1
|
An Investigation of Limbs Exercise as a Treatment in Improving the Psychomotor Speed in Older Adults with Mild Cognitive Impairment. Brain Sci 2019; 9:brainsci9100277. [PMID: 31623274 PMCID: PMC6827026 DOI: 10.3390/brainsci9100277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives: This study investigated the effects of therapeutic structured limb exercises intended to improve psychomotor speed in older adults with mild cognitive impairment (MCI). Methods: Forty-four patients with mild cognitive impairment who met the inclusion criteria were selected and assigned randomly to either an experimental group (22 patients) or a control group (22 patients). The numbers of participants were selected based on the calculated sample effect size (N = 38). The study involved a 10-week intervention, in which participants completed structured limb exercises during 60-min training sessions delivered three times per week. Forty-one subjects completed the experimental programme. Scores in the Finger Tapping Test (FTT), Purdue Pegboard Test (PPT) and Montreal Cognitive Assessment (MoCA), along with electroencephalography (EEG) data, were collected before, during and after the intervention. The experimental and control groups were compared using repeated measures analysis of variance. Results: The patients with MCI in the experimental group achieved significantly improved scores in the FTT, the PPT and all dimensions of the MoCA. Moreover, these patients exhibited significant increases in the alpha and beta EEG wave power values in all brain areas of MCI patients, indicating that limb exercise training positively influenced their brain functions. Conclusions: The results conclude that a structured therapeutic limb exercise intervention can effectively improve psychomotor speed in patients with MCI and mitigate declines in cognitive function. This training intervention appears to be effective as a treatment for community-dwelling patients with MCI.
Collapse
|
2
|
Thanos PK, Hamilton J, O'Rourke JR, Napoli A, Febo M, Volkow ND, Blum K, Gold M. Dopamine D2 gene expression interacts with environmental enrichment to impact lifespan and behavior. Oncotarget 2017; 7:19111-23. [PMID: 26992232 PMCID: PMC4991369 DOI: 10.18632/oncotarget.8088] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
Aging produces cellular, molecular, and behavioral changes affecting many areas of the brain. The dopamine (DA) system is known to be vulnerable to the effects of aging, which regulate behavioral functions such as locomotor activity, body weight, and reward and cognition. In particular, age-related DA D2 receptor (D2R) changes have been of particular interest given its relationship with addiction and other rewarding behavioral properties. Male and female wild-type (Drd2 +/+), heterozygous (Drd2 +/−) and knockout (Drd2 −/−) mice were reared post-weaning in either an enriched environment (EE) or a deprived environment (DE). Over the course of their lifespan, body weight and locomotor activity was assessed. While an EE was generally found to be correlated with longer lifespan, these increases were only found in mice with normal or decreased expression of the D2 gene. Drd2 +/+ EE mice lived nearly 16% longer than their DE counterparts. Drd2 +/+ and Drd2 +/− EE mice lived 22% and 21% longer than Drd2 −/− EE mice, respectively. Moreover, both body weight and locomotor activity were moderated by environmental factors. In addition, EE mice show greater behavioral variability between genotypes compared to DE mice with respect to body weight and locomotor activity.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Joseph R O'Rourke
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Anthony Napoli
- Department of Psychology, Suffolk Community College, Riverhead, NY, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | | - Kenneth Blum
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Mark Gold
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Tan ZS, Spartano NL, Beiser AS, DeCarli C, Auerbach SH, Vasan RS, Seshadri S. Physical Activity, Brain Volume, and Dementia Risk: The Framingham Study. J Gerontol A Biol Sci Med Sci 2017; 72:789-795. [PMID: 27422439 DOI: 10.1093/gerona/glw130] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/19/2016] [Indexed: 11/14/2022] Open
Abstract
Background Several longitudinal studies found an inverse relationship between levels of physical activity and cognitive decline, dementia, and/or Alzheimer's disease (AD), but results have been inconsistent. We followed an older, community-based cohort for over a decade to examine the association of physical activity with the risk of incident dementia and subclinical brain MRI markers of dementia. Methods The physical activity index (PAI) was assessed in the Framingham Study Original and Offspring cohorts, aged 60 years or older. We examined the association between PAI and risk of incident all-cause dementia and AD in participants of both cohorts who were cognitively intact and had available PAI (n = 3,714; 54% women; mean age = 70±7 years). We additionally examined the association between PAI and brain MRI in the Offspring cohort (n = 1,987). Results Over a decade of follow-up, 236 participants developed dementia (188 AD). Participants in the lowest quintile of PAI had an increased risk of incident dementia compared with those in higher quintiles (hazard ratio [HR] = 1.50, 95% confidence interval [CI] = 1.04-1.97, p = .028) in a multivariable-adjusted model. Secondary analysis revealed that this relation was limited to participants who were apolipoprotein (APO)E ε4 allele noncarriers (HR = 1.58, 95% CI = 1.08-2.32; p = .018) and strongest in participants aged 75 years or older. PAI was also linearly related to total brain and hippocampal volumes (β ± SE = 0.24±0.06; p < .01 and 0.004±0.001; p = .003, respectively). Conclusion Low physical activity is associated with a higher risk for dementia in older individuals, suggesting that a reduced risk of dementia and higher brain volumes may be additional health benefits of maintaining physical activity into old age.
Collapse
Affiliation(s)
- Zaldy S Tan
- Division of Geriatric Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles.,The Framingham Heart Study, Massachusetts
| | - Nicole L Spartano
- The Framingham Heart Study, Massachusetts.,Section of Preventative Medicine and Epidemiology and
| | - Alexa S Beiser
- The Framingham Heart Study, Massachusetts.,Department of Neurology, Boston University School of Medicine, Massachusetts.,Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | | | - Sanford H Auerbach
- The Framingham Heart Study, Massachusetts.,Department of Neurology, Boston University School of Medicine, Massachusetts
| | - Ramachandran S Vasan
- The Framingham Heart Study, Massachusetts.,Section of Preventative Medicine and Epidemiology and
| | | |
Collapse
|
4
|
Perini R, Bortoletto M, Capogrosso M, Fertonani A, Miniussi C. Acute effects of aerobic exercise promote learning. Sci Rep 2016; 6:25440. [PMID: 27146330 PMCID: PMC4857085 DOI: 10.1038/srep25440] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/15/2016] [Indexed: 11/29/2022] Open
Abstract
The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.
Collapse
Affiliation(s)
- Renza Perini
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marta Bortoletto
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Michela Capogrosso
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Anna Fertonani
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Carlo Miniussi
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| |
Collapse
|
5
|
Mueller K, Möller HE, Horstmann A, Busse F, Lepsien J, Blüher M, Stumvoll M, Villringer A, Pleger B. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity. Front Hum Neurosci 2015; 9:372. [PMID: 26190989 PMCID: PMC4486867 DOI: 10.3389/fnhum.2015.00372] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022] Open
Abstract
Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing.
Collapse
Affiliation(s)
- Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Annette Horstmann
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Integrated Research and Treatment Center (IFB) Adiposity Diseases Leipzig, Germany
| | - Franziska Busse
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Jöran Lepsien
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Matthias Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases Leipzig, Germany ; Department of Internal Medicine Clinic for Endocrinology and Nephrology, University Hospital Leipzig Leipzig, Germany
| | - Michael Stumvoll
- Department of Internal Medicine Clinic for Endocrinology and Nephrology, University Hospital Leipzig Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Integrated Research and Treatment Center (IFB) Adiposity Diseases Leipzig, Germany ; Clinic for Cognitive Neurology, University Hospital Leipzig Leipzig, Germany
| | - Burkhard Pleger
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic for Cognitive Neurology, University Hospital Leipzig Leipzig, Germany
| |
Collapse
|
6
|
Clark PJ, Ghasem PR, Mika A, Day HE, Herrera JJ, Greenwood BN, Fleshner M. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: A possible role for plasticity in adenosine receptors. Behav Brain Res 2014; 272:252-63. [PMID: 25017571 DOI: 10.1016/j.bbr.2014.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/22/2014] [Accepted: 07/03/2014] [Indexed: 01/22/2023]
Abstract
Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was twofold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance.
Collapse
Affiliation(s)
- Peter J Clark
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States.
| | - Parsa R Ghasem
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States
| | - Agnieszka Mika
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States
| | - Heidi E Day
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States; Department of Psychology & Neuroscience, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO 80309, United States
| | - Jonathan J Herrera
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States
| | - Benjamin N Greenwood
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States
| | - Monika Fleshner
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, United States
| |
Collapse
|
7
|
Markowitsch HJ. Memory, emotion, and age: the work of kinugawa et Al. (2013). Front Psychiatry 2014; 5:58. [PMID: 24904441 PMCID: PMC4035090 DOI: 10.3389/fpsyt.2014.00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hans J Markowitsch
- Department of Physiological Psychology, University of Bielefeld , Bielefeld , Germany ; Center of Excellence Cognitive Interaction Technology, University of Bielefeld , Bielefeld , Germany
| |
Collapse
|
8
|
Mariotti R, Fattoretti P, Malatesta M, Nicolato E, Sandri M, Zancanaro C. Forced mild physical training improves blood volume in the motor and hippocampal cortex of old mice. J Nutr Health Aging 2014; 18:178-83. [PMID: 24522471 DOI: 10.1007/s12603-013-0384-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To assess the effect of mild forced physical training on cerebral blood volume (CBV) and other brain parameters in old mice. SETTING Treadmill in the animal house. PARTICIPANTS Thirty old (>25 mo) male mice were randomly assigned to one of three groups, exercise (E), exercise plus testosterone (T) (ET), and rest (C). INTERVENTION Mild physical training on treadmill (30 min a day at belt speed = 8 m/min, five days a week) with or without one weekly injection of testosterone. MEASUREMENTS CBV, quantitative transverse relaxation time (T2) maps, and cortical thickness were measured by magnetic resonance imaging. RESULTS A significant increase of CBV was found in the motor and hippocampal cortex of E and ET mice; cortical thickness was not affected. T2 maps analysis suggested that water distribution did not change. T administration did not add to the effect of physical training. CONCLUSION This work provides first quantitative evidence that exercise initiated at old age is able to improve the hemodynamic status of the brain cortex in key regions for movement and cognition without inducing edema.
Collapse
Affiliation(s)
- R Mariotti
- Prof. Carlo Zancanaro, DSNNMM, Sezione di Anatomia e Istologia; Strada Le Grazie 8, I-37134 Verona, Italy. Tel. +39 045 8027155; Fax. +39 045 8027163, E-mail address:
| | | | | | | | | | | |
Collapse
|
9
|
Shatil E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Front Aging Neurosci 2013; 5:8. [PMID: 23531885 PMCID: PMC3607803 DOI: 10.3389/fnagi.2013.00008] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/26/2013] [Indexed: 11/13/2022] Open
Abstract
Cognitive training and aerobic training are known to improve cognitive functions. To examine the separate and combined effects of such training on cognitive performance, four groups of healthy older adults embarked on a 4 months cognitive and/or mild aerobic training. A first group [n = 33, mean age = 80 (66-90)] engaged in cognitive training, a second [n = 29, mean age = 81 (65-89)] in mild aerobic training, a third [n = 29, mean age = 79 (70-93)] in the combination of both, and a fourth [n = 31, mean age = 79 (71-92)] control group engaged in book-reading activity. The outcome was a well-validated multi-domain computerized cognitive evaluation for older adults. The results indicate that, when compared to older adults who did not engage in cognitive training (the mild aerobic and control groups) older adults who engaged in cognitive training (separate or combined training groups) showed significant improvement in cognitive performance on Hand-Eye Coordination, Global Visual Memory (GVM; working memory and long-term memory), Speed of Information Processing, Visual Scanning, and Naming. Indeed, individuals who did not engage in cognitive training showed no such improvements. Those results suggest that cognitive training is effective in improving cognitive performance and that it (and not mild aerobic training) is driving the improvement in the combined condition. Results are discussed in terms of the special circumstances of aerobic and cognitive training for older adults who are above 80 years of age.
Collapse
Affiliation(s)
- Evelyn Shatil
- CogniFit Inc. New York, NY, USA ; The Center for Psychobiological Research, Max Stern Academic College of Emek Yezreel Jezreel Valley, Israel
| |
Collapse
|
10
|
Swain RA, Berggren KL, Kerr AL, Patel A, Peplinski C, Sikorski AM. On aerobic exercise and behavioral and neural plasticity. Brain Sci 2012; 2:709-44. [PMID: 24961267 PMCID: PMC4061809 DOI: 10.3390/brainsci2040709] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/01/2012] [Accepted: 11/13/2012] [Indexed: 12/28/2022] Open
Abstract
Aerobic exercise promotes rapid and profound alterations in the brain. Depending upon the pattern and duration of exercise, these changes in the brain may extend beyond traditional motor areas to regions and structures normally linked to learning, cognition, and emotion. Exercise-induced alterations may include changes in blood flow, hormone and growth factor release, receptor expression, angiogenesis, apoptosis, neurogenesis, and synaptogenesis. Together, we believe that these changes underlie elevations of mood and prompt the heightened behavioral plasticity commonly observed following adoption of a chronic exercise regimen. In the following paper, we will explore both the psychological and psychobiological literatures relating to exercise effects on brain in both human and non-human animals and will attempt to link plastic changes in these neural structures to modifications in learned behavior and emotional expression. In addition, we will explore the therapeutic potential of exercise given recent reports that aerobic exercise may serve as a neuroprotectant and can also slow cognitive decline during normal and pathological aging.
Collapse
Affiliation(s)
- Rodney A Swain
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Kiersten L Berggren
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Abigail L Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61702, USA.
| | - Ami Patel
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Caitlin Peplinski
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Angela M Sikorski
- Department of Psychology, Texas A & M University-Texarkana, Texarkana, TX 75503, USA.
| |
Collapse
|
11
|
Murugesan N, Demarest TG, Madri JA, Pachter JS. Brain regional angiogenic potential at the neurovascular unit during normal aging. Neurobiol Aging 2012; 33:1004.e1-16. [PMID: 22019053 PMCID: PMC3266473 DOI: 10.1016/j.neurobiolaging.2011.09.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/18/2011] [Accepted: 09/15/2011] [Indexed: 12/19/2022]
Abstract
Given strong regional specialization of the brain, cerebral angiogenesis may be regionally modified during normal aging. To test this hypothesis, expression of a broad cadre of angiogenesis-associated genes was assayed at the neurovascular unit (NVU) in discrete brain regions of young versus aged mice by laser capture microdissection coupled to quantitative real-time polymerase chain reaction (PCR). Complementary quantitative capillary density/branching studies were performed as well. Effects of physical exercise were also assayed to determine if age-related trends could be reversed. Additionally, gene response to hypoxia was probed to highlight age-associated weaknesses in adapting to this angiogenic stress. Aging impacted resting expression of angiogenesis-associated genes at the NVU in a region-dependent manner. Physical exercise reversed some of these age-associated gene trends, as well as positively influenced cerebral capillary density/branching in a region-dependent way. Lastly, hypoxia revealed a weaker angiogenic response in aged brain. These results suggest heterogeneous changes in angiogenic capacity of the brain during normal aging, and imply a therapeutic benefit of physical exercise that acts at the level of the NVU.
Collapse
Affiliation(s)
- Nivetha Murugesan
- Blood-Brain Barrier Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington CT 06030
| | - Tyler G. Demarest
- Blood-Brain Barrier Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington CT 06030
| | - Joseph A. Madri
- Department of Pathology, Yale University School of Medicine, 310 Cedar St., LH115, New Haven, CT 06520
| | - Joel S. Pachter
- Blood-Brain Barrier Laboratory, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington CT 06030
| |
Collapse
|
12
|
Kerr AL, Cheng SY, Jones TA. Experience-dependent neural plasticity in the adult damaged brain. JOURNAL OF COMMUNICATION DISORDERS 2011; 44:538-48. [PMID: 21620413 PMCID: PMC3162127 DOI: 10.1016/j.jcomdis.2011.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
UNLABELLED Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper extremity (hand and arm) impairments. A prolonged and widespread process of repair and reorganization of surviving neural circuits is instigated by injury to the adult brain. When experience impacts these same neural circuits, it interacts with degenerative and regenerative cascades to shape neural reorganization and functional outcome. This is evident in the cortical plasticity resulting from compensatory reliance on the "good" forelimb in rats with unilateral sensorimotor cortical infarcts. Behavioral interventions (e.g., rehabilitative training) can drive functionally beneficial neural reorganization in the injured hemisphere. However, experience can have both behaviorally beneficial and detrimental effects. The interactions between experience-dependent and injury-induced neural plasticity are complex, time-dependent, and varied with age and other factors. A better understanding of these interactions is needed to understand how to optimize brain remodeling and functional outcome. LEARNING OUTCOMES Readers will be able to describe (a) experience effects that are maladaptive for behavioral outcome after brain damage, (b) manipulations of experience that drive functionally beneficial neural plasticity, and (c) reasons why rehabilitative training effects can be expected to vary with age, training duration and timing.
Collapse
Affiliation(s)
- Abigail L. Kerr
- Psychology Department and Neuroscience Institute, The University of Texas at Austin, Austin, TX, USA
| | - Shao-Ying Cheng
- Psychology Department and Neuroscience Institute, The University of Texas at Austin, Austin, TX, USA
| | - Theresa A. Jones
- Psychology Department and Neuroscience Institute, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
13
|
Foster PP, Rosenblatt KP, Kuljiš RO. Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer's disease. Front Neurol 2011; 2:28. [PMID: 21602910 PMCID: PMC3092070 DOI: 10.3389/fneur.2011.00028] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 12/17/2022] Open
Abstract
Lifestyle factors such as intellectual stimulation, cognitive and social engagement, nutrition, and various types of exercise appear to reduce the risk for common age-associated disorders such as Alzheimer’s disease (AD) and vascular dementia. In fact, many studies have suggested that promoting physical activity can have a protective effect against cognitive deterioration later in life. Slowing or a deterioration of walking speed is associated with a poor performance in tests assessing psychomotor speed and verbal fluency in elderly individuals. Fitness training influences a wide range of cognitive processes, and the largest positive impact observed is for executive (a.k.a. frontal lobe) functions. Studies show that exercise improves additional cognitive functions such as tasks mediated by the hippocampus, and result in major changes in plasticity in the hippocampus. Interestingly, this exercise-induced plasticity is also pronounced in APOE ε4 carriers who express a risk factor for late-onset AD that may modulate the effect of treatments. Based on AD staging by Braak and Braak (1991) and Braak et al. (1993) we propose that the effects of exercise occur in two temporo-spatial continua of events. The “inward” continuum from isocortex (neocortex) to entorhinal cortex/hippocampus for amyloidosis and a reciprocal “outward” continuum for neurofibrillary alterations. The exercise-induced hypertrophy of the hippocampus at the core of these continua is evaluated in terms of potential for prevention to stave off neuronal degeneration. Exercise-induced production of growth factors such as the brain-derived neurotrophic factor (BDNF) has been shown to enhance neurogenesis and to play a key role in positive cognitive effects. Insulin-like growth factor (IGF-1) may mediate the exercise-induced response to exercise on BDNF, neurogenesis, and cognitive performance. It is also postulated to regulate brain amyloid β (Aβ) levels by increased clearance via the choroid plexus. Growth factors, specifically fibroblast growth factor and IGF-1 receptors and/or their downstream signaling pathways may interact with the Klotho gene which functions as an aging suppressor gene. Neurons may not be the only cells affected by exercise. Glia (astrocytes and microglia), neurovascular units and the Fourth Element may also be affected in a differential fashion by the AD process. Analyses of these factors, as suggested by the multi-dimensional matrix approach, are needed to improve our understanding of this complex multi-factorial process, which is increasingly relevant to conquering the escalating and intersecting world-wide epidemics of dementia, diabetes, and sarcopenia that threaten the global healthcare system. Physical activity and interventions aimed at enhancing and/or mimicking the effects of exercise are likely to play a significant role in mitigating these epidemics, together with the embryonic efforts to develop cognitive rehabilitation for neurodegenerative disorders.
Collapse
Affiliation(s)
- Philip P Foster
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch Galveston, TX, USA
| | | | | |
Collapse
|