1
|
Wang J, Xie M, Ouyang L, Li J, Wang L, Fan C, Chao J. Artificial molecular communication network based on DNA nanostructures recognition. Nat Commun 2025; 16:244. [PMID: 39747880 PMCID: PMC11696045 DOI: 10.1038/s41467-024-55527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Artificial simulated communication networks inspired by molecular communication in organisms use biological and chemical molecules as information carriers to realize information transmission. However, the design of programmable, multiplexed and general simulation models remains challenging. Here, we develop a DNA nanostructure recognition-based artificial molecular communication network (DR-AMCN), in which rectangular DNA origami nanostructures serve as nodes and their recognition as edges. After the implementation of DR-AMCN with various communication mechanisms including serial, parallel, orthogonal, and multiplexing, it is applied to construct various communication network topologies with bus, ring, star, tree, and hybrid structures. By the establishment of a node partition algorithm for path traversal based on DR-AMCN, the computational complexity of the seven-node Hamiltonian path problem is reduced with the final solution directly obtained through the rate-zonal centrifugation method, and scalability of this approach is also demonstrated. The developed DR-AMCN enhances our understanding of signal transduction mechanisms, dynamic processes, and regulatory networks in organisms, contributing to the solution of informatics and computational problems, as well as having potential in computer science, biomedical engineering, information technology and other related fields.
Collapse
Affiliation(s)
- Junke Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing, China
- Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Mo Xie
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing, China
- Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Lilin Ouyang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing, China
- Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jinggang Li
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing, China
- Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing, China
- Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- New Cornerstone Science Laboratory, Shanghai, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing, China.
- Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, China.
| |
Collapse
|
2
|
Heuberger L, Korpidou M, Guinart A, Doellerer D, López DM, Schoenenberger CA, Milinkovic D, Lörtscher E, Feringa BL, Palivan CG. Photoreceptor-Like Signal Transduction Between Polymer-Based Protocells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413981. [PMID: 39491508 DOI: 10.1002/adma.202413981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Deciphering inter- and intracellular signaling pathways is pivotal for understanding the intricate communication networks that orchestrate life's dynamics. Communication models involving bottom-up construction of protocells are emerging but often lack specialized compartments sufficiently robust and hierarchically organized to perform spatiotemporally defined signaling. Here, the modular construction of communicating polymer-based protocells designed to mimic the transduction of information in retinal photoreceptors is presented. Microfluidics is used to generate polymeric protocells subcompartmentalized by specialized artificial organelles. In one protocell population, light triggers artificial organelles with membrane-embedded photoresponsive rotary molecular motors to set off a sequence of reactions starting with the release of encapsulated signaling molecules into the lumen. Intercellular communication is mediated by signal transfer across membranes to protocells containing catalytic artificial organelles as subcompartments, whose signal conversion can be modulated by environmental calcium. Signal propagation also requires selective permeability of the diverse compartments. By segregating artificial organelles in distinct protocells, a sequential chain of reactions mediating intercellular communication is created that is further modulated by adding extracellular messengers. This connective behavior offers the potential for a deeper understanding of signaling pathways and faster integration of proto- and living cells, with the unique advantage of controlling each step by bio-relevant signals.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
| | - Maria Korpidou
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
| | - Ainoa Guinart
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, AG Groningen, 9747, The Netherlands
| | - Daniel Doellerer
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, AG Groningen, 9747, The Netherlands
| | | | | | - Daela Milinkovic
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe-Zürich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland
- NCCR - Molecular Systems Engineering, Mattenstrasse 22, Basel, 4002, Switzerland
| | - Ben L Feringa
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, AG Groningen, 9747, The Netherlands
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
- NCCR - Molecular Systems Engineering, Mattenstrasse 22, Basel, 4002, Switzerland
- Swiss Nanoscience Institute (SNI), University of Basel, Klingelbergstrasse 80, Basel, 4056, Switzerland
| |
Collapse
|
3
|
Hazegh Nikroo A, Altenburg WJ, van Veldhuisen TW, Brunsveld L, van Hest JCM. Spatiotemporal Control Over Protein Release from Artificial Cells via a Light-Activatable Protease. Adv Biol (Weinh) 2024:e2400353. [PMID: 39334525 DOI: 10.1002/adbi.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
The regulation of protein uptake and secretion by cells is paramount for intercellular signaling and complex multicellular behavior. Mimicking protein-mediated communication in artificial cells holds great promise to elucidate the underlying working principles, but remains challenging without the stimulus-responsive regulatory machinery of living cells. Therefore, systems to precisely control when and where protein release occurs should be incorporated in artificial cells. Here, a light-activatable TEV protease (LaTEV) is presented that enables spatiotemporal control over protein release from a coacervate-based artificial cell platform. Due to the presence of Ni2+-nitrilotriacetic acid moieties within the coacervates, His-tagged proteins are effectively sequestered into the coacervates. LaTEV is first photocaged, effectively blocking its activity. Upon activation by irradiation with 365 nm light, LaTEV cleaves the His-tags from sequestered cargo proteins, resulting in their release. The successful blocking and activation of LaTEV provides control over protein release rate and triggerable protein release from specific coacervates via selective irradiation. Furthermore, light-activated directional transfer of proteins between two artificial cell populations is demonstrated. Overall, this system opens up avenues to engineer light-responsive protein-mediated communication in artificial cell context, which can advance the probing of intercellular signaling and the development of protein delivery platforms.
Collapse
Affiliation(s)
- Arjan Hazegh Nikroo
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Wiggert J Altenburg
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Thijs W van Veldhuisen
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jan C M van Hest
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
4
|
Llopis-Lorente A, Shao J, Ventura J, Buddingh′ BC, Martínez-Máñez R, van Hest JCM, Abdelmohsen LKEA. Spatiotemporal Communication in Artificial Cell Consortia for Dynamic Control of DNA Nanostructures. ACS CENTRAL SCIENCE 2024; 10:1619-1628. [PMID: 39220708 PMCID: PMC11363350 DOI: 10.1021/acscentsci.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
The spatiotemporal orchestration of cellular processes is a ubiquitous phenomenon in pluricellular organisms and bacterial communities, where sender cells secrete chemical signals that activate specific pathways in distant receivers. Despite its importance, the engineering and investigation of spatiotemporal communication in artificial cell consortia remains underexplored. In this study, we present spatiotemporal communication between cellular-scale entities acting as both senders and receivers. The transmitted signals are leveraged to elicit conformational alterations within compartmentalized DNA structures. Specifically, sender entities control and generate diffusive chemical signals, namely, variations in pH, through the conversion of biomolecular inputs. In the receiver population, compartmentalized DNA nanostructures exhibit changes in conformation, transitioning between triplex and duplex assemblies, in response to this pH variation. We demonstrate the temporal regulation of activated DNA nanostructures through the coordinated action of two antagonistic sender populations. Furthermore, we illustrate the transient distance-dependent activation of the receivers, facilitated by sender populations situated at defined spatial locations. Collectively, our findings provide novel avenues for the design of artificial cell consortia endowed with programmable spatiotemporal dynamics through chemical communication.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Department
of Chemical Engineering and Chemistry, Institute for Complex Molecular
Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jingxin Shao
- Department
of Chemical Engineering and Chemistry, Institute for Complex Molecular
Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jordi Ventura
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
| | - Bastiaan C. Buddingh′
- Department
of Chemical Engineering and Chemistry, Institute for Complex Molecular
Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jan C. M. van Hest
- Department
of Chemical Engineering and Chemistry, Institute for Complex Molecular
Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Department
of Chemical Engineering and Chemistry, Institute for Complex Molecular
Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Gentili PL, Stano P. Living cells and biological mechanisms as prototypes for developing chemical artificial intelligence. Biochem Biophys Res Commun 2024; 720:150060. [PMID: 38754164 DOI: 10.1016/j.bbrc.2024.150060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Artificial Intelligence (AI) is having a revolutionary impact on our societies. It is helping humans in facing the global challenges of this century. Traditionally, AI is developed in software or through neuromorphic engineering in hardware. More recently, a brand-new strategy has been proposed. It is the so-called Chemical AI (CAI), which exploits molecular, supramolecular, and systems chemistry in wetware to mimic human intelligence. In this work, two promising approaches for boosting CAI are described. One regards designing and implementing neural surrogates that can communicate through optical or chemical signals and give rise to networks for computational purposes and to develop micro/nanorobotics. The other approach concerns "bottom-up synthetic cells" that can be exploited for applications in various scenarios, including future nano-medicine. Both topics are presented at a basic level, mainly to inform the broader audience of non-specialists, and so favour the rise of interest in these frontier subjects.
Collapse
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Perugia, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
6
|
Tseng YC, Song J, Zhang J, Shandilya E, Sen A. Chemomechanical Communication between Liposomes Based on Enzyme Cascades. J Am Chem Soc 2024; 146:16097-16104. [PMID: 38805671 DOI: 10.1021/jacs.4c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Communication between cells is crucial to the survival of both uni- and multicellular organisms. The primary mode of communication involves chemical cues. There is great current interest in mimicking this behavior in synthetic cells to understand the physical basis of intercellular communication and design collective functional behavior. Using liposomal cell mimics, we demonstrate how a chemical input can elicit a mechanical response (enhanced motility). We employed a single substrate to trigger enzyme cascade-induced control of the diffusion of up to three different liposome populations. Furthermore, substrate competition allows temporal control over enhanced diffusion. The use of enzyme cascades to propagate chemical signals provides a robust and efficient mechanism for diverse populations of protocells to coordinate their motion in response to signals from each other.
Collapse
Affiliation(s)
- Yu-Ching Tseng
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jianhua Zhang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ekta Shandilya
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Ventura J, Llopis-Lorente A, Abdelmohsen LKEA, van Hest JCM, Martínez-Máñez R. Models of Chemical Communication for Micro/Nanoparticles. Acc Chem Res 2024; 57:815-830. [PMID: 38427324 PMCID: PMC10956390 DOI: 10.1021/acs.accounts.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Engineering chemical communication between micro/nanosystems (via the exchange of chemical messengers) is receiving increasing attention from the scientific community. Although a number of micro- and nanodevices (e.g., drug carriers, sensors, and artificial cells) have been developed in the last decades, engineering communication at the micro/nanoscale is a recent emergent topic. In fact, most of the studies in this research area have been published within the last 10 years. Inspired by nature─where information is exchanged by means of molecules─the development of chemical communication strategies holds wide implications as it may provide breakthroughs in many areas including nanotechnology, artificial cell research, biomedicine, biotechnology, and ICT. Published examples rely on nanotechnology and synthetic biology for the creation of micro- and nanodevices that can communicate. Communication enables the construction of new complex systems capable of performing advanced coordinated tasks that go beyond those carried out by individual entities. In addition, the possibility to communicate between synthetic and living systems can further advance our understanding of biochemical processes and provide completely new tailored therapeutic and diagnostic strategies, ways to tune cellular behavior, and new biotechnological tools. In this Account, we summarize advances by our laboratories (and others) in the engineering of chemical communication of micro- and nanoparticles. This Account is structured to provide researchers from different fields with general strategies and common ground for the rational design of future communication networks at the micro/nanoscale. First, we cover the basis of and describe enabling technologies to engineer particles with communication capabilities. Next, we rationalize general models of chemical communication. These models vary from simple linear communication (transmission of information between two points) to more complex pathways such as interactive communication and multicomponent communication (involving several entities). Using illustrative experimental designs, we demonstrate the realization of these models which involve communication not only between engineered micro/nanoparticles but also between particles and living systems. Finally, we discuss the current state of the topic and the future challenges to be addressed.
Collapse
Affiliation(s)
- Jordi Ventura
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera
s/n, 46022 València, Spain
| | - Antoni Llopis-Lorente
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera
s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Loai K. E. A. Abdelmohsen
- Department
of Chemical Engineering & Chemistry, Department of Biomedical
Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Department
of Chemical Engineering & Chemistry, Department of Biomedical
Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherlands
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera
s/n, 46022 València, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
Instituto de Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026 Valencia, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Universitat Politècnica
de València, Centro
de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera
3, 46100 Valencia, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
9
|
Moghimianavval H, Loi KJ, Hwang SW, Bashirzadeh Y, Liu AP. Light-based juxtacrine signaling between synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574425. [PMID: 38260570 PMCID: PMC10802317 DOI: 10.1101/2024.01.05.574425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cell signaling through direct physical cell-cell contacts plays vital roles in biology during development, angiogenesis, and immune response. Intercellular communication mechanisms between synthetic cells constructed from the bottom up are majorly reliant on diffusible chemical signals, thus limiting the range of responses in receiver cells. Engineering contact-dependent signaling between synthetic cells promises to unlock more complicated signaling schemes with different types of responses. Here, we design and demonstrate a light-activated contact-dependent communication tool for synthetic cells. We utilize a split bioluminescent protein to limit signal generation exclusively to contact interfaces of synthetic cells, driving the recruitment of a photoswitchable protein in receiver cells, akin to juxtacrine signaling in living cells. Our modular design not only demonstrates contact-dependent communication between synthetic cells but also provides a platform for engineering orthogonal contact-dependent signaling mechanisms.
Collapse
Affiliation(s)
| | - Kyle J. Loi
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Su Y, Liu B, Huang Z, Teng Z, Yang L, Zhu J, Huo S, Liu A. Virus-like particles nanoreactors: from catalysis towards bio-applications. J Mater Chem B 2023; 11:9084-9098. [PMID: 37697810 DOI: 10.1039/d3tb01112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Virus-like particles (VLPs) are self-assembled supramolecular structures found in nature, often used for compartmentalization. Exploiting their inherent properties, including precise nanoscale structures, monodispersity, and high stability, these architectures have been widely used as nanocarriers to protect or enrich catalysts, facilitating catalytic reactions and avoiding interference from the bulk solutions. In this review, we summarize the current progress of virus-like particles (VLPs)-based nanoreactors. First, we briefly introduce the physicochemical properties of the most commonly used virus particles to understand their roles in catalytic reactions beyond the confined space. Next, we summarize the self-assembly of nanoreactors forming higher-order hierarchical structures, highlighting the emerging field of nanoreactors as artificial organelles and their potential biomedical applications. Finally, we discuss the current findings and future perspectives of VLPs-based nanoreactors.
Collapse
Affiliation(s)
- Yuqing Su
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Beibei Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhenkun Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jie Zhu
- National-Local Joint Engineering Research and High-Quality Utilization, Changzhou University, Changzhou 213164, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Aijie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Zhao H, Liu R, Wang L, Tang F, Chen W, Liu YN. Artificial Macrophage with Hierarchical Nanostructure for Biomimetic Reconstruction of Antitumor Immunity. NANO-MICRO LETTERS 2023; 15:216. [PMID: 37737506 PMCID: PMC10516848 DOI: 10.1007/s40820-023-01193-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/27/2023] [Indexed: 09/23/2023]
Abstract
Artificial cells are constructed from synthetic materials to imitate the biological functions of natural cells. By virtue of nanoengineering techniques, artificial cells with designed biomimetic functions provide alternatives to natural cells, showing vast potential for biomedical applications. Especially in cancer treatment, the deficiency of immunoactive macrophages results in tumor progression and immune resistance. To overcome the limitation, a BaSO4@ZIF-8/transferrin (TRF) nanomacrophage (NMΦ) is herein constructed as an alternative to immunoactive macrophages. Alike to natural immunoactive macrophages, NMΦ is stably retained in tumors through the specific affinity of TRF to tumor cells. Zn2+ as an "artificial cytokine" is then released from the ZIF-8 layer of NMΦ under tumor microenvironment. Similar as proinflammatory cytokines, Zn2+ can trigger cell anoikis to expose tumor antigens, which are selectively captured by the BaSO4 cavities. Therefore, the hierarchical nanostructure of NMΦs allows them to mediate immunogenic death of tumor cells and subsequent antigen capture for T cell activation to fabricate long-term antitumor immunity. As a proof-of-concept, the NMΦ mimics the biological functions of macrophage, including tumor residence, cytokine release, antigen capture and immune activation, which is hopeful to provide a paradigm for the design and biomedical applications of artificial cells.
Collapse
Affiliation(s)
- Henan Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Renyu Liu
- Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Feiying Tang
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, Hunan, People's Republic of China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Stano P. Chemical Systems for Wetware Artificial Life: Selected Perspectives in Synthetic Cell Research. Int J Mol Sci 2023; 24:14138. [PMID: 37762444 PMCID: PMC10532297 DOI: 10.3390/ijms241814138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The recent and important advances in bottom-up synthetic biology (SB), in particular in the field of the so-called "synthetic cells" (SCs) (or "artificial cells", or "protocells"), lead us to consider the role of wetware technologies in the "Sciences of Artificial", where they constitute the third pillar, alongside the more well-known pillars hardware (robotics) and software (Artificial Intelligence, AI). In this article, it will be highlighted how wetware approaches can help to model life and cognition from a unique perspective, complementary to robotics and AI. It is suggested that, through SB, it is possible to explore novel forms of bio-inspired technologies and systems, in particular chemical AI. Furthermore, attention is paid to the concept of semantic information and its quantification, following the strategy recently introduced by Kolchinsky and Wolpert. Semantic information, in turn, is linked to the processes of generation of "meaning", interpreted here through the lens of autonomy and cognition in artificial systems, emphasizing its role in chemical ones.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
13
|
Yang H, Tel J. Engineering global and local signal generators for probing temporal and spatial cellular signaling dynamics. Front Bioeng Biotechnol 2023; 11:1239026. [PMID: 37790255 PMCID: PMC10543096 DOI: 10.3389/fbioe.2023.1239026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Cells constantly encounter a wide range of environmental signals and rely on their signaling pathways to initiate reliable responses. Understanding the underlying signaling mechanisms and cellular behaviors requires signal generators capable of providing diverse input signals to deliver to cell systems. Current research efforts are primarily focused on exploring cellular responses to global or local signals, which enable us to understand cellular signaling and behavior in distinct dimensions. This review presents recent advancements in global and local signal generators, highlighting their applications in studying temporal and spatial signaling activity. Global signals can be generated using microfluidic or photochemical approaches. Local signal sources can be created using living or artificial cells in combination with different control methods. We also address the strengths and limitations of each signal generator type, discussing challenges and potential extensions for future research. These approaches are expected to continue to facilitate on-going research to discover novel and intriguing cellular signaling mechanisms.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
14
|
Liu L, Wang C, Liu F, Zhao H. Polymerization-Induced Proteinosome Formation Initiated by Artificial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4456-4465. [PMID: 36926885 DOI: 10.1021/acs.langmuir.3c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cellular communication is essential for living cells to coordinate the individual cellular responses and make collective behaviors. In the past decade, the communications between artificial cells have aroused great interest due to the potential applications of the structures in bioscience and biotechnology. To mimic the cellular communication, artificial cell assisted synthesis of proteinosomes was studied in this research. Multienzyme proteinosomes with glucose oxidase (GOx) and horseradish peroxidase (HRP) decorated on the membranes were synthesized by the thermally triggered self-assembly approach. Free radicals produced in a cascade reaction taking place on the surfaces of the multienzyme proteinosomes initiated reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAM at a temperature above LCST of PNIPAM in the presence of bovine serum albumin (BSA) or alcohol dehydrogenase (ADH)/acetaldehyde dehydrogenase (ALDH), and daughter proteinosomes with BSA or ADH/ALDH on the surfaces were fabricated. The structures of the GOx/HRP initiator proteinosomes, and the synthesized daughter proteinosomes were characterized with transmission electron microscopy, atomic force microscopy, fluorescence microscopy, dynamic light scattering, and micro-DSC. Enzyme activity assays demonstrate the high bioactivities of the enzymes on the surfaces of the initiator and the synthesized daughter proteinosomes.
Collapse
Affiliation(s)
- Luyang Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Chen Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Fang Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| |
Collapse
|
15
|
Wang H, Stehr AM, Singh J, Zlatar L, Hartmann A, Evert K, Naschberger E, von Stillfried S, Boor P, Muñoz LE, Knopf J, Stürzl M, Herrmann M. Anti-DNA-IgM Favors the Detection of NET-Associated Extracellular DNA. Int J Mol Sci 2023; 24:ijms24044101. [PMID: 36835515 PMCID: PMC9958910 DOI: 10.3390/ijms24044101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
During inflammatory responses, neutrophils enter the sites of attack where they execute various defense mechanisms. They (I) phagocytose microorganisms, (II) degranulate to release cytokines, (III) recruit various immune cells by cell-type specific chemokines, (IV) secrete anti-microbials including lactoferrin, lysozyme, defensins and reactive oxygen species, and (V) release DNA as neutrophil extracellular traps (NETs). The latter originates from mitochondria as well as from decondensed nuclei. This is easily detected in cultured cells by staining of DNA with specific dyes. However, in tissues sections the very high fluorescence signals emitted from the condensed nuclear DNA hamper the detection of the widespread, extranuclear DNA of the NETs. In contrast, when we employ anti-DNA-IgM antibodies, they are unable to penetrate deep into the tightly packed DNA of the nucleus, and we observe a robust signal for the extended DNA patches of the NETs. To validate anti-DNA-IgM, we additionally stained the sections for the NET-markers histone H2B, myeloperoxidase, citrullinated histone H3, and neutrophil elastase. Altogether, we have described a fast one-step procedure for the detection of NETs in tissue sections, which provides new perspectives to characterize neutrophil-associated immune reactions in disease.
Collapse
Affiliation(s)
- Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Antonia Margarethe Stehr
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Katja Evert
- Institut für Pathologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | - Peter Boor
- Institute of Pathology, University Clinic of the RWTH Aachen, 52074 Aachen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
16
|
Egan M, Kuscu M, Barros MT, Booth M, Llopis-Lorente A, Magarini M, Martins DP, Schäfer M, Stano P. Toward Interdisciplinary Synergies in Molecular Communications: Perspectives from Synthetic Biology, Nanotechnology, Communications Engineering and Philosophy of Science. Life (Basel) 2023; 13:208. [PMID: 36676156 PMCID: PMC9861838 DOI: 10.3390/life13010208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Within many chemical and biological systems, both synthetic and natural, communication via chemical messengers is widely viewed as a key feature. Often known as molecular communication, such communication has been a concern in the fields of synthetic biologists, nanotechnologists, communications engineers, and philosophers of science. However, interactions between these fields are currently limited. Nevertheless, the fact that the same basic phenomenon is studied by all of these fields raises the question of whether there are unexploited interdisciplinary synergies. In this paper, we summarize the perspectives of each field on molecular communications, highlight potential synergies, discuss ongoing challenges to exploit these synergies, and present future perspectives for interdisciplinary efforts in this area.
Collapse
Affiliation(s)
- Malcolm Egan
- Univ Lyon, INSA Lyon, INRIA, CITI, 69621 Villeurbanne, France
| | - Murat Kuscu
- Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Michael Taynnan Barros
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Michael Booth
- Department of Chemistry, University College London (UCL), London WC1H 0AJ, UK
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Politècnica de València, Camino de Vera, 46022 València, Spain
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Daniel P. Martins
- Walton Institute for Information and Communication Systems Science, South East Technological University (SETU), X91 P20H Waterford, Ireland
| | - Maximilian Schäfer
- Institute for Digital Communications, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
17
|
Zong W, Shao X, Li J, Chai Y, Hu X, Zhang X. Synthetic Intracellular Environments: From Basic Science to Applications. Anal Chem 2023; 95:535-549. [PMID: 36625127 DOI: 10.1021/acs.analchem.2c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Xiaotong Shao
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China.,Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar161006, China
| | - Yunhe Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Xinyu Hu
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou325035, China
| | - Xunan Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| |
Collapse
|