1
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Villemagne VL, Doré V, Chong L, Kassiou M, Mulligan R, Feizpour A, Taylor J, Roesner M, Miller T, Rowe CC. Brain 11β-Hydroxysteroid Dehydrogenase Type 1 Occupancy by Xanamem™ Assessed by PET in Alzheimer's Disease and Cognitively Normal Individuals. J Alzheimers Dis 2024; 97:1463-1475. [PMID: 38250767 PMCID: PMC10836555 DOI: 10.3233/jad-220542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates intracellular cortisol and its inhibition by the small molecule inhibitor, Xanamem™, may provide a disease-modifying strategy for Alzheimer's disease (AD). Animal models suggest a range of 30-60% enzyme inhibition may suffice to provide neuroprotection. OBJECTIVE To determine the regional brain occupancy of 11β-HSD1 by Xanamem™ in cognitively normal participants (CN) and mild cognitive impairment (MCI)/mild AD patients to investigate potential dosing ranges for future efficacy studies. METHODS Seventeen MCI/AD and 23 CN were included. Regional brain time-activity curves (TAC), standardized uptake values (SUV40-60) and volume of distribution (VT) from Logan plot with image derived input function from 11C-TARACT positron emission tomography (PET) were used to assess the degree of 11β-HSD1 occupancy by increasing doses of Xanamem™ (5 mg, 10 mg, 20 mg or 30 mg daily for 7 days). RESULTS All measures showed high 11β-HSD1 occupancy with Xanamem to similar degree in CN and MCI/AD. The dose-response relationship was relatively flat above 5 mg. Respective median (interquartile range [Q1-Q3]) 11β-HSD1 occupancy in the MCI/AD and CN groups after treatment with 10 mg Xanamem were 80% [79-81%] and 75% [71-76%] in the neocortex, 69% [64-70%] and 61% [52-63%] in the medial temporal lobe, 80% [79-80%] and 73% [68-73%] in the basal ganglia, and 71% [67-75%] and 66% [62-68%] in the cerebellum. CONCLUSIONS TAC, SUV40-60, and VT measures indicate Xanamem achieves high target occupancy levels with near saturation at 10 mg daily. These data support exploration of doses of≤10 mg daily in future clinical studies.
Collapse
Affiliation(s)
- Victor L. Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent Doré
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
- CSIRO e-Health Research Centre, Brisbane, QLD, Australia
| | - Lee Chong
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
| | - Michael Kassiou
- The University of Sydney, School of Chemistry, Sydney, Australia
| | - Rachel Mulligan
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VA, Australia
| | - Azadeh Feizpour
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VA, Australia
| | | | | | | | - Christopher C. Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VA, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VA, Australia
| |
Collapse
|
3
|
Taylor J, Jaros M, Chen C, Harrison J, Hilt D. Plasma pTau181 Predicts Clinical Progression in a Phase 2 Randomized Controlled Trial of the 11β-HSD1 Inhibitor Xanamem® for Mild Alzheimer's Disease. J Alzheimers Dis 2024; 100:139-150. [PMID: 38848180 PMCID: PMC11307031 DOI: 10.3233/jad-231456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/09/2024]
Abstract
Background Blood biomarkers are proposed as a diagnostic alternative to amyloid PET or cerebrospinal fluid (CSF) analyses for the diagnosis of Alzheimer's disease (AD). Relatively little is known of the natural history of patients identified by different blood biomarkers. Objective To identify patients with elevated plasma phosphorylated tau (pTau)181 from a prior Phase 2a trial, and explore the natural histories of their clinical progression, and potential efficacy of Xanamem, a selective inhibitor of 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in these patients. Methods A prespecified, double-blind analysis was conducted in 72 participants with clinically diagnosed AD and available plasma samples from baseline and Week 12 of the "XanADu" Phase 2a trial of Xanamem versus placebo. The analysis prespecified plasma pTau181 > median to identify patients more likely to have AD ("H", > 6.74 pg/mL, n = 34). Cohen's d (d) of≥0.2 defined potential clinical significance. Results In the placebo group, H patients showed greater clinical progression compared to L patients (pTau181≤median) on ADCOMS (d = 0.55, p < 0.001), CDR-SB (d = 0.63, p < 0.001), MMSE (d = 0.52, p = 0.12), and ADAS-Cog14 (d = 0.53, p = 0.19). In H patients, a potentially clinically meaningful Xanamem treatment effect compared to placebo was seen in the CDR-SB (LS mean difference 0.6 units, d = 0.41, p = 0.09) and Neuropsychological Test Battery (NTB; LS mean difference 1.8 units, d = 0.26, p = 0.48) but not ADCOMS or ADAS-Cog14. Conclusions This trial demonstrates that elevated plasma pTau181 identifies participants more likely to have progressive AD and is a suitable method for enrichment in AD clinical trials. Xanamem treatment showed evidence of potential clinically meaningful benefits.
Collapse
Affiliation(s)
- Jack Taylor
- Actinogen Medical, Sydney, New South Wales, Australia
| | | | - Christopher Chen
- Department of Pharmacology, Memory Aging and Cognition Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Harrison
- Scottish Brain Sciences, Edinburgh, UK
- King’s College, London, UK
- Alzheimercentrum, AUmc, Amsterdam, The Netherlands
| | - Dana Hilt
- Actinogen Medical, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Wang C, Cui C, Xu P, Zhu L, Xue H, Chen B, Jiang P. Targeting PDK2 rescues stress-induced impaired brain energy metabolism. Mol Psychiatry 2023; 28:4138-4150. [PMID: 37188779 DOI: 10.1038/s41380-023-02098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Depression is a mental illness frequently accompanied by disordered energy metabolism. A dysregulated hypothalamus pituitary adrenal axis response with aberrant glucocorticoids (GCs) release is often observed in patients with depression. However, the associated etiology between GCs and brain energy metabolism remains poorly understood. Here, using metabolomic analysis, we showed that the tricarboxylic acid (TCA) cycle was inhibited in chronic social defeat stress (CSDS)-exposed mice and patients with first-episode depression. Decreased mitochondrial oxidative phosphorylation was concomitant with the impairment of the TCA cycle. In parallel, the activity of pyruvate dehydrogenase (PDH), the gatekeeper of mitochondrial TCA flux, was suppressed, which is associated with the CSDS-induced neuronal pyruvate dehydrogenase kinase 2 (PDK2) expression and consequently enhanced PDH phosphorylation. Considering the well-acknowledged role of GCs in energy metabolism, we further demonstrated that glucocorticoid receptors (GR) stimulated PDK2 expression by directly binding to its promoter region. Meanwhile, silencing PDK2 abrogated glucocorticoid-induced PDH inhibition, restored the neuronal oxidative phosphorylation, and improved the flux of isotope-labeled carbon (U-13C] glucose) into the TCA cycle. Additionally, in vivo, pharmacological inhibition and neuron-specific silencing of GR or PDK2 restored CSDS-induced PDH phosphorylation and exerted antidepressant activities against chronic stress exposure. Taken together, our findings reveal a novel mechanism of depression manifestation, whereby elevated GCs levels regulate PDK2 transcription via GR, thereby impairing brain energy metabolism and contributing to the onset of this condition.
Collapse
Affiliation(s)
- Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
| | - Pengfei Xu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Li Zhu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Hongjia Xue
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Beibei Chen
- ADFA School of Science, University of New South Wales, Canberra, ACT, Australia
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China.
| |
Collapse
|
5
|
Byun YG, Kim NS, Kim G, Jeon YS, Choi JB, Park CW, Kim K, Jang H, Kim J, Kim E, Han YM, Yoon KJ, Lee SH, Chung WS. Stress induces behavioral abnormalities by increasing expression of phagocytic receptor MERTK in astrocytes to promote synapse phagocytosis. Immunity 2023; 56:2105-2120.e13. [PMID: 37527657 DOI: 10.1016/j.immuni.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/09/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023]
Abstract
Childhood neglect and/or abuse can induce mental health conditions with unknown mechanisms. Here, we identified stress hormones as strong inducers of astrocyte-mediated synapse phagocytosis. Using in vitro, in vivo, and human brain organoid experiments, we showed that stress hormones increased the expression of the Mertk phagocytic receptor in astrocytes through glucocorticoid receptor (GR). In post-natal mice, exposure to early social deprivation (ESD) specifically activated the GR-MERTK pathway in astrocytes, but not in microglia. The excitatory post-synaptic density in cortical regions was reduced in ESD mice, and there was an increase in the astrocytic engulfment of these synapses. The loss of excitatory synapses, abnormal neuronal network activities, and behavioral abnormalities in ESD mice were largely prevented by ablating GR or MERTK in astrocytes. Our work reveals the critical roles of astrocytic GR-MERTK activation in evoking stress-induced abnormal behaviors in mice, suggesting GR-MERTK signaling as a therapeutic target for stress-induced mental health conditions.
Collapse
Affiliation(s)
- Youkyeong Gloria Byun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nam-Shik Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Gyuri Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yi-Seon Jeon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jong Bin Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Chan-Woo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jinkyeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yong-Mahn Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Brossaud J, Bosch-Bouju C, Marissal-Arvy N, Campas-Lebecque MN, Helbling JC, Webster SP, Walker BR, Fioramonti X, Ferreira G, Barat P, Corcuff JB, Moisan MP. Memory deficits in a juvenile rat model of type 1 diabetes are due to excess 11β-HSD1 activity, which is upregulated by high glucose concentrations rather than insulin deficiency. Diabetologia 2023; 66:1735-1747. [PMID: 37300580 DOI: 10.1007/s00125-023-05942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/28/2023] [Indexed: 06/12/2023]
Abstract
AIMS/HYPOTHESIS Children with diabetes may display cognitive alterations although vascular disorders have not yet appeared. Variations in glucose levels together with relative insulin deficiency in treated type 1 diabetes have been reported to impact brain function indirectly through dysregulation of the hypothalamus-pituitary-adrenal axis. We have recently shown that enhancement of glucocorticoid levels in children with type 1 diabetes is dependent not only on glucocorticoid secretion but also on glucocorticoid tissue concentrations, which is linked to 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. Hypothalamus-pituitary-adrenal axis dysfunction and memory alteration were further dissected in a juvenile rat model of diabetes showing that excess 11β-HSD1 activity within the hippocampus is associated with hippocampal-dependent memory deficits. Here, to investigate the causal relationships between diabetes, 11β-HSD1 activity and hippocampus-dependent memory deficits, we evaluated the beneficial effect of 11β-HSD1 inhibition on hippocampal-related memory in juvenile diabetic rats. We also examined whether diabetes-associated enhancement of hippocampal 11β-HSD1 activity is due to an increase in brain glucose concentrations and/or a decrease in insulin signalling. METHODS Diabetes was induced in juvenile rats by daily i.p. injection of streptozotocin for 2 consecutive days. Inhibition of 11β-HSD1 was obtained by administrating the compound UE2316 twice daily by gavage for 3 weeks, after which hippocampal-dependent object location memory was assessed. Hippocampal 11β-HSD1 activity was estimated by the ratio of corticosterone/dehydrocorticosterone measured by LC/MS. Regulation of 11β-HSD1 activity in response to changes in glucose or insulin levels was determined ex vivo on acute brain hippocampal slices. The insulin regulation of 11β-HSD1 was further examined in vivo using virally mediated knockdown of insulin receptor expression specifically in the hippocampus. RESULTS Our data show that inhibiting 11β-HSD1 activity prevents hippocampal-related memory deficits in diabetic juvenile rats. A significant increase (53.0±9.9%) in hippocampal 11β-HSD1 activity was found in hippocampal slices incubated in high glucose conditions (13.9 mmol/l) vs normal glucose conditions (2.8 mmol/l) without insulin. However, 11β-HSD1 activity was not affected by variations in insulin concentration either in the hippocampal slices or after a decrease in hippocampal insulin receptor expression. CONCLUSIONS/INTERPRETATION Together, these data demonstrate that an increase in 11β-HSD1 activity contributes to memory deficits observed in juvenile diabetic rats and that an excess of hippocampal 11β-HSD1 activity stems from high glucose levels rather than insulin deficiency. 11β-HSD1 might be a therapeutic target for treating cognitive impairments associated with diabetes.
Collapse
Affiliation(s)
- Julie Brossaud
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France.
- CHU Bordeaux, Nuclear Medicine, Pessac, France.
| | | | | | | | | | - Scott P Webster
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Brian R Walker
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Xavier Fioramonti
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| | - Pascal Barat
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
- CHU Bordeaux, Pediatric Endocrinology and DiaBEA Unit, Hôpital des Enfants, Bordeaux, France
| | - Jean-Benoît Corcuff
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
- CHU Bordeaux, Nuclear Medicine, Pessac, France
| | - Marie-Pierre Moisan
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux, France
| |
Collapse
|
7
|
Wheelan N, Seckl JR, Yau JLW. 11β-Hydroxysteroid dehydrogenase 1 deficiency prevents PTSD-like memory in young adult mice. Psychoneuroendocrinology 2022; 146:105945. [PMID: 36183622 DOI: 10.1016/j.psyneuen.2022.105945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/21/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by the co-existence of a persistent strong memory of the traumatic experience and amnesia for the peritraumatic context. Most animal models, however, fail to account for the contextual amnesia which is considered to play a critical role in the etiology of PTSD intrusive memories. It is also unclear how aging affects PTSD-like memory. Glucocorticoids alter the formation and retention of fear-associated memory. Here, we investigated whether a deficiency of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) (an intracellular glucocorticoid generating enzyme) and aging modulates fear conditioning and PTSD-like memory in mice. We first measured memory in 6 months and 24 months old 11β-HSD1 deficient (HSD1 KO) and wildtype (WT) mice following paired tone-shock fear conditioning. Then, separate groups of mice were exposed to restraint stress immediately after unpaired tone-shock contextual fear conditioning. Compared with young controls, aged WT mice exhibited enhanced auditory cued fear memory, but contextual fear memory was not different. Contextual fear memory retention was attenuated in both young and aged HSD1 KO mice. In contrast, auditory cued fear memory was reduced 24 h after training only in aged HSD1 KO mice. When fear conditioned with stress, WT mice displayed PTSD-like memory (i.e., increased fear to tone not predictive of shock and reduced fear to 'aversive' conditioning context); this was unchanged with aging. In contrast, young HSD1 KO mice fear conditioned with stress showed normal fear memory (i.e., increased fear response to conditioning context), as observed in WT mice fear conditioned alone. While aged HSD1 KO mice fear conditioned with stress also displayed normal contextual fear memory, the fear response to the 'safe' tone remained. Thus, a deficiency of 11β-HSD1 protects against both amnesia for the conditioning context and hypermnesia for a salient tone in young adult mice but only contextual amnesia is prevented in aged mice. These results suggest that brain 11β-HSD1 generated glucocorticoids make a significant contribution to fear conditioning and PTSD-like memory. 11β-HSD1 inhibition may be useful in prevention and/or treatment of PTSD.
Collapse
Affiliation(s)
- Nicola Wheelan
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Jonathan R Seckl
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Joyce L W Yau
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
8
|
Zappelli E, Daniele S, Vergassola M, Ceccarelli L, Chelucci E, Mangano G, Durando L, Ragni L, Martini C. A specific combination of nutraceutical Ingredients exerts cytoprotective effects in human cholinergic neurons. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Kent M, Kovalev D, Hart B, Leserve D, Handford G, Vavra D, Lambert K. The emotional impact of disrupted environmental contexts: Enrichment loss and coping profiles influence stress response recovery in Long-Evans rats. J Neuroendocrinol 2022; 34:e13179. [PMID: 35866213 PMCID: PMC9540572 DOI: 10.1111/jne.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
With increasing rates of anxiety and mood disorders across the world, there is an unprecedented need for preclinical animal models to generate translational results for humans experiencing disruptive emotional symptoms. Considering that life events resulting in a perception of loss are correlated with depressive symptoms, the enrichment-loss rodent model offers promise as a translational model for stress-initiated psychiatric disorders. Additionally, predisposed temperament characteristics such as coping styles have been found to influence an individual's stress response. Accordingly, male rats were profiled as either consistent or flexible copers and assigned to one of three environments: standard laboratory housing, enriched environment, or enriched environment exposure followed by downsizing to standard laboratory cages (i.e., enrichment-loss group). Throughout the study, several behaviors were assessed to determine stress, social, and reward-processing responses. To assess recovery of the stress response, fecal samples were collected following the swim stress in 3-h increments to determine the recovery trajectory of corticosterone (CORT) and dehydroepiandrosterone (DHEA) metabolite levels. Upon death, neural markers of neuroplasticity including doublecortin, glial fibrillary acidic factor, and brain-derived neurotrophic factor were assessed via immunohistochemistry. Results indicated the flexible coping animals in the continuous enriched group had higher DHEA/CORT ratios (consistent with adaptive responses in past research); furthermore, the enrichment-loss animals exhibited a blunted CORT response throughout the assessments and enriched flexible copers had faster CORT recovery rates than consistent copers. Standard housed animals exhibited less exploratory behavior in the open field task and continuous enriched, flexible rats consumed more food rewards than the other groups. No differences in neuroplasticity neural markers were observed. In sum, the results of the present study support past research indicating the disruptive consequences of enrichment-loss, providing evidence that the model represents a valuable approach for the investigation of neurobiological mechanisms contributing to interindividual variability in responses to changing experiential landscapes.
Collapse
Affiliation(s)
- Molly Kent
- Department of BiologyVirginia Military InstituteLexingtonVAUSA
| | - Dmitry Kovalev
- Department of PsychologyUniversity of RichmondRichmondVAUSA
| | - Benjamin Hart
- Department of PsychologyUniversity of RichmondRichmondVAUSA
| | | | | | - Dylan Vavra
- Department of PsychologyUniversity of RichmondRichmondVAUSA
| | - Kelly Lambert
- Department of PsychologyUniversity of RichmondRichmondVAUSA
| |
Collapse
|
10
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
11
|
Chaudhari PR, Singla A, Vaidya VA. Early Adversity and Accelerated Brain Aging: A Mini-Review. Front Mol Neurosci 2022; 15:822917. [PMID: 35392273 PMCID: PMC8980717 DOI: 10.3389/fnmol.2022.822917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Early adversity is an important risk factor that influences brain aging. Diverse animal models of early adversity, including gestational stress and postnatal paradigms disrupting dam-pup interactions evoke not only persistent neuroendocrine dysfunction and anxio-depressive behaviors, but also perturb the trajectory of healthy brain aging. The process of brain aging is thought to involve hallmark features such as mitochondrial dysfunction and oxidative stress, evoking impairments in neuronal bioenergetics. Furthermore, brain aging is associated with disrupted proteostasis, progressively defective epigenetic and DNA repair mechanisms, the build-up of neuroinflammatory states, thus cumulatively driving cellular senescence, neuronal and cognitive decline. Early adversity is hypothesized to evoke an “allostatic load” via an influence on several of the key physiological processes that define the trajectory of healthy brain aging. In this review we discuss the evidence that animal models of early adversity impinge on fundamental mechanisms of brain aging, setting up a substratum that can accelerate and compromise the time-line and nature of brain aging, and increase risk for aging-associated neuropathologies.
Collapse
|
12
|
Doi M, Oka Y, Taniguchi M, Sato M. Transient expansion of the expression region of Hsd11b1, encoding 11β-hydroxysteroid dehydrogenase type 1, in the developing mouse neocortex. J Neurochem 2021; 159:778-788. [PMID: 34490902 DOI: 10.1111/jnc.15505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/04/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
Corticosteroids are stress-related hormones that maintain homeostasis. The most effective corticosteroids are corticosterone (CORT) in rodents and cortisol in primates. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1; EC 1.1.1.146), encoded by Hsd11b1, is a key regulator of the local concentration of CORT/cortisol. Hsd11b1 expression in layer 5 of the primary somatosensory cortex has been shown in adult mice. However, its localization in the entire neocortex, especially during development, has not been fully addressed. Here, we established robust and dynamic expression profiles of Hsd11b1 in the developing mouse neocortex. Hsd11b1 was found mostly in pyramidal neurons. By retrograde tracing, we observed that some Hsd11b1-positive cells were projection neurons, indicating that at least some were excitatory. At postnatal day 0 (P0), Hsd11b1 was expressed in the deep layer of the somatosensory cortex. Then, from P3 to P8, the expression area expanded broadly; it was observed in layers 4 and 5, spanning the whole neocortex, including the primary motor cortex (M1) and the primary visual cortex (V1). The positive region gradually narrowed from P14 onwards and was ultimately limited to layer 5 of the somatosensory cortex at P26 and later. Furthermore, we administered CORT to nursing dams to increase the systemic CORT level of their pups. Here, we observed a reduced number of Hsd11b1-positive cells in the neocortex of these pups. Our observation suggests that Hsd11b1 expression in the developing neocortex is affected by systemic CORT levels. It is possible that stress on mothers influences the neocortical development of their children.
Collapse
Affiliation(s)
- Miyuki Doi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Oka
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Suita, Osaka, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Suita, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Tian T, Young CB, Zhu Y, Xu J, He Y, Chen M, Hao L, Jiang M, Qiu J, Chen X, Qin S. Socioeconomic Disparities Affect Children's Amygdala-Prefrontal Circuitry via Stress Hormone Response. Biol Psychiatry 2021; 90:173-181. [PMID: 33832707 DOI: 10.1016/j.biopsych.2021.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The socioeconomic status (SES) of a family can affect almost all aspects of a child's life, including health and current and future achievement. The potential adverse effects of low SES on children's emotional development are thought to result from proximal factors such as stress. The underlying neurobiological mechanisms, however, remain elusive. METHODS The effect of SES on children's integrative cortisol secretion and its modulations on emotion-related brain systems and connectivity were examined in children aged 6 to 12 years. In study 1, we investigated the relationship between SES and cortisol secretion in 239 children. In study 2, using resting-state and task-dependent functional magnetic resonance imaging in a subsample of 50 children, we investigated how SES affects children's amygdala-prefrontal functional organization through cortisol secretion. RESULTS Children from lower SES exhibited lower cortisol secretion, considering basal cortisol, nocturnal cortisol activity during sleep, and cortisol awakening response, which mediated higher amygdala nuclei intrinsic functional connectivity with the medial and dorsolateral prefrontal cortex (PFC). Critically, these children also exhibited higher task-evoked ventromedial PFC activity through higher intrinsic connectivity of the centromedial amygdala with the medial PFC. They also exhibited higher functional coupling of the centromedial amygdala with the dorsolateral PFC when processing negative emotions. CONCLUSIONS This study demonstrates that SES shapes children's amygdala-prefrontal circuitry through stress-sensitive cortisol secretion, with the most prominent effect in the centromedial amygdala's functional coordination with the ventromedial and dorsolateral PFC involved in processing negative emotions. Our findings provide important insight into the neurobiological etiology underlying how socioeconomic disparities shape children's emotional development.
Collapse
Affiliation(s)
- Ting Tian
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Yannan Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jiahua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Ying He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Menglu Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Lei Hao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; College of Teacher Education, Southwest University, Chongqing, China
| | - Min Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Xu Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
14
|
Chu SF, Zhang Z, Zhou X, He WB, Yang B, Cui LY, He HY, Wang ZZ, Chen NH. Low corticosterone levels attenuate late life depression and enhance glutamatergic neurotransmission in female rats. Acta Pharmacol Sin 2021; 42:848-860. [PMID: 33028984 PMCID: PMC8149629 DOI: 10.1038/s41401-020-00536-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Sustained elevation of corticosterone (CORT) is one of the common causes of aging and major depression disorder. However, the role of elevated CORT in late life depression (LLD) has not been elucidated. In this study, 18-month-old female rats were subjected to bilateral adrenalectomy or sham surgery. Their CORT levels in plasma were adjusted by CORT replacement and the rats were divided into high-level CORT (H-CORT), low-level CORT (L-CORT), and Sham group. We showed that L-CORT rats displayed attenuated depressive symptoms and memory defects in behavioral tests as compared with Sham or H-CORT rats. Furthermore, we showed that glutamatergic transmission was enhanced in L-CORT rats, evidenced by enhanced population spike amplitude (PSA) recorded from the dentate gyrus of hippocampus in vivo and increased glutamate release from hippocampal synaptosomes caused by high frequency stimulation or CORT exposure. Intracerebroventricular injection of an enzymatic glutamate scavenger system, glutamic-pyruvic transmine (GPT, 1 μM), significantly increased the PSA in Sham rats, suggesting that extracelluar accumulation of glutamate might be the culprit of impaired glutamatergic transmission, which was dependent on the uptake by Glt-1 in astrocytes. We revealed that hippocampal Glt-1 expression level in the L-CORT rats was much higher than in Sham and H-CORT rats. In a gradient neuron-astrocyte coculture, we found that the expression of Glt-1 was decreased with the increase of neural percentage, suggesting that impairment of Glt-1 might result from the high level of CORT contributed neural damage. In sham rats, administration of DHK that inhibited Glt-1 activity induced significant LLD symptoms, whereas administration of RIL that promoted glutamate uptake significantly attenuated LLD. All of these results suggest that glutamatergic transmission impairment is one of important pathogenesis in LLD induced by high level of CORT, which provide promising clues for the treatment of LLD.
Collapse
Affiliation(s)
- Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Bin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Bo Yang
- Department of Pharmacy, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, 300300, China
| | - Li-Yuan Cui
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Yuan He
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
15
|
Excitation-Inhibition Imbalance Leads to Alteration of Neuronal Coherence and Neurovascular Coupling under Acute Stress. J Neurosci 2020; 40:9148-9162. [PMID: 33087471 PMCID: PMC7673010 DOI: 10.1523/jneurosci.1553-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023] Open
Abstract
A single stressful event can cause morphologic and functional changes in neurons and even malfunction of vascular systems, which can lead to acute stress disorder or post-traumatic stress disorder. However, there is a lack of evidence regarding how acute stress impacts neuronal activity, the concurrent vascular response, and the relationship between these two factors, which is defined as neurovascular coupling. Here, using in vivo two-photon imaging, we found that NMDA-evoked calcium transients of excitatory neurons were impaired and that vasodilation of penetrating arterioles was concomitantly disrupted in acutely stressed male mice. Furthermore, acute stress altered the relationship between excitatory neuronal calcium coherence and vascular responses. By measuring NMDA-evoked excitatory and inhibitory neuronal calcium activity in acute brain slices, we confirmed that neuronal coherence both between excitatory neurons and between excitatory and inhibitory neurons was reduced by acute stress but restored by blockade of glucocorticoid receptor signaling. Furthermore, the ratio of sEPSCs to sIPSCs was altered by acute stress, suggesting that the excitation-inhibition balance was disrupted by acute stress. In summary, in vivo, ex vivo, and whole-cell recording studies demonstrate that acute stress modifies excitatory-inhibitory neuronal coherence, disrupts the excitation-inhibition balance, and causes consequent neurovascular coupling changes, providing critical insights into the neural mechanism of stress-induced disorders. SIGNIFICANCE STATEMENT Acute stress can cause pathologic conditions, such as acute stress disorder and post-traumatic stress disorder, by affecting the functions of neurons and blood vessels. However, investigations into the impacts of acute stress on neurovascular coupling, the tight connection between local neural activity and subsequent blood flow changes, are lacking. Through investigations at the in vivo, ex vivo, and whole-cell recording levels, we found that acute stress alters the NMDA-evoked vascular response, impairs the function and coherence of excitatory and inhibitory neurons, and disrupts the excitatory and inhibitory balance. These novel findings provide insights into the relevance of the excitatory-inhibitory balance, neuronal coherence, and neurovascular coupling to stress-induced disorders.
Collapse
|
16
|
Effects of age and social isolation on murine hippocampal biochemistry and behavior. Mech Ageing Dev 2020; 191:111337. [PMID: 32866520 DOI: 10.1016/j.mad.2020.111337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Social isolation (SI) is a major health risk in older people leading to cognitive decline. This study examined how SI and age influence performance in the novel object recognition (NOR) and elevated plus maze (EPM) tasks in C57BL/6 mice aged 3 or 24 months. Mice were group-housed (groups of 2-3) or isolated for 2 weeks prior to experimentation. Following NOR and EPM testing hippocampal norepinephrine (NE), 5, hydroxytryptamine (5-HT), 5, hydroxyindole acetic acid (5-HIAA), corticosterone (CORT) and interleukin-6 (IL-6) were determined and serum collected for basal CORT analysis. A separate set of mice were exposed to the forced swim test (FST), sacrificed immediately and serum CORT determined. SI impaired performance in the NOR and the FST, reduced hippocampal 5-HT, increased hippocampal IL-6 and increased serum CORT post-FST in young mice. Aged mice either failed to respond significantly to SI (NOR, FST, hippocampal 5-HT, serum CORT post FST) or SI had synergistic effects with age (hippocampal NE, 5-HIAA:5-HT). In conclusion, the lack of response to SI in the aged mice may affect health by preventing them adapting to new stressors, while the synergistic effects of SI with age would increase allostatic load and enhance the deleterious effects of the ageing process.
Collapse
|
17
|
Bettio LEB, Thacker JS, Rodgers SP, Brocardo PS, Christie BR, Gil-Mohapel J. Interplay between hormones and exercise on hippocampal plasticity across the lifespan. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165821. [PMID: 32376385 DOI: 10.1016/j.bbadis.2020.165821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
The hippocampus is a brain structure known to play a central role in cognitive function (namely learning and memory) as well as mood regulation and affective behaviors due in part to its ability to undergo structural and functional changes in response to intrinsic and extrinsic stimuli. While structural changes are achieved through modulation of hippocampal neurogenesis as well as alterations in dendritic morphology and spine remodeling, functional (i.e., synaptic) changes can be noted through the strengthening (i.e., long-term potentiation) or weakening (i.e., long-term depression) of the synapses. While age, hormone homeostasis, and levels of physical activity are some of the factors known to module these forms of hippocampal plasticity, the exact mechanisms through which these factors interact with each other at a given moment in time are not completely understood. It is well known that hormonal levels vary throughout the lifespan of an individual and it is also known that physical exercise can impact hormonal homeostasis. Thus, it is reasonable to speculate that hormone modulation might be one of the various mechanisms through which physical exercise differently impacts hippocampal plasticity throughout distinct periods of an individual's life. The present review summarizes the potential relationship between physical exercise and different types of hormones (namely sex, metabolic, and stress hormones) and how this relationship may mediate the effects of physical activity during three distinct life periods, adolescence, adulthood, and senescence. Overall, the vast majority of studies support a beneficial role of exercise in maintaining hippocampal hormonal levels and consequently, hippocampal plasticity, cognition, and mood regulation.
Collapse
Affiliation(s)
- Luis E B Bettio
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - Jonathan S Thacker
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - Shaefali P Rodgers
- Developmental, Cognitive & Behavioral Neuroscience Program, Department of Psychology, Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, TX, USA
| | - Patricia S Brocardo
- Department of Morphological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Brian R Christie
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC, Canada.
| |
Collapse
|
18
|
Rojic-Becker D, Portero-Tresserra M, Martí-Nicolovius M, Vale-Martínez A, Guillazo-Blanch G. Caloric restriction modulates the monoaminergic and glutamatergic systems in the hippocampus, and attenuates age-dependent spatial memory decline. Neurobiol Learn Mem 2019; 166:107107. [DOI: 10.1016/j.nlm.2019.107107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
|
19
|
Bonhomme D, Alfos S, Webster SP, Wolff M, Pallet V, Touyarot K. Vitamin A deficiency impairs contextual fear memory in rats: Abnormalities in the glucocorticoid pathway. J Neuroendocrinol 2019; 31:e12802. [PMID: 31613407 DOI: 10.1111/jne.12802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
Vitamin A and its active metabolite, retinoic acid (RA), play a key role in the maintenance of cognitive functions in the adult brain. Depletion of RA using the vitamin A deficiency (VAD) model in Wistar rats leads to spatial memory deficits in relation to elevated intrahippocampal basal corticosterone (CORT) levels and increased hippocampal 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. All of these effects are normalised by vitamin A supplementation. However, it is unknown whether vitamin A status also modulates contextual fear conditioning (CFC) in a glucocorticoid-associated fear memory task dependent on the functional integrity of the hippocampus. In the present study, we investigated the impact of VAD and vitamin A supplementation in adult male rats on fear memory processing, plasma CORT levels, hippocampal retinoid receptors and 11β-HSD1 expression following a novelty-induced stress. We also examined whether vitamin A supplementation or a single injection of UE2316, a selective 11β-HSD1 inhibitor, known to modulate local glucocorticoid levels, had any beneficial effects on contextual fear memory and biochemical parameters in VAD rats. We provide evidence that VAD rats exhibit a decreased fear conditioning response during training with a poor contextual fear memory 24 hours later. These VAD-induced cognitive impairments are associated with elevated plasma CORT levels under basal conditions, as well as following a stressful event, with saturated CORT release, altered hippocampal retinoid receptors and 11β-HSD1 expression. Vitamin A supplementation normalises VAD-induced fear conditioning training deficits and all biochemical effects, although it cannot prevent fear memory deficits. Moreover, a single injection of UE2316 not only impairs contextual fear memory, but also reduces plasma CORT levels, regardless of the vitamin A status and decreases slightly hippocampal 11β-HSD1 activity in VAD rats following stress. The present study highlights the importance of vitamin A status with respect to modulating fear memory conditioning in relation to plasma CORT levels and hippocampal 11β-HSD1.
Collapse
Affiliation(s)
- Damien Bonhomme
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
| | - Serge Alfos
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| | - Scott P Webster
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mathieu Wolff
- UMR 5287, CNRS, INCIA, Bordeaux, France
- UMR 5287, INCIA, Université de Bordeaux, Bordeaux, France
| | - Véronique Pallet
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| | - Katia Touyarot
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| |
Collapse
|
20
|
Puigoriol-Illamola D, Leiva R, Vázquez-Carrera M, Vázquez S, Griñán-Ferré C, Pallàs M. 11β-HSD1 Inhibition Rescues SAMP8 Cognitive Impairment Induced by Metabolic Stress. Mol Neurobiol 2019; 57:551-565. [PMID: 31399953 DOI: 10.1007/s12035-019-01708-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Ageing and obesity have been shown to increase the risk of cognitive decline and Alzheimer's disease (AD). Besides, elevated glucocorticoid (GCs) levels cause metabolic stress and have been associated with the neurodegenerative process. Direct pieces of evidence link the reduction of GCs caused by the inhibition of 11β-HSD type 1 (11β-HSD1) with cognitive improvement. In the present study, we investigated the beneficial effects of 11β-HSD1 inhibitor (i) RL-118 after high-fat diet (HFD) treatment in the senescence-accelerated mouse prone 8 (SAMP8). We found an improvement in glucose intolerance induced by HFD in mice treated with RL-118, a significant reduction in 11β-HSD1 and glucocorticoid receptor (GR) protein levels. Furthermore, specific modifications in the FGF21 activation after treatment with 11β-HSD1i, RL-118, which induced changes in SIRT1/PGC1α/AMPKα pathway, were found. Oxidative stress (OS) and reactive oxygen species (ROS), as well as inflammatory markers and microglial activation, were significantly diminished in HFD mice treated with 11β-HSD1i. Remarkably, treatment with 11β-HSD1i altered PERK pathway in both diet groups, increasing autophagy only in HFD mice group. After RL-118 treatment, a decrease in glycogen synthase kinase 3 (GSK3β) activation, Tau hyperphosphorylation, BACE1 protein levels and the product β-CTF were found. Increases in the non-amyloidogenic secretase ADAM10 protein levels and the product sAPPα were found in both treated mice, regardless of the diet. Consequently, beneficial effects on social behaviour and cognitive performance were found in treated mice. Thus, our results support the therapeutic strategy of selective 11β-HSD1i for the treatment of age-related cognitive decline and AD.
Collapse
Affiliation(s)
- Dolors Puigoriol-Illamola
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona, Spain
| | - Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Department de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Manel Vázquez-Carrera
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Department de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain. .,Institute of Neuroscience, University of Barcelona (NeuroUB), Barcelona, Spain.
| |
Collapse
|
21
|
Serotonin receptor HTR6-mediated mTORC1 signaling regulates dietary restriction-induced memory enhancement. PLoS Biol 2019; 17:e2007097. [PMID: 30883547 PMCID: PMC6438579 DOI: 10.1371/journal.pbio.2007097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/28/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Dietary restriction (DR; sometimes called calorie restriction) has profound beneficial effects on physiological, psychological, and behavioral outcomes in animals and in humans. We have explored the molecular mechanism of DR-induced memory enhancement and demonstrate that dietary tryptophan-a precursor amino acid for serotonin biosynthesis in the brain-and serotonin receptor 5-hydroxytryptamine receptor 6 (HTR6) are crucial in mediating this process. We show that HTR6 inactivation diminishes DR-induced neurological alterations, including reduced dendritic complexity, increased spine density, and enhanced long-term potentiation (LTP) in hippocampal neurons. Moreover, we find that HTR6-mediated mechanistic target of rapamycin complex 1 (mTORC1) signaling is involved in DR-induced memory improvement. Our results suggest that the HTR6-mediated mTORC1 pathway may function as a nutrient sensor in hippocampal neurons to couple memory performance to dietary intake.
Collapse
|
22
|
Infradian Rhythms of Resistance to a Dissociative Anesthetic in Wistar Male Rats under Normal Conditions and After Surgical Removal of the Adrenal Glands and Testes. Bull Exp Biol Med 2019; 166:413-416. [PMID: 30617706 DOI: 10.1007/s10517-019-04362-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Indexed: 10/27/2022]
Abstract
Daily dynamics of changes in the latency of a response to dissociative anesthetic tiletamine (time from injection to ataxia) was studied in mature Wistar rats. Both intramuscular and intravenous administration of the anesthetic was associated with 4-day oscillations of the latent period synchronous with the dynamics of changes in the concentration of glucocorticoid hormones. The period and phases of the infradian rhythm of resistance to the anesthetic remained unchanged after removal of both adrenal glands and testes and administration of corticosterone synthesis blocker trilostane diminishing the 4-day cycle of changes in corticosterone level. Therefore, hormones of the adrenal glands and testes do not play the key role in the mechanisms of formation of the 4-day infradian rhythm.
Collapse
|
23
|
Masana M, Westerholz S, Kretzschmar A, Treccani G, Liebl C, Santarelli S, Dournes C, Popoli M, Schmidt MV, Rein T, Müller MB. Expression and glucocorticoid-dependent regulation of the stress-inducible protein DRR1 in the mouse adult brain. Brain Struct Funct 2018; 223:4039-4052. [PMID: 30121783 PMCID: PMC6267262 DOI: 10.1007/s00429-018-1737-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022]
Abstract
Identifying molecular targets that are able to buffer the consequences of stress and therefore restore brain homeostasis is essential to develop treatments for stress-related disorders. Down-regulated in renal cell carcinoma 1 (DRR1) is a unique stress-induced protein in the brain and has been recently proposed to modulate stress resilience. Interestingly, DRR1 shows a prominent expression in the limbic system of the adult mouse. Here, we analyzed the neuroanatomical and cellular expression patterns of DRR1 in the adult mouse brain using in situ hybridization, immunofluorescence and Western blot. Abundant expression of DRR1 mRNA and protein was confirmed in the adult mouse brain with pronounced differences between distinct brain regions. The strongest DRR1 signal was detected in the neocortex, the CA3 region of the hippocampus, the lateral septum and the cerebellum. DRR1 was also present in circumventricular organs and its connecting regions. Additionally, DRR1 was present in non-neuronal tissues like the choroid plexus and ependyma. Within cells, DRR1 protein was distributed in a punctate pattern in several subcellular compartments including cytosol, nucleus as well as some pre- and postsynaptic specializations. Glucocorticoid receptor activation (dexamethasone 10 mg/kg s.c.) induced DRR1 expression throughout the brain, with particularly strong induction in white matter and fiber tracts and in membrane-rich structures. This specific expression pattern and stress modulation of DRR1 point to a role of DRR1 in regulating how cells sense and integrate signals from the environment and thus in restoring brain homeostasis after stressful challenges.
Collapse
Affiliation(s)
- Mercè Masana
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany. .,Translational Psychiatry, Department of Psychiatry and Psychotherapy and Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany. .,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain.
| | - Sören Westerholz
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Anja Kretzschmar
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Giulia Treccani
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università di Milano, Milan, Italy.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Claudia Liebl
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Sara Santarelli
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Carine Dournes
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università di Milano, Milan, Italy
| | - Mathias V Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Marianne B Müller
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany.,Translational Psychiatry, Department of Psychiatry and Psychotherapy and Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany.,Deutsches Resilienz-Zentrum, Mainz, Germany
| |
Collapse
|
24
|
Smith BM, Yao X, Chen KS, Kirby ED. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice. Front Aging Neurosci 2018; 10:142. [PMID: 29904345 PMCID: PMC5990613 DOI: 10.3389/fnagi.2018.00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/27/2018] [Indexed: 02/03/2023] Open
Abstract
The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function.
Collapse
Affiliation(s)
- Bryon M Smith
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Xinyue Yao
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Kelly S Chen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Elizabeth D Kirby
- Department of Psychology, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States.,Center for Chronic Brain Injury, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
25
|
Rensel MA, Ding JA, Pradhan DS, Schlinger BA. 11β-HSD Types 1 and 2 in the Songbird Brain. Front Endocrinol (Lausanne) 2018; 9:86. [PMID: 29593652 PMCID: PMC5857549 DOI: 10.3389/fendo.2018.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/23/2018] [Indexed: 12/29/2022] Open
Abstract
Glucocorticoid (GC) hormones act on the brain to regulate diverse functions, from behavior and homeostasis to the activity of the hypothalamic-pituitary-adrenal axis. Local regeneration and metabolism of GCs can occur in target tissues through the actions of the 11β-hydroxysteroid dehydrogenases [11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and 11 beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2), respectively] to regulate access to GC receptors. Songbirds have become especially important model organisms for studies of stress hormone action; however, there has been little focus on neural GC metabolism. Therefore, we tested the hypothesis that 11β-HSD1 and 11β-HSD2 are expressed in GC-sensitive regions of the songbird brain. Localization of 11β-HSD expression in these regions could provide precise temporal and spatial control over GC actions. We quantified GC sensitivity in zebra finch (Taeniopygia guttata) brain by measuring glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) expression across six regions, followed by quantification of 11β-HSD1 and 11β-HSD2 expression. We detected GR, MR, and 11β-HSD2 mRNA expression throughout the adult brain. Whereas 11β-HSD1 expression was undetectable in the adult brain, we detected low levels of expression in the brain of developing finches. Across several adult brain regions, expression of 11β-HSD2 covaried with GR and MR, with the exception of the cerebellum and hippocampus. It is possible that receptors in these latter two regions require direct access to systemic GC levels. Overall, these results suggest that 11β-HSD2 expression protects the adult songbird brain by rapid metabolism of GCs in a context and region-specific manner.
Collapse
Affiliation(s)
- Michelle A. Rensel
- The Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Laboratory of Neuroendocrinology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jessica A. Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Devaleena S. Pradhan
- Laboratory of Neuroendocrinology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Barney A. Schlinger
- Laboratory of Neuroendocrinology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
26
|
Wheelan N, Kenyon CJ, Harris AP, Cairns C, Al Dujaili E, Seckl JR, Yau JL. Midlife stress alters memory and mood-related behaviors in old age: Role of locally activated glucocorticoids. Psychoneuroendocrinology 2018; 89:13-22. [PMID: 29306773 PMCID: PMC5890827 DOI: 10.1016/j.psyneuen.2017.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022]
Abstract
Chronic exposure to stress during midlife associates with subsequent age-related cognitive decline and may increase the vulnerability to develop psychiatric conditions. Increased hypothalamic-pituitary-adrenal (HPA) axis activity has been implicated in pathogenesis though any causative role for glucocorticoids is unestablished. This study investigated the contribution of local glucocorticoid regeneration by the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), in persisting midlife stress-induced behavioral effects in mice. Middle-aged (10 months old) 11β-HSD1-deficient mice and wild-type congenic controls were randomly assigned to 28 days of chronic unpredictable stress or left undisturbed (non-stressed). All mice underwent behavioral testing at the end of the stress/non-stress period and again 6-7 months later. Chronic stress impaired spatial memory in middle-aged wild-type mice. The effects, involving a wide spectrum of behavioral modalities, persisted for 6-7 months after cessation of stress into early senescence. Enduring effects after midlife stress included impaired spatial memory, enhanced contextual fear memory, impaired fear extinction, heightened anxiety, depressive-like behavior, as well as reduced hippocampal glucocorticoid receptor mRNA expression. In contrast, 11β-HSD1 deficient mice resisted both immediate and enduring effects of chronic stress, despite similar stress-induced increases in systemic glucocorticoid activity during midlife stress. In conclusion, chronic stress in midlife exerts persisting effects leading to cognitive and affective dysfunction in old age via mechanisms that depend, at least in part, on brain glucocorticoids generated locally by 11β-HSD1. This finding supports selective 11β-HSD1 inhibition as a novel therapeutic target to ameliorate the long-term consequences of stress-related psychiatric disorders in midlife.
Collapse
Affiliation(s)
- Nicola Wheelan
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom
| | - Christopher J. Kenyon
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Anjanette P. Harris
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom
| | - Carolynn Cairns
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Emad Al Dujaili
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Jonathan R. Seckl
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom
| | - Joyce L.W. Yau
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom,Corresponding author at: Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom.
| |
Collapse
|
27
|
Leiva R, Griñan-Ferré C, Seira C, Valverde E, McBride A, Binnie M, Pérez B, Luque FJ, Pallàs M, Bidon-Chanal A, Webster SP, Vázquez S. Design, synthesis and in vivo study of novel pyrrolidine-based 11β-HSD1 inhibitors for age-related cognitive dysfunction. Eur J Med Chem 2017; 139:412-428. [PMID: 28818766 DOI: 10.1016/j.ejmech.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022]
Abstract
Recent findings suggest that treatment with 11β-HSD1 inhibitors provides a novel approach to deal with age-related cognitive dysfunctions, including Alzheimer's disease. In this work we report potent 11β-HSD1 inhibitors featuring unexplored pyrrolidine-based polycyclic substituents. A selected candidate administered to 12-month-old SAMP8 mice for four weeks prevented memory deficits and displayed a neuroprotective action. This is the first time that 11β-HSD1 inhibitors have been studied in this broadly-used mouse model of accelerated senescence and late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Christian Griñan-Ferré
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Neurociències, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Constantí Seira
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Elena Valverde
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain
| | - Andrew McBride
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Margaret Binnie
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom
| | - Belén Pérez
- Departament de Farmacologia, Terapèutica i Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Mercè Pallàs
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Neurociències, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Axel Bidon-Chanal
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Scott P Webster
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, EH16 4TJ, United Kingdom.
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Cienciès de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona E-08028, Spain.
| |
Collapse
|
28
|
Ohta KI, Suzuki S, Warita K, Kaji T, Kusaka T, Miki T. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development. J Neurochem 2017; 141:179-194. [PMID: 28178750 DOI: 10.1111/jnc.13977] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 12/18/2022]
Abstract
Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood.
Collapse
Affiliation(s)
- Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tomohiro Kaji
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
29
|
Caughey S, Harris AP, Seckl JR, Holmes MC, Yau JLW. Forebrain-Specific Transgene Rescue of 11β-HSD1 Associates with Impaired Spatial Memory and Reduced Hippocampal Brain-Derived Neurotrophic Factor mRNA Levels in Aged 11β-HSD1 Deficient Mice. J Neuroendocrinol 2017; 29. [PMID: 27859809 PMCID: PMC5244685 DOI: 10.1111/jne.12447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/04/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022]
Abstract
Mice lacking the intracellular glucocorticoid-regenerating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) are protected from age-related spatial memory deficits. 11β-HSD1 is expressed predominantly in the brain, liver and adipose tissue. Reduced glucocorticoid levels in the brain in the absence of 11β-HSD1 may underlie the improved memory in aged 11β-HSD1 deficient mice. However, the improved glucose tolerance, insulin sensitisation and cardioprotective lipid profile associated with reduced peripheral glucocorticoid regeneration may potentially contribute to the cognitive phenotype of aged 11β-HSD1 deficient mice. In the present study, transgenic mice with forebrain-specific overexpression of 11β-HSD1 (Tg) were intercrossed with global 11β-HSD1 knockout mice (HSD1KO) to examine the influence of forebrain and peripheral 11β-HSD1 activity on spatial memory in aged mice. Transgene-mediated delivery of 11β-HSD1 to the hippocampus and cortex of aged HSD1KO mice reversed the improved spatial memory retention in the Y-maze but not spatial learning in the watermaze. Brain-derived neurotrophic factor (BDNF) mRNA levels in the hippocampus of aged HSD1KO mice were increased compared to aged wild-type mice. Rescue of forebrain 11β-HSD1 reduced BDNF mRNA in aged HSD1KO mice to levels comparable to aged wild-type mice. These findings indicate that 11β-HSD1 regenerated glucocorticoids in the forebrain and decreased levels of BDNF mRNA in the hippocampus play a role in spatial memory deficits in aged wild-type mice, although 11β-HSD1 activity in peripheral tissues may also contribute to spatial learning impairments in aged mice.
Collapse
Affiliation(s)
- S Caughey
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - A P Harris
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - J R Seckl
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - M C Holmes
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - J L W Yau
- UoE/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Qiu J, Dunbar DR, Noble J, Cairns C, Carter R, Kelly V, Chapman KE, Seckl JR, Yau JLW. Decreased Npas4 and Arc mRNA Levels in the Hippocampus of Aged Memory-Impaired Wild-Type But Not Memory Preserved 11β-HSD1 Deficient Mice. J Neuroendocrinol 2016; 28. [PMID: 26563879 PMCID: PMC4737280 DOI: 10.1111/jne.12339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/18/2015] [Accepted: 11/08/2015] [Indexed: 01/06/2023]
Abstract
Mice deficient in the glucocorticoid-regenerating enzyme 11β-HSD1 resist age-related spatial memory impairment. To investigate the mechanisms and pathways involved, we used microarrays to identify differentially expressed hippocampal genes that associate with cognitive ageing and 11β-HSD1. Aged wild-type mice were separated into memory-impaired and unimpaired relative to young controls according to their performance in the Y-maze. All individual aged 11β-HSD1-deficient mice showed intact spatial memory. The majority of differentially expressed hippocampal genes were increased with ageing (e.g. immune/inflammatory response genes) with no genotype differences. However, the neuronal-specific transcription factor, Npas4, and immediate early gene, Arc, were reduced (relative to young) in the hippocampus of memory-impaired but not unimpaired aged wild-type or aged 11β-HSD1-deficient mice. A quantitative reverse transcriptase-polymerase chain reaction and in situ hybridisation confirmed reduced Npas4 and Arc mRNA expression in memory-impaired aged wild-type mice. These findings suggest that 11β-HSD1 may contribute to the decline in Npas4 and Arc mRNA levels associated with memory impairment during ageing, and that decreased activity of synaptic plasticity pathways involving Npas4 and Arc may, in part, underlie the memory deficits seen in cognitively-impaired aged wild-type mice.
Collapse
Affiliation(s)
- J Qiu
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - D R Dunbar
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - J Noble
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - C Cairns
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - R Carter
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - V Kelly
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - K E Chapman
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - J R Seckl
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - J L W Yau
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
31
|
Guo YR, Hsu YH, Liang A, Lu WJ, Wu CH, Lee HC, Huang SY. n-3 Polyunsaturated fatty acids ameliorate cognitive age-related impairments and depressive behaviour in unchallenged aged prediabetic rats. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
32
|
Affiliation(s)
- V. Pallet
- Univ. Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INP, Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
| | - K. Touyarot
- Univ. Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INP, Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
| |
Collapse
|
33
|
Reis FMCV, Almada RC, Fogaça MV, Brandão ML. Rapid Activation of Glucocorticoid Receptors in the Prefrontal Cortex Mediates the Expression of Contextual Conditioned Fear in Rats. Cereb Cortex 2015; 26:2639-49. [PMID: 25976757 DOI: 10.1093/cercor/bhv103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the role of glucocorticoids in medial prefrontal cortex (mPFC) activity and the expression of contextual conditioned fear (freezing). Rats were pretreated with vehicle or metyrapone, a corticosterone synthesis blocker, and exposed to a context previously paired with footshocks. Freezing and Fos-protein expression in different mPFC regions were assessed. Exposure to the aversive context led to increased freezing and Fos expression in the prelimbic (PrL), anterior cingulate areas 1 and 2 (Cg1/Cg2). Pretreatment with metyrapone decreased freezing and Fos expression in these areas. Administration of spironolactone, an MR antagonist, in the PrL before the test decreased freezing. Pretreatment with RU38486, a glucocorticoid receptor (GR) antagonist, reduced this effect of spironolactone, suggesting that the effects of this MR antagonist may be attributable to a redirection of endogenous corticosterone actions to GRs. Consistent with this result, the decrease in freezing that was induced by intra-PrL injections of corticosterone was attenuated by pretreatment with RU38486 but not spironolactone. These findings indicate that corticosterone release during aversive conditioning influences mPFC activity and the retrieval of conditioned fear memory indicating the importance of balance between MR:GR-mediated effects in this brain region in this process.
Collapse
Affiliation(s)
- Fernando M C V Reis
- Departamento de Psicologia, FFCLRP Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil
| | - Rafael C Almada
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil Departamento de Farmacologia, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Manoela V Fogaça
- Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil Departamento de Farmacologia, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcus L Brandão
- Departamento de Psicologia, FFCLRP Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
34
|
Masana M, Jukic M, Kretzschmar A, Wagner K, Westerholz S, Schmidt M, Rein T, Brodski C, Müller M. Deciphering the spatio-temporal expression and stress regulation of Fam107B, the paralog of the resilience-promoting protein DRR1 in the mouse brain. Neuroscience 2015; 290:147-58. [DOI: 10.1016/j.neuroscience.2015.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/12/2015] [Accepted: 01/16/2015] [Indexed: 11/26/2022]
|
35
|
Kilgour AHM, Semple S, Marshall I, Andrews P, Andrew R, Walker BR. 11β-Hydroxysteroid dehydrogenase activity in the brain does not contribute to systemic interconversion of cortisol and cortisone in healthy men. J Clin Endocrinol Metab 2015; 100:483-9. [PMID: 25393644 PMCID: PMC4318893 DOI: 10.1210/jc.2014-3277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT AND OBJECTIVE 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) catalyses regeneration of cortisol in liver, adipose tissue, and skeletal muscle, making a substantial contribution to circulating cortisol as demonstrated in humans by combining stable isotope tracer infusion with arteriovenous sampling. In the brain, 11βHSD1 is a potential therapeutic target implicated in age-associated cognitive dysfunction. We aimed to quantify brain 11βHSD1 activity, both to assess its contribution to systemic cortisol/cortisone turnover and to develop a tool for measuring 11βHSD1 in dementia and following administration of 11βHSD1 inhibitors. DESIGN, SETTING, AND PARTICIPANTS With ethical approval and informed consent, 8 healthy men aged 38.1 years (sd 16.5) underwent an ECG-gated phase-contrast magnetic resonance scan to quantify internal jugular vein blood flow and were infused with 1,2 [(2)H]2-cortisone and 9,11,12,12 [(2)H]4-cortisol for 3 h before samples were obtained from the internal jugular vein and an arterialized hand vein. Steroids were quantified by liquid chromatography-tandem mass spectrometry. MAIN OUTCOME MEASURES AND RESULTS Steady state tracer enrichments were achieved and systemic indices of cortisol/cortisone interconversion were consistent with previous studies in healthy men. However, there was no measurable release or production of cortisol, 9,12,12 [(2)H]3-cortisol or cortisone into the internal jugular vein. CONCLUSIONS Although cerebral 11βHSD1 reductase activity may be greater in cognitively impaired patients, in healthy men any contribution of 11βHSD1 in the brain to systemic cortisol/cortisone turnover is negligible. The influence of 11βHSD1 in the brain is likely confined to subregions, notably the hippocampus. Alternative approaches are required to quantify pharmacodynamics effects of 11βHSD1 inhibitors in the human brain.
Collapse
Affiliation(s)
- Alixe H M Kilgour
- MRC Centre for Cognitive Aging and Cognitive Epidemiology (A.H.M.K.), Geriatric Medicine Unit, and Centre for Clinical Brain Sciences (S.S., I.M., P.A.), University of Edinburgh, Edinburgh, United Kingdom; Clinical Research Imaging Centre (S.S.) and BHF Centre for Cardiovascular Science (S.S., R.A., B.R.W.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Critical Care (P.A.), Western General Hospital, NHS Lothian University Hospitals Division, Edinburgh EH4 2XU, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Yau JLW, Noble J, Kenyon CJ, Ludwig M, Seckl JR. Diurnal and stress-induced intra-hippocampal corticosterone rise attenuated in 11β-HSD1-deficient mice: a microdialysis study in young and aged mice. Eur J Neurosci 2015; 41:787-92. [PMID: 25614240 PMCID: PMC4440343 DOI: 10.1111/ejn.12836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/30/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) locally regenerates active glucocorticoids from their inert forms thereby amplifying intracellular levels within target tissues including the brain. We previously showed greater increases in intra-hippocampal corticosterone (CORT) levels upon Y-maze testing in aged wild-type than in 11β-HSD1(-/-) mice coinciding with impaired and intact spatial memory, respectively. Here we examined whether ageing influences 11β-HSD1 regulation of CORT in the dorsal hippocampus under basal conditions during the diurnal cycle and following stress. Intra-hippocampal CORT levels measured by in vivo microdialysis in freely behaving wild-type mice displayed a diurnal variation with peak levels in the evening that were significantly elevated with ageing. In contrast, the diurnal rise in intra-hippocampal CORT levels was greatly diminished in 11β-HSD1(-/-) mice and there was no rise with ageing; basal intra-hippocampal CORT levels were similar to wild-type controls. Furthermore, a short (3 min) swim stress induced a longer lasting increase in intra-hippocampal CORT levels in wild-type mice than in 11β-HSD1(-/-) mice despite no genotypic differences in elevation of plasma CORT. These data indicate that 11β-HSD1 activity contributes substantially to diurnal and stress-induced increases in hippocampal CORT levels. This contribution is even greater with ageing. Thus, 11β-HSD1 inhibition may be an attractive target for treating cognitive impairments associated with stress or ageing.
Collapse
Affiliation(s)
- Joyce L W Yau
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | | | |
Collapse
|
37
|
Wheelan N, Webster SP, Kenyon CJ, Caughey S, Walker BR, Holmes MC, Seckl JR, Yau JLW. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice. Neuropharmacology 2014; 91:71-6. [PMID: 25497454 PMCID: PMC4389269 DOI: 10.1016/j.neuropharm.2014.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 02/03/2023]
Abstract
High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. Aged mice were treated with UE2316 using a vehicle-controlled crossover design. Short-term UE2316 treatment improves spatial memory in a reversible manner. Contextual fear memory retention was impaired with UE2316. Contextual fear memory effects persisted following reversal of treatment.
Collapse
Affiliation(s)
- Nicola Wheelan
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Scott P Webster
- Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Christopher J Kenyon
- Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Sarah Caughey
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Brian R Walker
- Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Megan C Holmes
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Jonathan R Seckl
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Joyce L W Yau
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK.
| |
Collapse
|
38
|
Caldwell KE, Labrecque MT, Solomon BR, Ali A, Allan AM. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development. Neurotoxicol Teratol 2014; 47:66-79. [PMID: 25459689 DOI: 10.1016/j.ntt.2014.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/23/2014] [Accepted: 11/13/2014] [Indexed: 12/13/2022]
Abstract
The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of arsenic results in altered fetal programming of the glucocorticoid system.
Collapse
Affiliation(s)
- Katharine E Caldwell
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Matthew T Labrecque
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Benjamin R Solomon
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Abdulmehdi Ali
- Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, United States
| | - Andrea M Allan
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States.
| |
Collapse
|
39
|
Yau JLW, Wheelan N, Noble J, Walker BR, Webster SP, Kenyon CJ, Ludwig M, Seckl JR. Intrahippocampal glucocorticoids generated by 11β-HSD1 affect memory in aged mice. Neurobiol Aging 2014; 36:334-43. [PMID: 25109766 PMCID: PMC4706164 DOI: 10.1016/j.neurobiolaging.2014.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022]
Abstract
11Beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) locally amplifies active glucocorticoids within specific tissues including in brain. In the hippocampus, 11β-HSD1 messenger RNA increases with aging. Here, we report significantly greater increases in intrahippocampal corticosterone (CORT) levels in aged wild-type (WT) mice during the acquisition and retrieval trials in a Y-maze than age-matched 11β-HSD1−/− mice, corresponding to impaired and intact spatial memory, respectively. Acute stress applied to young WT mice led to increases in intrahippocampal CORT levels similar to the effects of aging and impaired retrieval of spatial memory. 11β-HSD1−/− mice resisted the stress-induced memory impairment. Pharmacologic inhibition of 11β-HSD1 abolished increases in intrahippocampal CORT levels during the Y-maze trials and prevented spatial memory impairments in aged WT mice. These data provide the first in vivo evidence that dynamic increases in hippocampal 11β-HSD1 regenerated CORT levels during learning and retrieval play a key role in age- and stress-associated impairments of spatial memory. We followed intrahippocampal corticosterone (CORT) levels in mice during memory testing in a Y-maze. Aged 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1−/−) mice resists age-related spatial memory decline in the Y-maze. A lower dynamic rise in intrahippocampal CORT levels associates with better memory. Acute stress increases intrahippocampal CORT and impairs memory in young mice. 11β-HSD1 inhibition reduces intrahippocampal CORT and improves memory in aged mice.
Collapse
Affiliation(s)
- Joyce L W Yau
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | - Nicola Wheelan
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - June Noble
- Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Brian R Walker
- Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Scott P Webster
- Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher J Kenyon
- Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Jonathan R Seckl
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Endocrinology Unit, British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
40
|
Sarabdjitsingh RA, Zhou M, Yau JL, Webster SP, Walker BR, Seckl JR, Joëls M, Krugers HJ. Inhibiting 11β-hydroxysteroid dehydrogenase type 1 prevents stress effects on hippocampal synaptic plasticity and impairs contextual fear conditioning. Neuropharmacology 2014; 81:231-6. [DOI: 10.1016/j.neuropharm.2014.01.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/04/2014] [Accepted: 01/23/2014] [Indexed: 12/25/2022]
|
41
|
Takeda A, Fujii H, Minamino T, Tamano H. Intracellular Zn(2+) signaling in cognition. J Neurosci Res 2014; 92:819-24. [PMID: 24723300 DOI: 10.1002/jnr.23385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/30/2014] [Accepted: 02/21/2014] [Indexed: 12/22/2022]
Abstract
Brain zinc homeostasis is strictly controlled under healthy conditions, indicating the importance of zinc for physiological function in the brain. A part of zinc in the brain exists in the synaptic vesicles, is released from a subclass of glutamatergic neurons (i.e., zincergic neurons), and serves as a signal factor (Zn(2+) signal) in the intracellular (cytosol) compartment as well as in the extracellular compartment. Zn(2+) signaling is dynamically linked to glutamate signaling and may be involved in synaptic plasticity, such as long-term potentiaion and cognitive activity. In zincergic synapses, intracellular Zn(2+) signaling in the postsynaptic neurons, which is linked to Zn(2+) release from zincergic neuron terminals, plays a role in cognitive activity. When nonzincergic synapses participate in cognition, on the other hand, it is possible that intracellular Zn(2+) signaling, which is due mainly to Zn(2+) release from the internal stores and/or metallothioneins, also is involved in cognitive activity, because zinc-dependent system such as zinc-binding proteins is usually required for cognitive process. Intracellular Zn(2+) dynamics may be modified via an endocrine system activity, glucocorticoid secretion in both zincergic and nonzincergic neurons, which is linked to a long-lasting change in synaptic efficacy. On the basis of the evidence of cognitive decline caused by the lack and/or the blockade of synaptic Zn(2+) signaling, this article summarizes the involvement of intracellular Zn(2+) signaling in zincergic synapses in cognition and a hypothetical involvement of that in nonzincergic synapses.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Bioorganic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | |
Collapse
|
42
|
Wosiski-Kuhn M, Erion JR, Gomez-Sanchez EP, Gomez-Sanchez CE, Stranahan AM. Glucocorticoid receptor activation impairs hippocampal plasticity by suppressing BDNF expression in obese mice. Psychoneuroendocrinology 2014; 42:165-77. [PMID: 24636513 PMCID: PMC4426342 DOI: 10.1016/j.psyneuen.2014.01.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Diabetes and obesity are associated with perturbation of adrenal steroid hormones and impairment of hippocampal plasticity, but the question of whether these conditions recruit glucocorticoid-mediated molecular cascades that are comparable to other stressors has yet to be fully addressed. We have used a genetic mouse model of obesity and diabetes with chronically elevated glucocorticoids to determine the mechanism for glucocorticoid-induced deficits in hippocampal synaptic function. Pharmacological inhibition of adrenal steroidogenesis attenuates structural and functional impairments by regulating plasticity among dendritic spines in the hippocampus of leptin receptor deficient (db/db) mice. Synaptic deficits evoked by exposure to elevated corticosterone levels in db/db mice are attributable to glucocorticoid receptor-mediated transrepression of AP-1 actions at BDNF promoters I and IV. db/db mice exhibit corticosterone-mediated reductions in brain-derived neurotrophic factor (BDNF), and a change in the ratio of TrkB to P75NTR that silences the functional response to BDNF stimulation. Lentiviral suppression of glucocorticoid receptor expression rescues behavioral and synaptic function in db/db mice, and also reinstates BDNF expression, underscoring the relevance of molecular mechanisms previously demonstrated after psychological stress to the functional alterations observed in obesity and diabetes.
Collapse
Affiliation(s)
- Marlena Wosiski-Kuhn
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th St, Augusta, GA 30912 USA
| | - Joanna R. Erion
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th St, Augusta, GA 30912 USA
| | - Elise P. Gomez-Sanchez
- G.V. (Sonny) Montgomery Veteran’s Affairs Medical Center, 1500 Woodrow Wilson Dr, Jackson, MS 39216 USA
| | - Celso E. Gomez-Sanchez
- G.V. (Sonny) Montgomery Veteran’s Affairs Medical Center, 1500 Woodrow Wilson Dr, Jackson, MS 39216 USA
| | - Alexis M. Stranahan
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th St, Augusta, GA 30912 USA,Corresponding author: Alexis M. Stranahan, Medical College of Georgia, Georgia Regents University, Physiology Department, 1120 15th St, room CA3145, Augusta GA 30912, Phone: (706)721-7885,
| |
Collapse
|
43
|
Wolbers T, Dudchenko PA, Wood ER. Spatial memory-a unique window into healthy and pathological aging. Front Aging Neurosci 2014; 6:35. [PMID: 24639649 PMCID: PMC3945235 DOI: 10.3389/fnagi.2014.00035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/19/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Thomas Wolbers
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany
| | | | - Emma R Wood
- School of Biomedical Sciences, University of Edinburgh Edinburgh, UK
| |
Collapse
|
44
|
Buechel HM, Popovic J, Staggs K, Anderson KL, Thibault O, Blalock EM. Aged rats are hypo-responsive to acute restraint: implications for psychosocial stress in aging. Front Aging Neurosci 2014; 6:13. [PMID: 24575039 PMCID: PMC3921565 DOI: 10.3389/fnagi.2014.00013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/20/2014] [Indexed: 11/13/2022] Open
Abstract
Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift in chronic psychosocial stress response, or the initial acute phase of that chronic response, have been less well-studied. Here, we separated young (3 month) and aged (21 month) male F344 rats into control and acute restraint (an animal model of psychosocial stress) groups (n = 9–12/group). We then assessed hippocampus-associated behavioral, electrophysiological, and transcriptional outcomes, as well as blood glucocorticoid and sleep architecture changes. Aged rats showed characteristic water maze, deep sleep, transcriptome, and synaptic sensitivity changes compared to young. Young and aged rats showed similar levels of distress during the 3 h restraint, as well as highly significant increases in blood glucocorticoid levels 21 h after restraint. However, young, but not aged, animals responded to stress exposure with water maze deficits, loss of deep sleep and hyperthermia. These results demonstrate that aged subjects are hypo-responsive to new-onset acute psychosocial stress, which may have negative consequences for long-term stress adaptation and suggest that age itself may act as a stressor occluding the influence of new onset stressors.
Collapse
Affiliation(s)
- Heather M Buechel
- Blalock Laboratory, Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky Lexington, KY, USA
| | - Jelena Popovic
- Blalock Laboratory, Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky Lexington, KY, USA
| | - Kendra Staggs
- Blalock Laboratory, Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky Lexington, KY, USA
| | - Katie L Anderson
- Thibault Laboratory, Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky Lexington, KY, USA
| | - Olivier Thibault
- Thibault Laboratory, Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky Lexington, KY, USA
| | - Eric M Blalock
- Blalock Laboratory, Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky Lexington, KY, USA
| |
Collapse
|
45
|
Bonhomme D, Pallet V, Dominguez G, Servant L, Henkous N, Lafenêtre P, Higueret P, Béracochéa D, Touyarot K. Retinoic acid modulates intrahippocampal levels of corticosterone in middle-aged mice: consequences on hippocampal plasticity and contextual memory. Front Aging Neurosci 2014; 6:6. [PMID: 24570662 PMCID: PMC3917121 DOI: 10.3389/fnagi.2014.00006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/10/2014] [Indexed: 12/13/2022] Open
Abstract
It is now established that vitamin A and its derivatives, retinoic acid (RA), are required for cognitive functions in adulthood. RA hyposignaling and hyperactivity of glucocorticoid (GC) pathway appear concomitantly during aging and would contribute to the deterioration of hippocampal synaptic plasticity and functions. Furthermore, recent data have evidenced counteracting effects of retinoids on GC signaling pathway. In the present study, we addressed the following issue: whether the stimulation of RA pathway could modulate intrahippocampal corticosterone (CORT) levels in middle-aged mice and thereby impact on hippocampal plasticity and cognitive functions. We firstly investigated the effects of vitamin A supplementation and RA treatment in middle-aged mice, on contextual serial discrimination task, a paradigm which allows the detection of early signs of age-related hippocampal-dependent memory dysfunction. We then measured intrahippocampal CORT concentrations by microdialysis before and after a novelty-induced stress. Our results show that both RA treatment and vitamin A supplementation improve “episodic-like” memory in middle-aged mice but RA treatment appears to be more efficient. Moreover, we show that the beneficial effect of RA on memory is associated to an increase in hippocampal PSD-95 expression. In addition, intrahippocampal CORT levels are reduced after novelty-induced stress in RA-treated animals. This effect cannot be related to a modulation of hippocampal 11β-HSD1 expression. Interestingly, RA treatment induces a modulation of RA receptors RARα and RARβ expression in middle-aged mice, a finding which has been correlated with the amplitude of intrahippocampal CORT levels after novelty-induced stress. Taken together, our results suggest that the preventive action of RA treatment on age-related memory deficits in middle-aged mice could be, at least in part, due to an inhibitory effect of retinoids on GC activity.
Collapse
Affiliation(s)
- Damien Bonhomme
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Véronique Pallet
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Gaelle Dominguez
- CNRS, Intititut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 Talence, France ; INSERM, U-930, Université François Rabelais Tours, France
| | - Laure Servant
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Nadia Henkous
- CNRS, Intititut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 Talence, France
| | - Pauline Lafenêtre
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Paul Higueret
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Daniel Béracochéa
- CNRS, Intititut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 Talence, France
| | - Katia Touyarot
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| |
Collapse
|
46
|
Bonhomme D, Minni AM, Alfos S, Roux P, Richard E, Higueret P, Moisan MP, Pallet V, Touyarot K. Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis? Front Behav Neurosci 2014; 8:20. [PMID: 24550796 PMCID: PMC3912436 DOI: 10.3389/fnbeh.2014.00020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/13/2014] [Indexed: 12/21/2022] Open
Abstract
A disruption of the vitamin A signaling pathway has been involved in age-related memory decline and hippocampal plasticity alterations. Using vitamin A deficiency (VAD), a nutritional model leading to a hyposignaling of the retinoid pathway, we have recently demonstrated that retinoic acid (RA), the active metabolite of vitamin A, is efficient to reverse VAD-induced spatial memory deficits and adult hippocampal neurogenesis alterations. Besides, excess of glucocorticoids (GCs) occurring with aging is known to strongly inhibit hippocampal plasticity and functions and few studies report on the counteracting effects of RA signaling pathway on GCs action. Here, we have addressed whether the modulation of brain GCs availability could be one of the biological mechanisms involved in the effects of vitamin A status on hippocampal plasticity and functions. Thus, we have studied the effects of a vitamin A-free diet for 14 weeks and a 4-week vitamin A supplementation on plasma and hippocampal corticosterone (CORT) levels in Wistar rats. We have also investigated corticosteroid binding globulin (CBG) binding capacity and 11beta-Hydrosteroid Dehydrogenase type 1 (11β-HSD1) activity, both important modulators of CORT availability at the peripheral and hippocampal levels respectively. Interestingly, we show that the vitamin A status regulates levels of free plasma CORT and hippocampal CORT levels, by acting through a regulation of CBG binding capacity and 11β-HSD1 activity. Moreover, our results suggest that increased CORT levels in VAD rats could have some deleterious consequences on spatial memory, anxiety-like behavior and adult hippocampal neurogenesis whereas these effects could be corrected by a vitamin A supplementation. Thus, the modulation of GCs availability by vitamin A status is an important biological mechanism that should be taken into account in order to prevent age-related cognitive decline and hippocampal plasticity alterations.
Collapse
Affiliation(s)
- Damien Bonhomme
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Amandine M Minni
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Serge Alfos
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Pascale Roux
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Emmanuel Richard
- INSERM, Biothérapie des Maladies Génétiques et Cancer, U1035 Bordeaux, France
| | - Paul Higueret
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Marie-Pierre Moisan
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Véronique Pallet
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Katia Touyarot
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| |
Collapse
|
47
|
Tatomir A, Micu C, Crivii C. The impact of stress and glucocorticoids on memory. CLUJUL MEDICAL 2014; 87:3-6. [PMID: 26527987 PMCID: PMC4462413 DOI: 10.15386/cjm.2014.8872.871.at1cm2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 02/10/2014] [Indexed: 11/23/2022]
Abstract
Responses to stress are mediated by a complex network of the nervous and endocrine systems. Glucocorticoids, which are among the most important “players” in stress resilience, may have important implications in the cognitive functions, particularly in the modulation of memory. Declarative memory, the memory for facts, events and word meaning is the most studied type of memory on which glucocorticoids exert an influence, both positively through consolidation and negatively through impairment. These effects depend on the receptor type, dose, time of exposure, memory component and the salience of stimuli, retrieval being generally affected and storage being facilitated, especially for emotionally relevant events. Glucocorticoids also induce hippocampal atrophy, which is a hallmark seen in various diseases accompanied by a chronic high level of cortisol, such as the Cushing syndrome, major depression, post-traumatic stress disorder. Also, chronic stress might be a risk factor for the development of Alzheimer’s disease, especially when a genetic background and other environmental influences are present.
Collapse
Affiliation(s)
- Alexandru Tatomir
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Micu
- Department of Anatomy and Embryology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Crivii
- Department of Anatomy and Embryology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
48
|
Gant JC, Blalock EM, Chen KC, Kadish I, Porter NM, Norris CM, Thibault O, Landfield PW. FK506-binding protein 1b/12.6: a key to aging-related hippocampal Ca2+ dysregulation? Eur J Pharmacol 2013; 739:74-82. [PMID: 24291098 DOI: 10.1016/j.ejphar.2013.10.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/25/2022]
Abstract
It has been recognized for some time that the Ca(2+)-dependent slow afterhyperpolarization (sAHP) is larger in hippocampal neurons of aged compared with young animals. In addition, extensive studies since have shown that other Ca(2+)-mediated electrophysiological responses are increased in hippocampus with aging, including Ca(2+) transients, L-type voltage-gated Ca(2+) channel activity, Ca(2+) spike duration and action potential accommodation. Elevated Ca(2+)-induced Ca(2+) release from ryanodine receptors (RyRs) appears to drive amplification of the Ca(2+) responses. Components of this Ca(2+) dysregulation phenotype correlate with deficits in cognitive function and plasticity, indicating they may play critical roles in aging-related impairment of brain function. However, the molecular mechanisms underlying aging-related Ca(2+) dysregulation are not well understood. FK506-binding proteins 1a and 1b (FKBP1a/1b, also known as FKBP12/12.6) are immunophilin proteins that bind the immunosuppressant drugs FK506 and rapamycin. In muscle cells, FKBP1a/1b also bind RyRs and inhibits Ca(2+)-induced Ca(2+) release, but it is not clear whether FKBPs act similarly in brain cells. Recently, we found that selectively disrupting hippocampal FKBP1b function in young rats, either by microinjecting adeno-associated viral vectors expressing siRNA, or by treatment with rapamycin, increases the sAHP and recapitulates much of the hippocampal Ca(2+) dysregulation phenotype. Moreover, in microarray studies, we found FKBP1b gene expression was downregulated in hippocampus of aging rats and early-stage Alzheimer's disease subjects. These results suggest the novel hypothesis that declining FKBP function is a key factor in aging-related Ca(2+) dysregulation in the brain and point to potential new therapeutic targets for counteracting unhealthy brain aging.
Collapse
Affiliation(s)
- J C Gant
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - E M Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - K-C Chen
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - I Kadish
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - N M Porter
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - C M Norris
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - O Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - P W Landfield
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States.
| |
Collapse
|
49
|
Chen KC, Blalock EM, Curran-Rauhut MA, Kadish I, Blalock SJ, Brewer L, Porter NM, Landfield PW. Glucocorticoid-dependent hippocampal transcriptome in male rats: pathway-specific alterations with aging. Endocrinology 2013; 154:2807-20. [PMID: 23736296 PMCID: PMC3713214 DOI: 10.1210/en.2013-1139] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although glucocorticoids (GCs) are known to exert numerous effects in the hippocampus, their chronic regulatory functions remain poorly understood. Moreover, evidence is inconsistent regarding the long-standing hypothesis that chronic GC exposure promotes brain aging/Alzheimer disease. Here, we adrenalectomized male F344 rats at 15 months of age, maintained them for 3 months with implanted corticosterone (CORT) pellets producing low or intermediate (glucocorticoid receptor-activating) blood levels of CORT, and performed microarray/pathway analyses in hippocampal CA1. We defined the chronic GC-dependent transcriptome as 393 genes that exhibited differential expression between intermediate and low CORT groups. Short-term CORT (4 days) did not recapitulate this transcriptome. Functional processes/pathways overrepresented by chronic CORT-up-regulated genes included learning/plasticity, differentiation, glucose metabolism, and cholesterol biosynthesis, whereas processes overrepresented by CORT-down-regulated genes included inflammatory/immune/glial responses and extracellular structure. These profiles indicate that GCs chronically activate neuronal/metabolic processes while coordinately repressing a glial axis of reactivity/inflammation. We then compared the GC transcriptome with a previously defined hippocampal aging transcriptome, revealing a high proportion of common genes. Although CORT and aging moved expression of some common genes in the same direction, the majority were shifted in opposite directions by CORT and aging (eg, glial inflammatory genes down-regulated by CORT are up-regulated with aging). These results contradict the hypothesis that GCs simply promote brain aging and also suggest that the opposite direction shifts during aging reflect resistance to CORT regulation. Therefore, we propose a new model in which aging-related GC resistance develops in some target pathways, whereas GC overstimulation develops in others, together generating much of the brain aging phenotype.
Collapse
Affiliation(s)
- Kuey-Chu Chen
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|