 infected tissues, including normal-human-bronchial-epithelium (NHBE) and lung cells and organoids such as pancreatic, colon, liver, and cornea using a network pharmacology approach. Thus, our findings indicate that fortunellin has a dual role; multi-target antiviral activities against SARS-CoV-2 and immunomodulatory capabilities against the host.
Collapse
Affiliation(s)
- Shivangi Agrawal
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | - Ekta Pathak
- Institute of Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Rajeev Mishra
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India.
| | - Vibha Mishra
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | - Afifa Parveen
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | | | | | - Sushil Kumar Dubey
- Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, India
| | | | | | | | - Neelam Atri
- Department of Botany, MMV, Banaras Hindu University, India
| |
Collapse
|
26
|
Jain N, Lord JM, Vogel V. Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors? APL Bioeng 2022; 6:031502. [PMID: 36051106 PMCID: PMC9427154 DOI: 10.1063/5.0087699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Many inflammatory diseases that are responsible for a majority of deaths are still uncurable, in part as the underpinning pathomechanisms and how to combat them is still poorly understood. Tissue-resident macrophages play pivotal roles in the maintenance of tissue homeostasis, but if they gradually convert to proinflammatory phenotypes, or if blood-born proinflammatory macrophages persist long-term after activation, they contribute to chronic inflammation and fibrosis. While biochemical factors and how they regulate the inflammatory transcriptional response of macrophages have been at the forefront of research to identify targets for therapeutic interventions, evidence is increasing that physical factors also tune the macrophage phenotype. Recently, several mechanisms have emerged as to how physical factors impact the mechanobiology of macrophages, from the nuclear translocation of transcription factors to epigenetic modifications, perhaps even DNA methylation. Insight into the mechanobiology of macrophages and associated epigenetic modifications will deliver novel therapeutic options going forward, particularly in the context of increased inflammation with advancing age and age-related diseases. We review here how biophysical factors can co-regulate pro-inflammatory gene expression and epigenetic modifications and identify knowledge gaps that require urgent attention if this therapeutic potential is to be realized.
Collapse
Affiliation(s)
- Nikhil Jain
- Authors to whom correspondence should be addressed: and
| | | | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Hu Z, Cao W, Shen L, Sun Z, Yu K, Zhu Q, Ren T, Zhang L, Zheng H, Gao C, He Y, Guo C, Zhu Y, Ren D. Scalable Milk-Derived Whey Protein Hydrogel as an Implantable Biomaterial. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28501-28513. [PMID: 35703017 DOI: 10.1021/acsami.2c02361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There are limited naturally derived protein biomaterials for the available medical implants. High cost, low yield, and batch-to-batch inconsistency, as well as intrinsically differing bioactivity in some of the proteins, make them less beneficial as common implant materials compared to their synthetic counterparts. Here, we present a milk-derived whey protein isolate (WPI) as a new kind of natural protein-based biomaterial for medical implants. The WPI was methacrylated at 100 g bench scale, >95% conversion, and 90% yield to generate a photo-cross-linkable material. WPI-MA was further processed into injectable hydrogels, monodispersed microspheres, and patterned scaffolds with photo-cross-linking-based advanced processing methods including microfluidics and 3D printing. In vivo evaluation of the WPI-MA hydrogels showed promising biocompatibility and degradability. Intramyocardial implantation of injectable WPI-MA hydrogels in a model of myocardial infarction attenuated the pathological changes in the left ventricle. Our results indicate a possible therapeutic value of WPI-based biomaterials and give rise to a potential collaboration between the dairy industry and the production of medical therapeutics.
Collapse
Affiliation(s)
- Ziyi Hu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziyang Sun
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinchao Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | - Tanchen Ren
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Liwen Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Houwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
28
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, Mitchell DA, Huang J, Sawyer WG, Sayour EJ, Castillo P. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022; 11:1974. [PMID: 35741103 PMCID: PMC9221866 DOI: 10.3390/cells11121974] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Ruixuan Liu
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Theodore Wang
- College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jacob Rubin
- Warrington College of Business, University of Florida, Gainesville, FL 32610, USA;
| | - Linchun Jin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Haipeng Tao
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - William W. Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Hector R. Mendez-Gomez
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Matthew Cascio
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elias J. Sayour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
29
|
Cruz MB, Silva N, Marques JF, Mata A, Silva FS, Caramês J. Biomimetic Implant Surfaces and Their Role in Biological Integration-A Concise Review. Biomimetics (Basel) 2022; 7:74. [PMID: 35735590 PMCID: PMC9220941 DOI: 10.3390/biomimetics7020074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The increased use of dental implants in oral rehabilitation has been followed by the development of new biomaterials as well as improvements in the performance of biomaterials already in use. This triggers the need for appropriate analytical approaches to assess the biological and, ultimately, clinical benefits of these approaches. AIMS To address the role of physical, chemical, mechanical, and biological characteristics in order to determine the critical parameters to improve biological responses and the long-term effectiveness of dental implant surfaces. DATA SOURCES AND METHODS Web of Science, MEDLINE and Lilacs databases were searched for the last 30 years in English, Spanish and Portuguese idioms. RESULTS Chemical composition, wettability, roughness, and topography of dental implant surfaces have all been linked to biological regulation in cell interactions, osseointegration, bone tissue and peri-implant mucosa preservation. CONCLUSION Techniques involving subtractive and additive methods, especially those involving laser treatment or embedding of bioactive nanoparticles, have demonstrated promising results. However, the literature is heterogeneous regarding study design and methodology, which limits comparisons between studies and the definition of the critical determinants of optimal cell response.
Collapse
Affiliation(s)
- Mariana Brito Cruz
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (A.M.)
| | - Neusa Silva
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FTC UID/FIS/04559/2013, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal;
| | - Joana Faria Marques
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (A.M.)
| | - António Mata
- Universidade de Lisboa, Faculdade de Medicina Dentária, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal; (J.F.M.); (A.M.)
- Cochrane Portugal, Instituto de Saúde Baseada na Evidência (ISBE), Faculdade de Medicina Dentária, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Felipe Samuel Silva
- Center for Microelectromechanical Systems (CMEMS), Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães, Portugal;
| | - João Caramês
- Bone Physiology Research Group, Faculdade de Medicina Dentária, Universidade de Lisboa, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal;
| |
Collapse
|
30
|
Chimento A, D’Amico M, Pezzi V, De Amicis F. Notch Signaling in Breast Tumor Microenvironment as Mediator of Drug Resistance. Int J Mol Sci 2022; 23:6296. [PMID: 35682974 PMCID: PMC9181656 DOI: 10.3390/ijms23116296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Notch signaling dysregulation encourages breast cancer progression through different mechanisms such as stem cell maintenance, cell proliferation and migration/invasion. Furthermore, Notch is a crucial driver regulating juxtracrine and paracrine communications between tumor and stroma. The complex interplay between the abnormal Notch pathway orchestrating the activation of other signals and cellular heterogeneity contribute towards remodeling of the tumor microenvironment. These changes, together with tumor evolution and treatment pressure, drive breast cancer drug resistance. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance, reducing or eliminating breast cancer stem cells. In the present review, we will summarize the current scientific evidence that highlights the involvement of Notch activation within the breast tumor microenvironment, angiogenesis, extracellular matrix remodeling, and tumor/stroma/immune system interplay and its involvement in mechanisms of therapy resistance.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Maria D’Amico
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Francesca De Amicis
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
31
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
32
|
Sokolova O, Naumann M. Matrix Metalloproteinases in Helicobacter pylori-Associated Gastritis and Gastric Cancer. Int J Mol Sci 2022; 23:1883. [PMID: 35163805 PMCID: PMC8836485 DOI: 10.3390/ijms23031883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is one of the leading causes of the cancer-related mortality worldwide. The etiology of this disease is complex and involves genetic predisposition and environmental factors, including Helicobacter pylori. Infection of the stomach with H. pylori leads to gastritis and gastric atrophy, which can progress stepwise to gastric cancer. Matrix metalloproteinases (MMPs) actively participate in the pathology development. The further progression of gastric cancer seems to be less dependent on bacteria but of intra-tumor cell dynamics. Bioinformatics data confirmed an important role of the extracellular matrix constituents and specific MMPs in stomach carcinoma invasion and metastasis, and revised their potential as predictors of the disease outcome. In this review, we describe, in detail, the impact of MMPs in H. pylori-associated gastritis and gastric cancer.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|