1
|
Mayo NE, Mate KKV, Fellows LK, Morais JA, Sharp M, Lafontaine AL, Hill ET, Dawes H, Sharkh AA. Real-time auditory feedback for improving gait and walking in people with Parkinson's disease: a pilot and feasibility trial. Pilot Feasibility Stud 2024; 10:115. [PMID: 39192343 DOI: 10.1186/s40814-024-01542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Technology is poised to bridge the gap between demand for therapies to improve gait in people with Parkinson's and available resources. A wearable sensor, Heel2Toe™, a small device that attaches to the side of the shoe and gives a sound each time the person starts their step with a strong heel strike, has been developed and pre-tested by a team at McGill University. The objective of this study was to estimate feasibility and efficacy potential of the Heel2Toe™ sensor in changing walking capacity and gait pattern in people with Parkinson's. METHODS A pilot study was carried out involving 27 people with Parkinson's randomized 2:1 to train with the Heel2Toe[TM] sensor and or to train with recommendations from a gait-related workbook. RESULTS A total of 21 completed the 3-month evaluation, 14 trained with the Heel2Toe[TM] sensor, and 7 trained with the workbook. Thirteen of 14 people in the Heel2Toe group improved over measurement error on the primary outcome, the 6-Minute Walk Test, (mean change 66.4 m) and 0 of the 7 in the Workbook group (mean change - 19.4 m): 4 of 14 in the Heel2Toe group made reliable change and 0 of 7 in the Workbook group. Improvements in walking distance were accompanied by improvements in gait quality. Forty percent of participants in the intervention group were strongly satisfied with their technology experience and an additional 37% were satisfied. CONCLUSIONS Despite some technological difficulties, feasibility and efficacy potential of the Heel2Toe sensor in improving gait in people with Parkinson's was supported.
Collapse
Affiliation(s)
- Nancy E Mayo
- Department of Medicine, School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Center for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Center (MUHC), Montreal, QC, Canada.
- PhysioBiometrics Inc. Montreal, Quebec, Canada.
| | - Kedar K V Mate
- PhysioBiometrics Inc. Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Lesley K Fellows
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - José A Morais
- Department of Medicine, Division of Geriatric Medicine, McGill University, Montreal, QC, Canada
| | - Madeleine Sharp
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | - Helen Dawes
- PhysioBiometrics Inc. Montreal, Quebec, Canada
- Medical School, Exeter University, Exeter, UK
| | | |
Collapse
|
2
|
Karumattu Manattu A, Borrell JA, Copeland C, Fraser K, Zuniga JM. Motor cortical functional connectivity changes due to short-term immobilization of upper limb: an fNIRS case report. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1156940. [PMID: 37266515 PMCID: PMC10229777 DOI: 10.3389/fresc.2023.1156940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Introduction A short-term immobilization of one hand affects musculoskeletal functions, and the associated brain network adapts to the alterations happening to the body due to injuries. It was hypothesized that the injury-associated temporary disuse of the upper limb would alter the functional interactions of the motor cortical processes and will produce long-term changes throughout the immobilization and post-immobilization period. Methods The case participant (male, 12 years old, right arm immobilized for clavicle fracture) was scanned using optical imaging technology of fNIRS over immobilization and post-immobilization. Pre-task data was collected for 3 min for RSFC analysis, processed, and analyzed using the Brain AnalyzIR toolbox. Connectivity was measured using Pearson correlation coefficients (R) from NIRS Toolbox's connectivity module. Results The non-affected hand task presented an increased ipsilateral response during the immobilization period, which then decreased over the follow-up visits. The right-hand task showed a bilateral activation pattern following immobilization, but the contralateral activation pattern was restored during the 1-year follow-up visit. Significant differences in the average connection strength over the study period were observed. The average Connection strength decreased from the third week of immobilization and continued to be lower than the baseline value. Global network efficiency decreased in weeks two and three, while the network settled into a higher efficient state during the follow-up periods after post-immobilization. Discussion Short-term immobilization of the upper limb is shown to have cortical changes in terms of activations of brain regions as well as connectivity. The short-term dis-use of the upper limb has shifted the unilateral activation pattern to the bilateral coactivation of the motor cortex from both hemispheres. Resting-state data reveals a disruption in the motor cortical network during the immobilization phase, and the network is reorganized into an efficient network over 1 year after the injury. Understanding such cortical reorganization could be informative for studying the recovery from neurological disorders affecting motor control in the future.
Collapse
Affiliation(s)
| | - Jordan A. Borrell
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
- Center for Biomedical Rehabilitation and Manufacturing, University of Nebraska at Omaha, Omaha, NE, United States
| | - Christopher Copeland
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Kaitlin Fraser
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Jorge M. Zuniga
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
- Center for Biomedical Rehabilitation and Manufacturing, University of Nebraska at Omaha, Omaha, NE, United States
| |
Collapse
|
3
|
Mercê C, Cordovil R, Catela D, Galdino F, Bernardino M, Altenburg M, António G, Brígida N, Branco M. Learning to Cycle: Is Velocity a Control Parameter for Children's Cycle Patterns on the Balance Bike? CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121937. [PMID: 36553380 PMCID: PMC9776492 DOI: 10.3390/children9121937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
The balance bike (BB) has been pointed out as being the most efficient learning bicycle due to its inherent stimulation of balance. However, the process of acquiring the control of balance on the BB has not been explored. This study aimed to: (i) categorize the cycle patterns of children on the BB, (ii) compare the cycle patterns in different stages of learning (before and after six sessions of a BB practice program), and (iii) verify whether velocity is a control parameter leading to transitions between different cycle patterns on a BB. The data were collected during the Learning to Cycle program from 12 children aged 6.06 ± 1.25 years. The velocity was measured using an inertial sensor. Seven different movement patterns were captured and categorized through video analysis. After practice, there was an increase in the mean number of different patterns and in the global mean and maximum velocity. These were interpreted as an improvement of the motor competence in the use of the BB. The results obtained support the hypothesis that velocity is a control parameter which leads to the emergence of diverse patterns of behavior. As the speed increased, the amount of foot contact with the ground became less frequent and the locomotor modes that imply that longer flight phases began to emerge.
Collapse
Affiliation(s)
- Cristiana Mercê
- Centro Interdisciplinar de Estudo da Performance Humana, CIPER, Faculdade do Motricidade Humana, Universidade de Lisboa, 1499-002 Cruz-Quebrada, Portugal
- Departamento de Atividade Física e Saúde, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, 2040-413 Rio Maior, Portugal
| | - Rita Cordovil
- Centro Interdisciplinar de Estudo da Performance Humana, CIPER, Faculdade do Motricidade Humana, Universidade de Lisboa, 1499-002 Cruz-Quebrada, Portugal
- Correspondence:
| | - David Catela
- Departamento de Atividade Física e Saúde, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, 2040-413 Rio Maior, Portugal
- Centro de Investigação em Qualidade de Vida, CIEQV, Instituto Politécnico de Santarém, Complexo Andaluz, 2001-904 Santarém, Portugal
| | - Flávia Galdino
- Departamento de Atividade Física e Saúde, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, 2040-413 Rio Maior, Portugal
| | - Mafalda Bernardino
- Departamento de Atividade Física e Saúde, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, 2040-413 Rio Maior, Portugal
| | - Mirjam Altenburg
- Departamento de Atividade Física e Saúde, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, 2040-413 Rio Maior, Portugal
| | - Gonçalo António
- Departamento de Atividade Física e Saúde, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, 2040-413 Rio Maior, Portugal
| | - Nancy Brígida
- Departamento de Atividade Física e Saúde, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, 2040-413 Rio Maior, Portugal
| | - Marco Branco
- Centro Interdisciplinar de Estudo da Performance Humana, CIPER, Faculdade do Motricidade Humana, Universidade de Lisboa, 1499-002 Cruz-Quebrada, Portugal
- Departamento de Atividade Física e Saúde, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, 2040-413 Rio Maior, Portugal
| |
Collapse
|
4
|
Hall A, Boring RL, Miyake TM. Cognitive Aging as a Human Factor: Effects of Age on Human Performance. NUCL TECHNOL 2022. [DOI: 10.1080/00295450.2022.2073951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Anna Hall
- Idaho National Laboratory, Human Factors and Reliability Department, 2525 Fremont Avenue, Idaho Falls, Idaho 83415
| | - Ronald L. Boring
- Idaho National Laboratory, Human Factors and Reliability Department, 2525 Fremont Avenue, Idaho Falls, Idaho 83415
| | - Tina M. Miyake
- Idaho National Laboratory, Human Factors and Reliability Department, 2525 Fremont Avenue, Idaho Falls, Idaho 83415
| |
Collapse
|
5
|
Gadsbøll E, Erbs AW, Hougaard DD. Prevalence of abnormal vestibular responses in children with sensorineural hearing loss. Eur Arch Otorhinolaryngol 2022; 279:4695-4707. [DOI: 10.1007/s00405-021-07241-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
|
6
|
Xiang K, Liu Y, Sun L. Motoric Cognitive Risk Syndrome: Symptoms, Pathology, Diagnosis, and Recovery. Front Aging Neurosci 2022; 13:728799. [PMID: 35185512 PMCID: PMC8847709 DOI: 10.3389/fnagi.2021.728799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
The motoric cognitive risk (MCR) syndrome is a pre-dementia condition, marked by the enhanced risk for Alzheimer's disease (AD) and vascular dementia, together with falls, disability, and abnormal movements. The research studies revealed the distinct neurological and non-neurological clinical gait irregularities during dementia and accelerated functional decline, such as postural and balance impairments, memory loss, cognitive failure, and metabolic dysfunctions. The disabling characteristics of MCR comprise altered afferent sensory and efferent motor responses, together with disrupted visual, vestibular, and proprioceptive components. The pathological basis of MCR relates with the frontal lacunar infarcts, white matter hyperintensity (WMH), gray matter atrophy in the pre-motor and pre-frontal cortex, abnormal cholinergic functioning, inflammatory responses, and genetic factors. Further, cerebrovascular lesions and cardiovascular disorders exacerbate the disease pathology. The diagnosis of MCR is carried out through neuropsychological tests, biomarker assays, imaging studies, questionnaire-based evaluation, and motor function tests, including walking speed, dual-task gait tests, and ambulation ability. Recovery from MCR may include cognitive, physical, and social activities, exercise, diet, nutritional supplements, symptomatic drug treatment, and lifestyle habits that restrict the disease progression. Psychotherapeutic counseling, anti-depressants, and vitamins may support motor and cognitive improvement, primarily through the restorative pathways. However, an in-depth understanding of the association of immobility, dementia, and cognitive stress with MCR requires additional clinical and pre-clinical studies. They may have a significant contribution in reducing MCR syndrome and the risk for dementia. Overall, the current review informs the vital connection between gait performance and cognition in MCR and highlights the usefulness of future research in the discernment and treatment of dementiating illness.
Collapse
|
7
|
Wang XQ, Li H, Li XN, Yuan CH, Zhao H. Gut-Brain Axis: Possible Role of Gut Microbiota in Perioperative Neurocognitive Disorders. Front Aging Neurosci 2022; 13:745774. [PMID: 35002672 PMCID: PMC8727913 DOI: 10.3389/fnagi.2021.745774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022] Open
Abstract
Aging is becoming a severe social phenomenon globally, and the improvements in health care and increased health awareness among the elderly have led to a dramatic increase in the number of surgical procedures. Because of the degenerative changes in the brain structure and function in the elderly, the incidence of perioperative neurocognitive disorders (PND) is much higher in elderly patients than in young people following anesthesia/surgery. PND is attracting more and more attention, though the exact mechanisms remain unknown. A growing body of evidence has shown that the gut microbiota is likely involved. Recent studies have indicated that the gut microbiota may affect postoperative cognitive function via the gut-brain axis. Nonetheless, understanding of the mechanistic associations between the gut microbiota and the brain during PND progression remains very limited. In this review, we begin by providing an overview of the latest progress concerning the gut-brain axis and PND, and then we summarize the influence of perioperative factors on the gut microbiota. Next, we review the literature on the relationship between gut microbiota and PND and discuss how gut microbiota affects cognitive function during the perioperative period. Finally, we explore effective early interventions for PND to provide new ideas for related clinical research.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - He Li
- Department of Anesthesiology, Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Nan Li
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Cong-Hu Yuan
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Hang Zhao
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| |
Collapse
|
8
|
Barollo F, Hassan M, Petersen H, Rigoni I, Ramon C, Gargiulo P, Fratini A. Cortical pathways during Postural Control: new insights from functional EEG source connectivity. IEEE Trans Neural Syst Rehabil Eng 2022; 30:72-84. [PMID: 34990367 DOI: 10.1109/tnsre.2022.3140888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Postural control is a complex feedback system that relies on vast array of sensory inputs in order to maintain a stable upright stance. The brain cortex plays a crucial role in the processing of this information and in the elaboration of a successful adaptive strategy to external stimulation preventing loss of balance and falls. In the present work, the participants postural control system was challenged by disrupting the upright stance via a mechanical skeletal muscle vibration applied to the calves. The EEG source connectivity method was used to investigate the cortical response to the external stimulation and highlight the brain network primarily involved in high-level coordination of the postural control system. The cortical network reconfiguration was assessed during two experimental conditions of eyes open and eyes closed and the network flexibility (i.e. its dynamic reconfiguration over time) was correlated with the sample entropy of the stabilogram sway. The results highlight two different cortical strategies in the alpha band: the predominance of frontal lobe connections during open eyes and the strengthening of temporal-parietal network connections in the absence of visual cues. Furthermore, a high correlation emerges between the flexibility in the regions surrounding the right temporo-parietal junction and the sample entropy of the CoP sway, suggesting their centrality in the postural control system. These results open the possibility to employ network-based flexibility metrics as markers of a healthy postural control system, with implications in the diagnosis and treatment of postural impairing diseases.
Collapse
|
9
|
Gaalema DE, Mahoney K, Ballon JS. Cognition and Exercise: GENERAL OVERVIEW AND IMPLICATIONS FOR CARDIAC REHABILITATION. J Cardiopulm Rehabil Prev 2021; 41:400-406. [PMID: 34561368 PMCID: PMC8563446 DOI: 10.1097/hcr.0000000000000644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Performance of endurance exercise is associated with a broad range of cognitive benefits, with notable improvements shown across a wide variety of populations including healthy populations as well as those with impaired cognition. By examining the effects of exercise in general populations, as well in populations where cognitive deficits are pronounced, and critical to self-care, we can learn more about using exercise to ameliorate cognitive issues and apply that knowledge to other patient populations, such as those eligible for cardiac rehabilitation (CR). Cognitive challenges are a concern within CR, as management of a chronic disease is cognitively taxing, and, as expected, deficits in cognition predict worse outcomes, including lower attendance at CR. Some subsets of patients within CR may be particularly at high risk for cognitive challenges including those with heart failure with low ejection fraction, recent coronary bypass surgery, multiple chronic conditions, and patients of lower socioeconomic status. Attendance at CR is associated with cognitive gains, likely through the progressive exercise component, with larger amounts of exercise over longer periods having greater benefits. Programs should identify at-risk patients, who could gain the most from completing CR, and provide additional support to keep those patients engaged. While engaged in CR, patients should be encouraged to exercise, at least at moderate intensity, and transitioned to a long-term exercise regimen. Overall, CR programs are well-positioned to support these patients and make significant contributions to their long-term well-being.
Collapse
Affiliation(s)
- Diann E Gaalema
- University of Vermont, Burlington (Dr Gaalema and Ms Mahoney); and Stanford University, Stanford, California (Dr Ballon)
| | | | | |
Collapse
|
10
|
Anna R, Jarosław F, Izabela W, Karolina L, Małgorzata K, Malgorzata S. Differences in the Level of Functional Fitness and Precise Hand Movements of People with and without Cognitive Disorders. Exp Aging Res 2021; 48:351-361. [PMID: 34605367 DOI: 10.1080/0361073x.2021.1982350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES to assess and compare the gross and fine motor skills in people with identified cognitive impairment and in people from the control group. METHOD The research was conducted at the Center of Dementia-Related Diseases, involved participants with (n = 39) and without (n = 29) cognitive disorders. Fast, precise hand movements were measured via Vienna System Test. The up-and-go, chair-stand, 6-minute walk tests were used to assess functional fitness. The results for participants with and without cognitive disorders were compared. RESULTS People from both groups do not differ significantly in terms of the level of condition-based functional fitness. Participants with cognitive disorders achieve worse results in hand coordination tests which are more complex and require both speed and accuracy of hand movements. DISCUSSION The deterioration of precise hand movements with the correct functional efficiency may indicate degenerative changes in brain areas associated with complex thought processes, conceptual thinking, and may lead to dementia.
Collapse
Affiliation(s)
- Rohan Anna
- Morphology and Embriology Department, Wroclaw Medical University, Wroclaw, Poland
| | - Fugiel Jarosław
- Department of Biostructure, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Winkel Izabela
- Research and Education Center of Dementia, Ścinawa, Poland
| | - Lindner Karolina
- Geriatrics Department, Wroclaw Medical University, Wroclaw, Poland
| | - Kołodziej Małgorzata
- Department of Biostructure, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
11
|
Ochoa-Sanchez R, Tamnanloo F, Rose CF. Hepatic Encephalopathy: From Metabolic to Neurodegenerative. Neurochem Res 2021; 46:2612-2625. [PMID: 34129161 DOI: 10.1007/s11064-021-03372-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome of both acute and chronic liver disease. As a metabolic disorder, HE is considered to be reversible and therefore is expected to resolve following the replacement of the diseased liver with a healthy liver. However, persisting neurological complications are observed in up to 47% of transplanted patients. Several retrospective studies have shown that patients with a history of HE, particularly overt-HE, had persistent neurological complications even after liver transplantation (LT). These enduring neurological conditions significantly affect patient's quality of life and continue to add to the economic burden of chronic liver disease on health care systems. This review discusses the journey of the brain through the progression of liver disease, entering the invasive surgical procedure of LT and the conditions associated with the post-transplant period. In particular, it will discuss the vulnerability of the HE brain to peri-operative factors and post-LT conditions which may explain non-resolved neurological impairment following LT. In addition, the review will provide evidence; (i) supporting overt-HE impacts on neurological complications post-LT; (ii) that overt-HE leads to permanent neuronal injury and (iii) the pathophysiological role of ammonia toxicity on astrocyte and neuronal injury/damage. Together, these findings will provide new insights on the underlying mechanisms leading to neurological complications post-LT.
Collapse
Affiliation(s)
- Rafael Ochoa-Sanchez
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, 900, rue Saint-Denis Pavillon R, R08.422, Montreal, QC, H2X-0A9, Canada
| | - Farzaneh Tamnanloo
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, 900, rue Saint-Denis Pavillon R, R08.422, Montreal, QC, H2X-0A9, Canada
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, 900, rue Saint-Denis Pavillon R, R08.422, Montreal, QC, H2X-0A9, Canada.
| |
Collapse
|
12
|
Normal Aging Affects the Short-Term Temporal Stability of Implicit, But Not Explicit, Motor Learning following Visuomotor Adaptation. eNeuro 2021; 8:ENEURO.0527-20.2021. [PMID: 34580156 PMCID: PMC8519305 DOI: 10.1523/eneuro.0527-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Normal aging is associated with a decline in memory and motor learning ability. However, the exact form of these impairments (e.g., the short-term temporal stability and affected learning mechanisms) is largely unknown. Here, we used a sensorimotor adaptation task to examine changes in the temporal stability of two forms of learning (explicit and implicit) because of normal aging. Healthy young subjects (age range, 19–28 years; 20 individuals) and older human subjects (age range, 63–85 years; 19 individuals) made reaching movements in response to altered visual feedback. On each trial, subjects turned a rotation dial to select an explicit aiming direction. Once selected, the display was removed and subjects moved the cursor from the start position to the target. After initial training with the rotational feedback perturbation, subjects completed a series of probe trials at different delay periods to systematically assess the short-term retention of learning. For both groups, the explicit aiming showed no significant decrease over 1.5 min. However, this was not the case for implicit learning; the decay pattern was markedly different between groups. Older subjects showed a linear decrease of the implicit component of adaptation over time, while young subjects showed an exponential decay over the same period (time constant, 25.61 s). Although older subjects adapted at a similar rate, these results suggest natural aging selectively impacts the short-term (seconds to minutes) temporal stability of implicit motor learning mechanisms. This understanding may provide a means to dissociate natural aging memory impairments from deficits caused by brain disorders that progress with aging.
Collapse
|
13
|
Białecka-Dębek A, Granda D, Szmidt MK, Zielińska D. Gut Microbiota, Probiotic Interventions, and Cognitive Function in the Elderly: A Review of Current Knowledge. Nutrients 2021; 13:2514. [PMID: 34444674 PMCID: PMC8401879 DOI: 10.3390/nu13082514] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in the composition and proportions of the gut microbiota may be associated with numerous diseases, including cognitive impairment. Over the recent years, the growing interest in this relation is observed, but there are still many unknowns, especially in the elderly. To the best of our knowledge, this is the first work that synthesizes and critically evaluates existing evidence on the possible association between human gut microbiota and cognitive function in the elderly. For this purpose, comprehensive literature searches were conducted using the electronic databases PubMed, Google Scholar, and ScienceDirect. The gut microbiota of cognitively healthy and impaired elderly people may differ in the diversity and abundance of individual taxes, but specific taxes cannot be identified. However, some tendencies to changing the Firmicutes/Bacteroidetes ratio can be identified. Currently, clinical trials involving probiotics, prebiotics, and synbiotics supplementation have shown that there are premises for the claim that these factors can improve cognitive functions, however there is no single intervention beneficial to the elderly population. More reliable evidence from large-scale, long-period RCT is needed. Despite proposing several potential mechanisms of the gut microbiota's influence on the cognitive function impairment, prospective research on this topic is extremely difficult to conduct due to numerous confounding factors that may affect the gut microbiota. Heterogeneity of research outcomes impairs insight into these relations.
Collapse
Affiliation(s)
- Agata Białecka-Dębek
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dominika Granda
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Maria Karolina Szmidt
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
14
|
Sanz-Morère CB, Martini E, Meoni B, Arnetoli G, Giffone A, Doronzio S, Fanciullacci C, Parri A, Conti R, Giovacchini F, Friðriksson Þ, Romo D, Crea S, Molino-Lova R, Vitiello N. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study. J Neuroeng Rehabil 2021; 18:111. [PMID: 34217307 PMCID: PMC8254913 DOI: 10.1186/s12984-021-00902-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background Transfemoral amputation is a serious intervention that alters the locomotion pattern, leading to secondary disorders and reduced quality of life. The outcomes of current gait rehabilitation for TFAs seem to be highly dependent on factors such as the duration and intensity of the treatment and the age or etiology of the patient. Although the use of robotic assistance for prosthetic gait rehabilitation has been limited, robotic technologies have demonstrated positive rehabilitative effects for other mobility disorders and may thus offer a promising solution for the restoration of healthy gait in TFAs. This study therefore explored the feasibility of using a bilateral powered hip orthosis (APO) to train the gait of community-ambulating TFAs and the effects on their walking abilities. Methods Seven participants (46–71 years old with different mobility levels) were included in the study and assigned to one of two groups (namely Symmetry and Speed groups) according to their prosthesis type, mobility level, and prior experience with the exoskeleton. Each participant engaged in a maximum of 12 sessions, divided into one Enrollment session, one Tuning session, two Assessment sessions (conducted before and after the training program), and eight Training sessions, each consisting of 20 minutes of robotically assisted overground walking combined with additional tasks. The two groups were assisted by different torque-phase profiles, aiming at improving symmetry for the Symmetry group and at maximizing the net power transferred by the APO for the Speed group. During the Assessment sessions, participants performed two 6-min walking tests (6mWTs), one with (Exo) and one without (NoExo) the exoskeleton, at either maximal (Symmetry group) or self-selected (Speed group) speed. Spatio-temporal gait parameters were recorded by commercial measurement equipment as well as by the APO sensors, and metabolic efficiency was estimated via the Cost of Transport (CoT). Additionally, kinetic and kinematic data were recorded before and after treatment in the NoExo condition.
Results The one-month training protocol was found to be a feasible strategy to train TFAs, as all participants smoothly completed the clinical protocol with no relevant mechanical failures of the APO. The walking performance of participants improved after the training. During the 6mWT in NoExo, participants in the Symmetry and Speed groups respectively walked 17.4% and 11.7% farther and increased walking speed by 13.7% and 17.9%, with improved temporal and spatial symmetry for the former group and decreased energetic expenditure for the latter. Gait analysis showed that ankle power, step width, and hip kinematics were modified towards healthy reference levels in both groups. In the Exo condition metabolic efficiency was reduced by 3% for the Symmetry group and more than 20% for the Speed group. Conclusions This study presents the first pilot study to apply a wearable robotic orthosis (APO) to assist TFAs in an overground gait rehabilitation program. The proposed APO-assisted training program was demonstrated as a feasible strategy to train TFAs in a rehabilitation setting. Subjects improved their walking abilities, although further studies are required to evaluate the effectiveness of the APO compared to other gait interventions. Future protocols will include a lighter version of the APO along with optimized assistive strategies.
Collapse
Affiliation(s)
| | - Elena Martini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Pisa, Italy
| | - Barbara Meoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143, Florence, Italy
| | | | | | - Stefano Doronzio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143, Florence, Italy
| | | | - Andrea Parri
- IUVO S.R.L, Via Puglie, 9, 56025, Pontedera, Pisa, Italy
| | - Roberto Conti
- IUVO S.R.L, Via Puglie, 9, 56025, Pontedera, Pisa, Italy
| | | | | | - Duane Romo
- Össur, Grjótháls 5, 110, Reykjavík, Iceland
| | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Pisa, Italy.,IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143, Florence, Italy.,Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | | | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025, Pontedera, Pisa, Italy.,IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143, Florence, Italy.,Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| |
Collapse
|
15
|
Stojan R, Kaushal N, Bock OL, Hudl N, Voelcker-Rehage C. Benefits of Higher Cardiovascular and Motor Coordinative Fitness on Driving Behavior Are Mediated by Cognitive Functioning: A Path Analysis. Front Aging Neurosci 2021; 13:686499. [PMID: 34267646 PMCID: PMC8277437 DOI: 10.3389/fnagi.2021.686499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022] Open
Abstract
Driving is an important skill for older adults to maintain an independent lifestyle, and to preserve the quality of life. However, the ability to drive safely in older adults can be compromised by age-related cognitive decline. Performing an additional task during driving (e.g., adjusting the radio) increases cognitive demands and thus might additionally impair driving performance. Cognitive functioning has been shown to be positively related to physical activity/fitness such as cardiovascular and motor coordinative fitness. As such, a higher fitness level might be associated with higher cognitive resources and may therefore benefit driving performance under dual-task conditions. For the first time, the present study investigated whether this association of physical fitness and cognitive functioning causes an indirect relationship between physical fitness and dual-task driving performance through cognitive functions. Data from 120 healthy older adults (age: 69.56 ± 3.62, 53 female) were analyzed. Participants completed tests on cardiovascular fitness (cardiorespiratory capacity), motor coordinative fitness (composite score: static balance, psychomotor speed, bimanual dexterity), and cognitive functions (updating, inhibition, shifting, cognitive processing speed). Further, they performed a virtual car driving scenario where they additionally engaged in cognitively demanding tasks that were modeled after typical real-life activities during driving (typing or reasoning). Structural equation modeling (path analysis) was used to investigate whether cardiovascular and motor coordinative fitness were indirectly associated with lane keeping (i.e., variability in lateral position) and speed control (i.e., average velocity) while dual-task driving via cognitive functions. Both cardiovascular and motor coordinative fitness demonstrated the hypothesized indirect effects on dual-task driving. Motor coordinative fitness showed a significant indirect effect on lane keeping, while cardiovascular fitness demonstrated a trend-level indirect effect on speed control. Moreover, both fitness domains were positively related to different cognitive functions (processing speed and/or updating), and cognitive functions (updating or inhibition), in turn, were related to dual-task driving. These findings indicate that cognitive benefits associated with higher fitness may facilitate driving performance. Given that driving with lower cognitive capacity can result in serious consequences, this study emphasizes the importance for older adults to engage in a physically active lifestyle as it might serve as a preventive measure for driving safety.
Collapse
Affiliation(s)
- Robert Stojan
- Institute of Sport and Exercise Sciences, University of Muenster, Muenster, Germany
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| | - Navin Kaushal
- School of Health & Human Sciences, Indiana University, Bloomington, IA, United States
| | - Otmar Leo Bock
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
- Institute of Exercise Training and Sport Informatics, German Sport University Cologne, Cologne, Germany
| | - Nicole Hudl
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| | - Claudia Voelcker-Rehage
- Institute of Sport and Exercise Sciences, University of Muenster, Muenster, Germany
- Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
16
|
Białecka-Dębek A, Granda D, Pietruszka B. The role of docosahexaenoic acid (DHA) in the prevention
of cognitive impairment in the elderly. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aging is an inevitable and progressive biological process that leads to irreversible physiological
and functional changes, also in the nervous system. Cognitive decline occurring with age can
significantly affect the quality of life of older people. Docosahexaenoic acid (DHA) is necessary
for the proper functioning of the nervous system; it can affect its action directly through its
impact on neurogenesis and neuroplasticity, but also indirectly by affecting the functioning
of the cardiovascular system or anti-inflammatory effect. Literature analysis shows that good
nutritional status of n-3 fatty acids, determined on the basis of their level in blood plasma or
erythrocytes, is associated with a lower risk of cognitive decline in selected cognitive domains,
as well as a lower risk of dementia or Alzheimer’s disease, although studies are also available
where the above relationship has not been confirmed. Apart from this, studies on DHA and
EPA diet intake, as well as in the form of dietary supplements, show their beneficial effects in
the context of cognitive functioning and the risk of dementia. Also, the results of intervention
studies, although not explicit, suggest that high doses of DHA and EPA in the form of dietary
supplements may slow down the process of deteriorating the cognitive functioning of the elderly within selected domains. Based on the review of the literature, it can be concluded
that DHA and EPA play an essential role in the prevention of cognitive impairment.
Collapse
Affiliation(s)
- Agata Białecka-Dębek
- Katedra Żywienia Człowieka, Instytut Nauk o Żywieniu Człowieka, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
| | - Dominika Granda
- Katedra Żywienia Człowieka, Instytut Nauk o Żywieniu Człowieka, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
| | - Barbara Pietruszka
- Katedra Żywienia Człowieka, Instytut Nauk o Żywieniu Człowieka, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
| |
Collapse
|
17
|
Beekhof GC, Osório C, White JJ, van Zoomeren S, van der Stok H, Xiong B, Nettersheim IH, Mak WA, Runge M, Fiocchi FR, Boele HJ, Hoebeek FE, Schonewille M. Differential spatiotemporal development of Purkinje cell populations and cerebellum-dependent sensorimotor behaviors. eLife 2021; 10:63668. [PMID: 33973524 PMCID: PMC8195607 DOI: 10.7554/elife.63668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Distinct populations of Purkinje cells (PCs) with unique molecular and connectivity features are at the core of the modular organization of the cerebellum. Previously, we showed that firing activity of PCs differs between ZebrinII-positive and ZebrinII-negative cerebellar modules (Zhou et al., 2014; Wu et al., 2019). Here, we investigate the timing and extent of PC differentiation during development in mice. We found that several features of PCs, including activity levels, dendritic arborization, axonal shape and climbing fiber input, develop differentially between nodular and anterior PC populations. Although all PCs show a particularly rapid development in the second postnatal week, anterior PCs typically have a prolonged physiological and dendritic maturation. In line herewith, younger mice exhibit attenuated anterior-dependent eyeblink conditioning, but faster nodular-dependent compensatory eye movement adaptation. Our results indicate that specific cerebellar regions have unique developmental timelines which match with their related, specific forms of cerebellum-dependent behaviors.
Collapse
Affiliation(s)
| | - Catarina Osório
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Bilian Xiong
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Marit Runge
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Princeton Neuroscience Institute, Princeton, United States
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht, Netherlands
| | | |
Collapse
|
18
|
De Luca R, Torrisi M, Bramanti A, Maggio MG, Anchesi S, Andaloro A, Caliri S, De Cola MC, Calabrò RS. A multidisciplinary Telehealth approach for community dwelling older adults. Geriatr Nurs 2021; 42:635-642. [PMID: 33823421 DOI: 10.1016/j.gerinurse.2021.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023]
Abstract
Telemedicine may be used for the continuity of care in several chronic conditions. Sixty frail old people were enrolled along with their primary caregivers, and randomly divided into two groups: 30 of them received a multi-specialist telemedicine care, whilst the other 30 were treated in their usual territory care. All of the patients were evaluated through a clinical and psychometric battery at baseline (T0), after 6 months (T1), and at the end of the study (T2). It was found that telemedicine was more effective than the traditional approach in mood improvement (p < 0.001), behaviour (p < 0.01) and ADL/IADL (p < 0.01/0.04), as well as nutritional status. These changes increased over time (from T0 to T1), the caregivers' burden decreased, and system usability was rated as good. Telemedicine could be considered an important tool to improve the psychological health and quality of the life of older frail patients living at home.
Collapse
Affiliation(s)
- Rosaria De Luca
- Rocco Salvatore Calabrò, IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124 Messina, Italy
| | - Michele Torrisi
- Rocco Salvatore Calabrò, IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124 Messina, Italy
| | - Alessia Bramanti
- Rocco Salvatore Calabrò, IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124 Messina, Italy
| | - Maria Grazia Maggio
- Rocco Salvatore Calabrò, IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124 Messina, Italy
| | - Smeralda Anchesi
- Rocco Salvatore Calabrò, IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124 Messina, Italy
| | - Adriana Andaloro
- Rocco Salvatore Calabrò, IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124 Messina, Italy
| | - Santina Caliri
- Rocco Salvatore Calabrò, IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124 Messina, Italy
| | - Maria Cristina De Cola
- Rocco Salvatore Calabrò, IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- Rocco Salvatore Calabrò, IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
19
|
Bootsma JM, Caljouw SR, Veldman MP, Maurits NM, Rothwell JC, Hortobágyi T. Neural Correlates of Motor Skill Learning Are Dependent on Both Age and Task Difficulty. Front Aging Neurosci 2021; 13:643132. [PMID: 33828478 PMCID: PMC8019720 DOI: 10.3389/fnagi.2021.643132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Although a general age-related decline in neural plasticity is evident, the effects of age on neural plasticity after motor practice are inconclusive. Inconsistencies in the literature may be related to between-study differences in task difficulty. Therefore, we aimed to determine the effects of age and task difficulty on motor learning and associated brain activity. We used task-related electroencephalography (EEG) power in the alpha (8–12 Hz) and beta (13–30 Hz) frequency bands to assess neural plasticity before, immediately after, and 24-h after practice of a mirror star tracing task at one of three difficulty levels in healthy younger (19–24 yr) and older (65–86 yr) adults. Results showed an age-related deterioration in motor performance that was more pronounced with increasing task difficulty and was accompanied by a more bilateral activity pattern for older vs. younger adults. Task difficulty affected motor skill retention and neural plasticity specifically in older adults. Older adults that practiced at the low or medium, but not the high, difficulty levels were able to maintain improvements in accuracy at retention and showed modulation of alpha TR-Power after practice. Together, these data indicate that both age and task difficulty affect motor learning, as well as the associated neural plasticity.
Collapse
Affiliation(s)
- Josje M Bootsma
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Simone R Caljouw
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Menno P Veldman
- Movement Control and Neuroplasticity Research Group, Department of Movement Science, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, United Kingdom
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
Quarta E, Cohen EJ, Bravi R, Minciacchi D. Future Portrait of the Athletic Brain: Mechanistic Understanding of Human Sport Performance Via Animal Neurophysiology of Motor Behavior. Front Syst Neurosci 2020; 14:596200. [PMID: 33281568 PMCID: PMC7705174 DOI: 10.3389/fnsys.2020.596200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
Sport performances are often showcases of skilled motor control. Efforts to understand the neural processes subserving such movements may teach us about general principles of behavior, similarly to how studies on neurological patients have guided early work in cognitive neuroscience. While investigations on non-human animal models offer valuable information on the neural dynamics of skilled motor control that is still difficult to obtain from humans, sport sciences have paid relatively little attention to these mechanisms. Similarly, knowledge emerging from the study of sport performance could inspire innovative experiments in animal neurophysiology, but the latter has been only partially applied. Here, we advocate that fostering interactions between these two seemingly distant fields, i.e., animal neurophysiology and sport sciences, may lead to mutual benefits. For instance, recording and manipulating the activity from neurons of behaving animals offer a unique viewpoint on the computations for motor control, with potentially untapped relevance for motor skills development in athletes. To stimulate such transdisciplinary dialog, in the present article, we also discuss steps for the reverse translation of sport sciences findings to animal models and the evaluation of comparability between animal models of a given sport and athletes. In the final section of the article, we envision that some approaches developed for animal neurophysiology could translate to sport sciences anytime soon (e.g., advanced tracking methods) or in the future (e.g., novel brain stimulation techniques) and could be used to monitor and manipulate motor skills, with implications for human performance extending well beyond sport.
Collapse
Affiliation(s)
| | | | | | - Diego Minciacchi
- Physiological Sciences Section, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
21
|
Vieweg J, Schaefer S. How an Age Simulation Suit affects Motor and Cognitive Performance and Self-perception in Younger Adults. Exp Aging Res 2020; 46:273-290. [PMID: 32449473 DOI: 10.1080/0361073x.2020.1766299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND/STUDY CONTEXT We assessed the influence of wearing an Age Simulation Suit (GERT) on gross motor, fine motor and cognitive performance in healthy young adults. METHODS In a within-subjects design, we tested 20 young adults (M age = 22.3 years) with and without the Age Simulation Suit. We assessed gross motor (Functional Fitness test) and fine motor (Purdue Pegboard test) functioning, cognitive performance (Digit Symbol Substitution test), and questionnaires on perceived physical state and mood. Gross and fine motor tests provided norms for large samples of older adults. RESULTS Wearing the Age Simulation Suit leads to significant performance reductions in all task dimensions, with large effect sizes. Depending on the subtest, participants' performances were reduced to the level of mid-50- to 85-years-olds for almost all tests of gross and fine motor performance. Mood and perceived physical state also declined while wearing the suit. CONCLUSION We argue that the GERT suit offers an attractive possibility to experimentally simulate the effects of aging-related sensory and motor losses and propose future studies with this paradigm, in the context of cognitive-motor dual-tasking or motor learning.
Collapse
Affiliation(s)
- Janine Vieweg
- Department of Sport Psychology, Saarland University , Saarbrücken, Germany
| | - Sabine Schaefer
- Department of Sport Psychology, Saarland University , Saarbrücken, Germany
| |
Collapse
|
22
|
Guneysu Ozgur A, Wessel MJ, Olsen JK, Johal W, Ozgur A, Hummel FC, Dillenbourg P. Gamified Motor Training With Tangible Robots in Older Adults: A Feasibility Study and Comparison With the Young. Front Aging Neurosci 2020; 12:59. [PMID: 32317957 PMCID: PMC7146054 DOI: 10.3389/fnagi.2020.00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
Background: An increasing lifespan and the resulting change in our expectations of later life stages are dependent on a good health state. This emphasizes the importance of the development of strategies to further strengthen healthy aging. One important aspect of good health in later life stages is sustained skilled motor function. Objective: Here, we tested the effectiveness of robotic upper limb motor training in a game-like scenario assessing game-based learning and its transfer potential. Methods: Thirty-six healthy participants (n = 18 elderly participants, n = 18 young controls) trained with a Pacman-like game using a hand-held Cellulo robot on 2 consecutive days. The game-related movements were conducted on a printed map displaying a maze and targets that had to be collected. Gradually, the task difficulty was adjusted between games by modifying or adding different game elements (e.g., speed and number of chasing ghosts, additional rules, and haptic feedback). Transfer was assessed by scoring simple robot manipulation on two different trajectories. Results: Elderly participants were able to improve their game performance over time [t(874) = 2.97, p < 0.01]. The applied game elements had similar effects on both age groups. Importantly, the game-based learning was transferable to simple robot manipulation that resembles activities of daily life. Only minor age-related differences were present (smaller overall learning gain and different effects of the wall-crash penalty rule in the elderly group). Conclusions: Gamified motor training with the Cellulo system has the potential to translate into an efficient and relatively low-cost robotic motor training tool for promoting upper limb function to promote healthy aging.
Collapse
Affiliation(s)
- Arzu Guneysu Ozgur
- Computer Human Interaction in Learning and Instruction Lab, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - Jennifer K Olsen
- Computer Human Interaction in Learning and Instruction Lab, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Wafa Johal
- Computer Human Interaction in Learning and Instruction Lab, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,BIOROB Lab, EPFL, Lausanne, Switzerland
| | - Ayberk Ozgur
- Computer Human Interaction in Learning and Instruction Lab, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland.,Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre Dillenbourg
- Computer Human Interaction in Learning and Instruction Lab, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
23
|
Chan JSY, Deng K, Wu J, Yan JH. Effects of Meditation and Mind-Body Exercises on Older Adults' Cognitive Performance: A Meta-analysis. THE GERONTOLOGIST 2020; 59:e782-e790. [PMID: 30796782 DOI: 10.1093/geront/gnz022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Meditation and mind-body exercises are suggested to delay decline or enhance cognitive capabilities in older adults. However, their effectiveness remains uncertain. This study assessed the effectiveness of meditation and mind-body exercises to improve cognition in elderly people aged 60 years or above. Moderator variables were also explored. RESEARCH DESIGN AND METHODS A databases search (MEDLINE, EMBASE, CINAHL, PsycINFO, Cochrane Library, Web of Science, CNKI, and Wangfang) was conducted from the first available date to January 10, 2018. Inclusion criteria include (a) human older adults aged 60 years or above, (b) meditation, Tai Chi, Qigong, or yoga intervention, (c) intervention should be structured, (d) inclusion of a control group, (e) at least one outcome measure of cognition was measured at baseline and post-training, and (f) peer-reviewed journal articles in English or Chinese. RESULTS Forty-one studies (N = 3,551) were included in the meta-analysis. In general, meditation and mind-body exercises improve cognition in the elderly people (SMD = 0.34, 95% CI: 0.19 to 0.48), but the cognition-enhancing effects depend on the type of exercise. In addition, cognitive performance is only improved when the length of intervention is longer than 12 weeks, exercise frequency is 3-7 times/week, or duration of an exercise session is 45-60 min/session. DISCUSSION AND IMPLICATIONS This study suggests that meditation and mind-body exercises are effective to improve cognition of older adults aged 60 years or above, and exercise parameters should be considered for intervention planning.
Collapse
Affiliation(s)
- John S Y Chan
- Laboratory of Neuromotor Control and Learning, Shenzhen University, China
| | - Kanfeng Deng
- Laboratory of Neuromotor Control and Learning, Shenzhen University, China
| | - Jiamin Wu
- Laboratory of Neuromotor Control and Learning, Shenzhen University, China
| | - Jin H Yan
- Laboratory of Neuromotor Control and Learning, Shenzhen University, China
| |
Collapse
|
24
|
Lopatina OL, Morgun AV, Gorina YV, Salmin VV, Salmina AB. Current approaches to modeling the virtual reality in rodents for the assessment of brain plasticity and behavior. J Neurosci Methods 2020; 335:108616. [PMID: 32007483 DOI: 10.1016/j.jneumeth.2020.108616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
Abstract
Virtual reality (VR) and augmented reality (AR) have become valuable tools to study brains and behaviors resulting in development of new methods of diagnostics and treatment. Neurodegenerаtion is one of the best examples demonstrating efficacy of VR/АR technologies in modern neurology. Development of novel VR systems for rodents and combination of VR tools with up-to-date imaging techniques (i.e. MRI, imaging of neural networks etc.), brain electrophysiology (EEG, patch-clamp), precise analytics (microdialysis) allowed implementing of VR protocols into the animal neurobiology to study brain plasticity, sensorimotor integration, spatial navigation, memory, and decision-making. VR/AR for rodents is а young field of experimental neuroscience and has already provided more consistent testing conditions, less human-animal interaction, opportunities to use a wider variety of experimental parameters. Here we discuss present and future perspectives of using VR/AR to assess brain plasticity, neurogenesis and complex behavior in rodent and human study, and their advantages for translational neuroscience.
Collapse
Affiliation(s)
- Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.
| | - Andrey V Morgun
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yana V Gorina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
25
|
Adcock M, Fankhauser M, Post J, Lutz K, Zizlsperger L, Luft AR, Guimarães V, Schättin A, de Bruin ED. Effects of an In-home Multicomponent Exergame Training on Physical Functions, Cognition, and Brain Volume of Older Adults: A Randomized Controlled Trial. Front Med (Lausanne) 2020; 6:321. [PMID: 32047751 PMCID: PMC6997483 DOI: 10.3389/fmed.2019.00321] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with a decline in physical functions, cognition and brain structure. Considering that human life is based on an inseparable physical-cognitive interplay, combined physical-cognitive training through exergames is a promising approach to counteract age-related impairments. The aim of this study was to assess the effects of an in-home multicomponent exergame training on [i] physical and cognitive functions and [ii] brain volume of older adults compared to a usual care control group. Thirty-seven healthy and independently living older adults aged 65 years and older were randomly assigned to an intervention (exergame training) or a control (usual care) group. Over 16 weeks, the participants of the intervention group absolved three home-based exergame sessions per week (à 30–40 min) including Tai Chi-inspired exercises, dancing and step-based cognitive games. The control participants continued with their normal daily living. Pre- and post-measurements included assessments of physical (gait parameters, functional muscle strength, balance, aerobic endurance) and cognitive (processing speed, short-term attention span, working memory, inhibition, mental flexibility) functions. T1-weighted magnetic resonance imaging was conducted to assess brain volume. Thirty-one participants (mean age = 73.9 ± 6.4 years, range = 65–90 years, 16 female) completed the study. Inhibition and working memory significantly improved post-intervention in favor of the intervention group [inhibition: F(1) = 2.537, p = 0.046, np2 = 0.11, working memory: F(1) = 5.872, p = 0.015, np2 = 0.02]. Two measures of short-term attentional span showed improvements after training in favor of the control group [F(1) = 4.309, p = 0.038, np2 = 0.03, F(1) = 8.504, p = 0.004, np2 = 0.04]. No significant training effects were evident for physical functions or brain volume. Both groups exhibited a significant decrease in gray matter volume of frontal areas and the hippocampus over time. The findings indicate a positive influence of exergame training on executive functioning. No improvements in physical functions or brain volume were evident in this study. Better adapted individualized training challenge and a longer training period are suggested. Further studies are needed that assess training-related structural brain plasticity and its effect on performance, daily life functioning and healthy aging.
Collapse
Affiliation(s)
- Manuela Adcock
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Mélanie Fankhauser
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jennifer Post
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Kai Lutz
- Cereneo, Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | | | - Andreas R Luft
- Cereneo, Center for Neurology and Rehabilitation, Vitznau, Switzerland.,Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Alexandra Schättin
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Eling D de Bruin
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Ye Z, Sun B, Mi X, Xiao Z. Gene co-expression network for analysis of plasma exosomal miRNAs in the elderly as markers of aging and cognitive decline. PeerJ 2020; 8:e8318. [PMID: 31934508 PMCID: PMC6951281 DOI: 10.7717/peerj.8318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Evidence has shown that microRNA (miRNAs) are involved in molecular pathways responsible for aging and age-related cognitive decline. However, there is a lack of research linked plasma exosome-derived miRNAs changes with cognitive function in older people and aging, which might prove a new insight on the transformation of miRNAs on clinical applications for cognitive decline for older people. METHODS We applied weighted gene co-expression network analysis to investigated miRNAs within plasma exosomes of older people for a better understanding of the relationship of exosome-derived miRNAs with cognitive decline in elderly adults. We identified network modules of co-expressed miRNAs in the elderly exosomal miRNAs dataset. In each module, we selected vital miRNAs and carried out functional enrichment analyses of their experimentally known target genes and their function. RESULTS We found that plasma exosomal miRNAs hsa-mir-376a-3p, miR-10a-5p, miR-125-5p, miR-15a-5p have critical regulatory roles in the development of aging and cognitive dysfunction in the elderly and may serve as biomarkers and putative novel therapeutic targets for aging and cognitive decline.
Collapse
Affiliation(s)
- Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Xue Mi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Vieweg J, Leinen P, Verwey WB, Shea CH, Panzer S. The Cognitive Status of Older Adults: Do Reduced Time Constraints Enhance Sequence Learning? J Mot Behav 2019; 52:558-569. [PMID: 31448707 DOI: 10.1080/00222895.2019.1654970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Research has indicated that older adults perform movement sequences more slowly than young adults. The purpose of the present experiment was to compare movement sequence learning in young and older adults when the time to perform the sequence was extended, and how the elderly's cognitive status (Montreal Cognitive Assessment [MoCA]) interacted with sequence learning. The task was to minimize the difference between a target sequence pattern and the sequence produced by elbow extension-flexion movements. On Day 1, participants (28 young adults; 28 older adults) practiced the sequence under two time windows: 1300 ms or 2000 ms. On Day 2, retention performance and the cognitive status were assessed. The results demonstrated that young adults performed superior compared to older adults. Additional time to perform the sequence did not improve retention performance for the older adults. The correlation between the error score and the MoCA score of r = -.38 (p < .05) in older adults indicated that a better cognitive status was associated with performance advantages in sequence learning.
Collapse
Affiliation(s)
- Janine Vieweg
- Department of Human Movement Sciences, Saarland University, Saarbrücken, Germany
| | - Peter Leinen
- Department of Human Movement Sciences, Saarland University, Saarbrücken, Germany
| | - Willem B Verwey
- Department of Health and Kinesiology, Texas A&M University, College Station, TX.,Department of Cognitive Psychology and Ergonomics, University of Twente, Enschede, the Netherlands
| | - Charles H Shea
- Department of Health and Kinesiology, Texas A&M University, College Station, TX
| | - Stefan Panzer
- Department of Human Movement Sciences, Saarland University, Saarbrücken, Germany.,Department of Health and Kinesiology, Texas A&M University, College Station, TX
| |
Collapse
|
28
|
Lawrence BJ, Jayakody DMP, Henshaw H, Ferguson MA, Eikelboom RH, Loftus AM, Friedland PL. Auditory and Cognitive Training for Cognition in Adults With Hearing Loss: A Systematic Review and Meta-Analysis. Trends Hear 2019; 22:2331216518792096. [PMID: 30092719 PMCID: PMC6088475 DOI: 10.1177/2331216518792096] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This systematic review and meta-analysis examined the efficacy of auditory training and cognitive training to improve cognitive function in adults with hearing loss. A literature search of academic databases (e.g., MEDLINE, Scopus) and gray literature (e.g., OpenGrey) identified relevant articles published up to January 25, 2018. Randomized controlled trials (RCTs) or repeated measures designs were included. Outcome effects were computed as Hedge’s g and pooled using random-effects meta-analysis (PROSPERO: CRD42017076680). Nine studies, five auditory training, and four cognitive training met the inclusion criteria. Following auditory training, the pooled effect was small and statistically significant for both working memory (g = 0.21; 95% CI [0.05, 0.36]) and overall cognition (g = 0.19; 95% CI [0.07, 0.31]). Following cognitive training, the pooled effect for working memory was small and statistically significant (g = 0.34; 95% CI [0.16, 0.53]), and the pooled effect for overall cognition was large and significant (g = 1.03; 95% CI [0.41, 1.66]). However, this was dependent on the classification of training approach. Sensitivity analyses revealed no statistical difference between the effectiveness of auditory and cognitive training for improving cognition upon removal of a study that used a combined auditory–cognitive approach, which showed a very large effect. Overall certainty in the estimation of effect was “low” for auditory training and “very low” for cognitive training. High-quality RCTs are needed to determine which training stimuli will provide optimal conditions to improve cognition in adults with hearing loss.
Collapse
Affiliation(s)
- Blake J Lawrence
- 1 Ear Science Institute Australia, Subiaco, WA, Australia.,2 Ear Sciences Centre, Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Dona M P Jayakody
- 1 Ear Science Institute Australia, Subiaco, WA, Australia.,2 Ear Sciences Centre, Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Helen Henshaw
- 3 National Institute for Health Research Nottingham Biomedical Research Centre, UK.,4 Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, UK
| | - Melanie A Ferguson
- 3 National Institute for Health Research Nottingham Biomedical Research Centre, UK.,4 Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, UK.,5 Nottingham University Hospitals NHS Trust, Queens Medical Centre, Nottingham, UK
| | - Robert H Eikelboom
- 1 Ear Science Institute Australia, Subiaco, WA, Australia.,2 Ear Sciences Centre, Medical School, The University of Western Australia, Crawley, WA, Australia.,6 Department of Speech-Language Pathology and Audiology, University of Pretoria, South Africa
| | - Andrea M Loftus
- 7 School of Psychology and Speech Pathology, Curtin University, Bentley, WA, Australia.,8 ParkC Collaborative Research Group, Curtin University, Bentley, WA, Australia
| | - Peter L Friedland
- 1 Ear Science Institute Australia, Subiaco, WA, Australia.,2 Ear Sciences Centre, Medical School, The University of Western Australia, Crawley, WA, Australia.,9 Department of Otolaryngology Head Neck Skull Based Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,10 School of Medicine, Notre Dame University, Fremantle, WA, Australia
| |
Collapse
|
29
|
Gonzalez-Escamilla G, Muthuraman M, Chirumamilla VC, Vogt J, Groppa S. Brain Networks Reorganization During Maturation and Healthy Aging-Emphases for Resilience. Front Psychiatry 2018; 9:601. [PMID: 30519196 PMCID: PMC6258799 DOI: 10.3389/fpsyt.2018.00601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Maturation and aging are important life periods that are linked to drastic brain reorganization processes which are essential for mental health. However, the development of generalized theories for delimiting physiological and pathological brain remodeling through life periods linked to healthy states and resilience on one side or mental dysfunction on the other remains a challenge. Furthermore, important processes of preservation and compensation of brain function occur continuously in the cerebral brain networks and drive physiological responses to life events. Here, we review research on brain reorganization processes across the lifespan, demonstrating brain circuits remodeling at the structural and functional level that support mental health and are parallelized by physiological trajectories during maturation and healthy aging. We show evidence that aberrations leading to mental disorders result from the specific alterations of cerebral networks and their pathological dynamics leading to distinct excitability patterns. We discuss how these series of large-scale responses of brain circuits can be viewed as protective or malfunctioning mechanisms for the maintenance of mental health and resilience.
Collapse
Affiliation(s)
| | - Muthuraman Muthuraman
- Department of Neurology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Venkata C. Chirumamilla
- Department of Neurology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Vogt
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
30
|
Prasertsakul T, Kaimuk P, Chinjenpradit W, Limroongreungrat W, Charoensuk W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Biomed Eng Online 2018; 17:124. [PMID: 30227884 PMCID: PMC6145375 DOI: 10.1186/s12938-018-0550-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background Adults with sedentary lifestyles seem to face a higher risk of falling in their later years. Several causes, such as impairment of strength, coordination, and cognitive function, influence worsening health conditions, including balancing ability. Many modalities can be applied to improve the balance function and prevent falling. Several studies have also recorded the effects of balance training in elderly adults for fall prevention. Accordingly, the aim of this study is to define the effect of virtual reality-based balance training on motor learning and postural control abilities in healthy adults. Methods For this study, ten subjects were randomly allocated into either the conventional exercise (CON) or the virtual reality (VR) group. The CON group underwent physical balance training, while the VR group used the virtual reality system 4 weeks. In the VR group, the scores from three game modes were utilized to describe the effect of motor learning and define the learning curves that were derived with the power law function. Wilcoxon Signed Ranks Test was performed to analyze the postural control in five standing tasks, and data were collected with the help of a force plate. Results The average score was used to describe the effect of motor learning by deriving the mathematical models for determining the learning curve. Additionally, the models were classified into two exponential functions that relied on the aim and requirement skills. A negative exponential function was observed in the game mode, which requires the cognitive-motor function. In contrast, a positive exponential function was found in the game with use of only the motor skill. Moreover, this curve and its model were also used to describe the effect of learning in the long term and the ratio of difficulty in each game. In the balance performance, there was a significant decrease in the center of pressure parameters in the VR group, while in the CON group, there was a significant increase in the parameters during some foot placements, especially in the medio-lateral direction. Conclusion The proposed VR-based training relies on the effect of motor learning in long-term training though different kinds of task training. In postural analysis, both exercise programs are emphasized to improve the balance ability in healthy adults. However, the virtual reality system can promote better outcomes to improve postural control post exercising. Trial registration Retrospectively registered on 25 April 2018. Trial number TCTR20180430005 Electronic supplementary material The online version of this article (10.1186/s12938-018-0550-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thunyanoot Prasertsakul
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Panya Kaimuk
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wipawee Chinjenpradit
- Physical Medicine and Rehabilitation, Cardiac Rehabilitation, Bumrungrad International Hospital, Bangkok, Thailand
| | | | - Warakorn Charoensuk
- Department of Electrical Engineering, Faculty of Engineering, Mahidol University, Phuttamonthon 4 Road., Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
31
|
Schättin A, Gennaro F, Egloff M, Vogt S, de Bruin ED. Physical Activity, Nutrition, Cognition, Neurophysiology, and Short-Time Synaptic Plasticity in Healthy Older Adults: A Cross-Sectional Study. Front Aging Neurosci 2018; 10:242. [PMID: 30214406 PMCID: PMC6125692 DOI: 10.3389/fnagi.2018.00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
The aging brain undergoes remodeling processes because of biological and environmental factors. To counteract brain aging, neuronal plasticity should be preserved. The aim of this study was to test if the capacity of generating short-time synaptic plasticity in older adults may be related to either physical activity, nutritional status, cognition, or neurophysiological activity. Thirty-six participants (mean age 73.3 ± 5.9 years) received transcranial magnetic stimulation in combination with peripheral nerve stimulation to experimentally induce short-time synaptic plasticity by paired associative stimulation (PAS). Adaptations in neuronal excitability were assessed by motor-evoked potential (MEP) in the right m. tibialis anterior before and after PAS. The Physical Activity Questionnaire 50+ and the StepWatchTM captured physical activity levels. Nutritional status was assessed by the Mini Nutritional Assessment. Cognition was assessed by reaction time for a divided attention test and with the Montreal Cognitive Assessment. Neurophysiological activity was assessed by electroencephalography during the divided attention test. MEPs of the highest stimulation intensity resulted significantly different comparing before, 5 min, or 30 min after PAS (p < 0.05). Data-driven automatic hierarchical classification of the individual recruitment curve slopes over the three-time points indicated four different response types, however, response groups did not significantly differ based on physical activity, nutritional status, cognition, or neurophysiological activity. In a second-level analysis, participants having an increased slope showed a significant higher energy expenditure (z = -2.165, p = 0.030, r = 0.36) and revealed a significant higher power activity in the alpha frequency band (z = -2.008, p = 0.046, r = 0.37) at the prefrontal-located EEG electrodes, compared to the participants having a decreased slope. This study hints toward older adults differing in their neuronal excitability which is strongly associated to their short-time synaptic plasticity levels. Furthermore, a physically active lifestyle and higher EEG power in the alpha frequency band seem to be connected to the capacity of generating long-term potentiation-like synaptic plasticity in older adults. Future studies should consider more sensitive assessments and bigger sample sizes to get a broad scope of the older adults' population.
Collapse
Affiliation(s)
- Alexandra Schättin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Federico Gennaro
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Martin Egloff
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Simon Vogt
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
| | - Eling D. de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zürich, Zürich, Switzerland
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
32
|
Pan Z, Su X, Fang Q, Hou L, Lee Y, Chen CC, Lamberth J, Kim ML. The Effects of Tai Chi Intervention on Healthy Elderly by Means of Neuroimaging and EEG: A Systematic Review. Front Aging Neurosci 2018; 10:110. [PMID: 29720936 PMCID: PMC5915963 DOI: 10.3389/fnagi.2018.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/03/2018] [Indexed: 01/28/2023] Open
Abstract
Aging is a process associated with a decline in cognitive and motor functions, which can be attributed to neurological changes in the brain. Tai Chi, a multimodal mind-body exercise, can be practiced by people across all ages. Previous research identified effects of Tai Chi practice on delaying cognitive and motor degeneration. Benefits in behavioral performance included improved fine and gross motor skills, postural control, muscle strength, and so forth. Neural plasticity remained in the aging brain implies that Tai Chi-associated benefits may not be limited to the behavioral level. Instead, neurological changes in the human brain play a significant role in corresponding to the behavioral improvement. However, previous studies mainly focused on the effects of behavioral performance, leaving neurological changes largely unknown. This systematic review summarized extant studies that used brain imaging techniques and EEG to examine the effects of Tai Chi on older adults. Eleven articles were eligible for the final review. Three neuroimaging techniques including fMRI (N = 6), EEG (N = 4), and MRI (N = 1), were employed for different study interests. Significant changes were reported on subjects' cortical thickness, functional connectivity and homogeneity of the brain, and executive network neural function after Tai Chi intervention. The findings suggested that Tai Chi intervention give rise to beneficial neurological changes in the human brain. Future research should develop valid and convincing study design by applying neuroimaging techniques to detect effects of Tai Chi intervention on the central nervous system of older adults. By integrating neuroimaging techniques into randomized controlled trials involved with Tai Chi intervention, researchers can extend the current research focus from behavioral domain to neurological level.
Collapse
Affiliation(s)
- Zhujun Pan
- Department of Kinesiology, Mississippi State University, Starkville, MS, United States
| | - Xiwen Su
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Qun Fang
- Department of Kinesiology, Mississippi State University, Starkville, MS, United States
| | - Lijuan Hou
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Younghan Lee
- Department of Kinesiology, Mississippi State University, Starkville, MS, United States
| | - Chih C Chen
- Department of Kinesiology, Mississippi State University, Starkville, MS, United States
| | - John Lamberth
- Department of Kinesiology, Mississippi State University, Starkville, MS, United States
| | - Mi-Lyang Kim
- Department of Sports, Leisure and Recreation, Soonchunhyang University, Asan, South Korea
| |
Collapse
|
33
|
Chan JSY, Yan JH. Age-Related Changes in Field Dependence-Independence and Implications for Geriatric Rehabilitation: A Review. Percept Mot Skills 2018; 125:234-250. [PMID: 29388513 DOI: 10.1177/0031512518754422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human aging is a dynamic life-long process and an inevitable experience. As the average age of the world's population rises, demands for effective geriatric rehabilitation dramatically increase. An important consideration for enhancing geriatric behavioral interventions is to better understand aging characteristics in perceptual, cognitive, and motor performances. A general shift in cognitive style from field independence to field dependence has been consistently observed during human aging, as older adults show a greater tendency to rely on environmental information, presumably reflecting a neuro-compensatory mechanism of reducing top-down control and relying instead on bottom-up processing. These changes in cognitive style can impact motor skill learning and relearning and, consequently, affect geriatric rehabilitation and behavioral treatments. In this article, we review research related to the cognitive style of field dependence and independence, and its dynamic associations with aging. We also identify implications of cognitive style for geriatric rehabilitation and explore future research.
Collapse
Affiliation(s)
- John S Y Chan
- 1 Laboratory of Neuromotor Control and Learning, 47890 Shenzhen University , China
| | - Jin H Yan
- 1 Laboratory of Neuromotor Control and Learning, 47890 Shenzhen University , China
| |
Collapse
|
34
|
Levy-Tzedek S. Changes in Predictive Task Switching with Age and with Cognitive Load. Front Aging Neurosci 2017; 9:375. [PMID: 29213235 PMCID: PMC5702656 DOI: 10.3389/fnagi.2017.00375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022] Open
Abstract
Predictive control of movement is more efficient than feedback-based control, and is an important skill in everyday life. We tested whether the ability to predictively control movements of the upper arm is affected by age and by cognitive load. A total of 63 participants were tested in two experiments. In both experiments participants were seated, and controlled a cursor on a computer screen by flexing and extending their dominant arm. In Experiment 1, 20 young adults and 20 older adults were asked to continuously change the frequency of their horizontal arm movements, with the goal of inducing an abrupt switch between discrete movements (at low frequencies) and rhythmic movements (at high frequencies). We tested whether that change was performed based on a feed-forward (predictive) or on a feedback (reactive) control. In Experiment 2, 23 young adults performed the same task, while being exposed to a cognitive load half of the time via a serial subtraction task. We found that both aging and cognitive load diminished, on average, the ability of participants to predictively control their movements. Five older adults and one young adult under a cognitive load were not able to perform the switch between rhythmic and discrete movement (or vice versa). In Experiment 1, 40% of the older participants were able to predictively control their movements, compared with 70% in the young group. In Experiment 2, 48% of the participants were able to predictively control their movements with a cognitively loading task, compared with 70% in the no-load condition. The ability to predictively change a motor plan in anticipation of upcoming changes may be an important component in performing everyday functions, such as safe driving and avoiding falls.
Collapse
Affiliation(s)
- Shelly Levy-Tzedek
- Recanati School for Community Health Professions, Department of Physical Therapy, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
35
|
Rani A, O'Shea A, Ianov L, Cohen RA, Woods AJ, Foster TC. miRNA in Circulating Microvesicles as Biomarkers for Age-Related Cognitive Decline. Front Aging Neurosci 2017; 9:323. [PMID: 29046635 PMCID: PMC5632661 DOI: 10.3389/fnagi.2017.00323] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Community dwelling older individuals from the North Florida region were examined for health status and a comprehensive neuropsychological battery, including the Montreal Cognitive Assessment (MoCA), was performed on each participant. A subpopulation (58 females and 39 males) met the criteria for age (60–89) and no evidence of mild cognitive impairment, with a MoCA score ≥23. Despite the stringent criteria for participation, MoCA scores were negatively correlated within the limited age range. Extracellular microvesicles were isolated from the plasma and samples were found to be positive for the exosome marker CD63, with an enrichment of particles within the size range for exosomes. miRNA was extracted and examined using next generation sequencing with a stringent criterion (average of ≥10 counts per million reads) resulting in 117 miRNA for subsequent analysis. Characterization of expression confirmed pervious work concerning the relative abundance and overall pattern of expression of miRNA in plasma. Correlation analysis indicated that most of the miRNAs (74 miRNAs) were positively correlated with age (p <0.01). Multiple regression was employed to identify the relationship of miRNA expression and MoCA score, accounting for age. MoCA scores were negatively correlated with 13 miRNAs. The pattern of expression for cognition-related miRNA did not match that previously described for Alzheimer’s disease. Enrichment analysis was employed to identify miRNA–gene interactions to reveal possible links to brain function.
Collapse
Affiliation(s)
- Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew O'Shea
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.,Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Lara Ianov
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Genetics and Genomics Program, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Ronald A Cohen
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.,Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Adam J Woods
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.,Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Genetics and Genomics Program, Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
36
|
Koppelmans V, Bloomberg JJ, De Dios YE, Wood SJ, Reuter-Lorenz PA, Kofman IS, Riascos R, Mulavara AP, Seidler RD. Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest. PLoS One 2017; 12:e0182236. [PMID: 28767698 PMCID: PMC5540603 DOI: 10.1371/journal.pone.0182236] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 07/15/2017] [Indexed: 12/18/2022] Open
Abstract
Background Adverse effects of spaceflight on sensorimotor function have been linked to altered somatosensory and vestibular inputs in the microgravity environment. Whether these spaceflight sequelae have a central nervous system component is unknown. However, experimental studies have shown spaceflight-induced brain structural changes in rodents’ sensorimotor brain regions. Understanding the neural correlates of spaceflight-related motor performance changes is important to ultimately develop tailored countermeasures that ensure mission success and astronauts’ health. Method Head down-tilt bed rest (HDBR) can serve as a microgravity analog because it mimics body unloading and headward fluid shifts of microgravity. We conducted a 70-day 6° HDBR study with 18 right-handed males to investigate how microgravity affects focal gray matter (GM) brain volume. MRI data were collected at 7 time points before, during and post-HDBR. Standing balance and functional mobility were measured pre and post-HDBR. The same metrics were obtained at 4 time points over ~90 days from 12 control subjects, serving as reference data. Results HDBR resulted in widespread increases GM in posterior parietal regions and decreases in frontal areas; recovery was not yet complete by 12 days post-HDBR. Additionally, HDBR led to balance and locomotor performance declines. Increases in a cluster comprising the precuneus, precentral and postcentral gyrus GM correlated with less deterioration or even improvement in standing balance. This association did not survive Bonferroni correction and should therefore be interpreted with caution. No brain or behavior changes were observed in control subjects. Conclusions Our results parallel the sensorimotor deficits that astronauts experience post-flight. The widespread GM changes could reflect fluid redistribution. Additionally, the association between focal GM increase and balance changes suggests that HDBR also may result in neuroplastic adaptation. Future studies are warranted to determine causality and underlying mechanisms.
Collapse
Affiliation(s)
- Vincent Koppelmans
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | | | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States of America
| | | | | | - Roy Riascos
- The University of Texas Health Science Center, Houston, TX, United States of America
| | | | - Rachael D. Seidler
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
37
|
Sebastjan A, Skrzek A, Ignasiak Z, Sławińska T. Age-related changes in hand dominance and functional asymmetry in older adults. PLoS One 2017; 12:e0177845. [PMID: 28558047 PMCID: PMC5448747 DOI: 10.1371/journal.pone.0177845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/04/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of the study was to investigate fine motor performance and ascertain age-related changes in laterality between the dominant and non-dominant hand. A representative sample of 635 adults (144 males and 491 females) aged 50 years and over completed a test battery MLS (Motor Performance Series) to assess a broad range of hand functions. Functional asymmetry was observed in all four motor tests (postural tremor, aiming, tapping, and inserting long pins). Significant differences between the dominant and non-dominant hand were obtained in both sexes across all age groups, except in the oldest female group (age >70) for the aiming (number of hits and errors) and postural tremor (number of errors) tasks. These differences in age-related changes may be attributed to hemispheric asymmetry, environmental factors, or use-dependent plasticity. Conflicting evidence in the literature warrants additional research to better explain age-related alterations of hand dominance and manual performance in old age.
Collapse
Affiliation(s)
- Anna Sebastjan
- Faculty of Physical Education, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Anna Skrzek
- Faculty of Physiotherapy, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Zofia Ignasiak
- Faculty of Physical Education, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Teresa Sławińska
- Faculty of Physical Education, University School of Physical Education in Wroclaw, Wroclaw, Poland
| |
Collapse
|
38
|
Schättin A, de Bruin ED. Combining Exergame Training with Omega-3 Fatty Acid Supplementation: Protocol for a Randomized Controlled Study Assessing the Effect on Neuronal Structure/Function in the Elderly Brain. Front Aging Neurosci 2016; 8:283. [PMID: 27965570 PMCID: PMC5126064 DOI: 10.3389/fnagi.2016.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
A common problem in the older population is the risk of falling and related injury, immobility, and reduced survival. Age-related neuronal changes, e.g., decline in gray-and white-matter, affect neuronal, cognitive, and motor functioning. The improvement of these factors might decrease fall events in elderly. Studies showed that administration of video game-based physical exercise, a so-called exergame, or omega-3 fatty acid (FA) may improve motor and/or cognitive functioning through neuronal changes in the brain of older adults. The aim of this study is to assess the effects of a combination of exergame training with omega-3 FA supplementation on the elderly brain. We hypothesize that an intervention using a combination approach differently affects on the neuronal structure and function of the elderly's brain as compared to the sole administration of exergame training. The study is a parallel, double-blinded, randomized controlled trial lasting 26 weeks. Sixty autonomous living, non-smoking, and right-handed healthy older (>65 years) adults who live independently or in a senior residency are included, randomized, and allocated to one of two study groups. The experimental group receives a daily amount of 13.5 ml fish oil (including 2.9 g of omega-3 FA), whereas the control group receives a daily amount of 13.5 ml olive oil for 26 weeks. After 16 weeks, both groups start with an exergame training program three times per week. Measurements are performed on three time-points by treatment blinded investigators: pre-intervention measurements, blood sample after 16 week, and post-intervention measurements. The main outcomes are motor evoked potentials of the right M. tibialis anterior (transcranial magnetic stimulation) and response-related potentials (electroencephalography) during a cognitive test. For secondary outcomes, reaction time during cognitive tests and spatio-temporal parameters during gait performance are measured. Statistics will include effect sizes and a 2 × 2-ANOVA with normally distributed data or the non-parametric equivalent for data not fulfilling normal distribution. The randomized controlled study is the first to investigate the effectiveness of exergame training combined with omega-3 FA in counteracting age- and behavioral-dependent neuronal changes in the brain. This study has been registered in the Swiss National Clinical Trials (SNCTP000001623) and the ISRCTN (ISRCTN12084831) Portals.
Collapse
Affiliation(s)
- Alexandra Schättin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich Zurich, Switzerland
| | - Eling D de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich Zurich, Switzerland
| |
Collapse
|
39
|
Chalavi S, Adab HZ, Pauwels L, Beets IAM, van Ruitenbeek P, Boisgontier MP, Monteiro TS, Maes C, Sunaert S, Swinnen SP. Anatomy of Subcortical Structures Predicts Age-Related Differences in Skill Acquisition. Cereb Cortex 2016; 28:459-473. [DOI: 10.1093/cercor/bhw382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sima Chalavi
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Hamed Zivari Adab
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Lisa Pauwels
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Iseult A M Beets
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- BrainCTR, Lilid bvba, 3290 Diest, Belgium
| | - Peter van Ruitenbeek
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- Faculty of Psychology and Neuroscience, Department of Clinical Psychological Science, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthieu P Boisgontier
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Thiago Santos Monteiro
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Celine Maes
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, Biomedical Sciences Group, Translational MRI Unit, KU Leuven, 3000 Leuven, Belgium
| | - Stephan P Swinnen
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- Leuven Research Institute for Neuroscience & Disease (LIND), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
40
|
Schättin A, Arner R, Gennaro F, de Bruin ED. Adaptations of Prefrontal Brain Activity, Executive Functions, and Gait in Healthy Elderly Following Exergame and Balance Training: A Randomized-Controlled Study. Front Aging Neurosci 2016; 8:278. [PMID: 27932975 PMCID: PMC5120107 DOI: 10.3389/fnagi.2016.00278] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
During aging, the prefrontal cortex (PFC) undergoes age-dependent neuronal changes influencing cognitive and motor functions. Motor-learning interventions are hypothesized to ameliorate motor and cognitive deficits in older adults. Especially, video game-based physical exercise might have the potential to train motor in combination with cognitive abilities in older adults. The aim of this study was to compare conventional balance training with video game-based physical exercise, a so-called exergame, on the relative power (RP) of electroencephalographic (EEG) frequencies over the PFC, executive function (EF), and gait performance. Twenty-seven participants (mean age 79.2 ± 7.3 years) were randomly assigned to one of two groups. All participants completed 24 trainings including three times a 30 min session/week. The EEG measurements showed that theta RP significantly decreased in favor of the exergame group [L(14) = 6.23, p = 0.007]. Comparing pre- vs. post-test, EFs improved both within the exergame (working memory: z = -2.28, p = 0.021; divided attention auditory: z = -2.51, p = 0.009; divided attention visual: z = -2.06, p = 0.040; go/no-go: z = -2.55, p = 0.008; set-shifting: z = -2.90, p = 0.002) and within the balance group (set-shifting: z = -2.04, p = 0.042). Moreover, spatio-temporal gait parameters primarily improved within the exergame group under dual-task conditions (speed normal walking: z = -2.90, p = 0.002; speed fast walking: z = -2.97, p = 0.001; cadence normal walking: z = -2.97, p = 0.001; stride length fast walking: z = -2.69, p = 0.005) and within the balance group under single-task conditions (speed normal walking: z = -2.54, p = 0.009; speed fast walking: z = -1.98, p = 0.049; cadence normal walking: z = -2.79, p = 0.003). These results indicate that exergame training as well as balance training positively influence prefrontal cortex activity and/or function in varying proportion.
Collapse
Affiliation(s)
- Alexandra Schättin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich Zurich, Switzerland
| | - Rendel Arner
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich Zurich, Switzerland
| | - Federico Gennaro
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich Zurich, Switzerland
| | - Eling D de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich Zurich, Switzerland
| |
Collapse
|
41
|
Jerosch-Herold C, Houghton J, Miller L, Shepstone L. Does sensory relearning improve tactile function after carpal tunnel decompression? A pragmatic, assessor-blinded, randomized clinical trial. J Hand Surg Eur Vol 2016; 41:948-956. [PMID: 27402282 PMCID: PMC5070493 DOI: 10.1177/1753193416657760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023]
Abstract
Despite surgery for carpal tunnel syndrome being effective in 80%-90% of cases, chronic numbness and hand disability can occur. The aim of this study was to investigate whether sensory relearning improves tactile discrimination and hand function after decompression. In a multi-centre, pragmatic, randomized, controlled trial, 104 patients were randomized to a sensory relearning ( n = 52) or control ( n = 52) group. A total of 93 patients completed a 12-week follow-up. Primary outcome was the shape-texture identification test at 6 weeks. Secondary outcomes were touch threshold, touch localization, dexterity and self-reported hand function. No significant group differences were seen for the primary outcome (Shape-Texture Identification) at 6 weeks or 12 weeks. Similarly, no significant group differences were observed on secondary outcomes, with the exception of self-reported hand function. A secondary complier-averaged-causal-effects analysis showed no statistically significant treatment effect on the primary outcome. Sensory relearning for tactile sensory and functional deficits after carpal tunnel decompression is not effective. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
| | - J. Houghton
- School of Health Sciences, University of East Anglia, Norwich, UK
| | - L. Miller
- School of Health Sciences, University of East Anglia, Norwich, UK
| | - L. Shepstone
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
42
|
Predictive and Reactive Locomotor Adaptability in Healthy Elderly: A Systematic Review and Meta-Analysis. Sports Med 2016; 45:1759-77. [PMID: 26487633 PMCID: PMC4656697 DOI: 10.1007/s40279-015-0413-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Locomotor adaptability is based on the implementation of error-feedback information from previous perturbations to predictively adapt to expected perturbations (feedforward) and to facilitate reactive responses in recurring unexpected perturbations (‘savings’). The effect of aging on predictive and reactive adaptability is yet unclear. However, such understanding is fundamental for the design and application of effective interventions targeting fall prevention. Methods We systematically searched the Web of Science, MEDLINE, Embase and Science Direct databases as well as the reference lists of the eligible articles. A study was included if it addressed an investigation of the locomotor adaptability in response to repeated mechanical movement perturbations of healthy older adults (≥60 years). The weighted average effect size (WAES) of the general adaptability (adaptive motor responses to repeated perturbations) as well as predictive (after-effects) and reactive adaptation (feedback responses to a recurring unexpected perturbation) was calculated and tested for an overall effect. A subgroup analysis was performed regarding the factor age group [i.e., young (≤35 years) vs. older adults]. Furthermore, the methodological study quality was assessed. Results The review process yielded 18 studies [1009 participants, 613 older adults (70 ± 4 years)], which used various kinds of locomotor tasks and perturbations. The WAES for the general locomotor adaptability was 1.21 [95 % confidence interval (CI) 0.68–1.74, n = 11] for the older and 1.39 (95 % CI 0.90–1.89, n = 10) for the young adults with a significant (p < 0.05) overall effect for both age groups and no significant subgroup differences. Similar results were found for the predictive (older: WAES 1.10, 95 % CI 0.37–1.83, n = 8; young: WAES 1.54, 95 % CI 0.11–2.97, n = 7) and reactive (older: WAES 1.09, 95 % CI 0.22–1.96, n = 5; young: WAES 1.35, 95 % CI 0.60–2.09, n = 5) adaptation featuring significant (p < 0.05) overall effects without subgroup differences. The average score of the methodological quality was 67 ± 8 %. Conclusions The present meta-analysis provides elaborate statistical evidence that locomotor adaptability in general and predictive and reactive adaptation in particular remain highly effective in the elderly, showing only minor, not statistically significant age-related deficits. Consequently, interventions which use adaptation and learning paradigms including the application of the mechanisms responsible for an effective predictive and reactive dynamic stability control may progressively improve older adults’ recovery performance and, thus, reduce their risk of falling. Electronic supplementary material The online version of this article (doi:10.1007/s40279-015-0413-9) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Schättin A, Baur K, Stutz J, Wolf P, de Bruin ED. Effects of Physical Exercise Combined with Nutritional Supplements on Aging Brain Related Structures and Functions: A Systematic Review. Front Aging Neurosci 2016; 8:161. [PMID: 27458371 PMCID: PMC4933713 DOI: 10.3389/fnagi.2016.00161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/20/2016] [Indexed: 01/12/2023] Open
Abstract
Age-related decline in gray and white brain matter goes together with cognitive depletion. To influence cognitive functioning in elderly, several types of physical exercise and nutritional intervention have been performed. This paper systematically reviews the potential additive and complementary effects of nutrition/nutritional supplements and physical exercise on cognition. The search strategy was developed for EMBASE, Medline, PubMed, Cochrane, CINAHL, and PsycInfo databases and focused on the research question: “Is the combination of physical exercise with nutrition/nutritional supplementation more effective than nutrition/nutritional supplementation or physical exercise alone in effecting on brain structure, metabolism, and/or function?” Both mammalian and human studies were included. In humans, randomized controlled trials that evaluated the effects of nutrition/nutritional supplements and physical exercise on cognitive functioning and associated parameters in healthy elderly (>65 years) were included. The systematic search included English and German language literature without any limitation of publication date. The search strategy yielded a total of 3129 references of which 67 studies met the inclusion criteria; 43 human and 24 mammalian, mainly rodent, studies. Three out of 43 human studies investigated a nutrition/physical exercise combination and reported no additive effects. In rodent studies, additive effects were found for docosahexaenoic acid supplementation when combined with physical exercise. Although feasible combinations of physical exercise/nutritional supplements are available for influencing the brain, only a few studies evaluated which possible combinations of nutrition/nutritional supplementation and physical exercise might have an effect on brain structure, metabolism and/or function. The reason for no clear effects of combinatory approaches in humans might be explained by the misfit between the combinations of nutritional methods with the physical interventions in the sense that they were not selected on sharing of similar neuronal mechanisms. Based on the results from this systematic review, future human studies should focus on the combined effect of docosahexaenoic acid supplementation and physical exercise that contains elements of (motor) learning.
Collapse
Affiliation(s)
- Alexandra Schättin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Kilian Baur
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Jan Stutz
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Peter Wolf
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Eling D de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| |
Collapse
|
44
|
Chan JS, Wu Q, Liang D, Yan JH. Visuospatial working memory training facilitates visually-aided explicit sequence learning. Acta Psychol (Amst) 2015; 161:145-53. [PMID: 26398484 DOI: 10.1016/j.actpsy.2015.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022] Open
Abstract
Finger sequence learning requires visuospatial working memory (WM). However, the dynamics between age, WM training, and motor skill acquisition are unclear. Therefore, we examined how visuospatial WM training improves finger movement sequential accuracy in younger (n=26, 21.1±1.37years) and older adults (n=22, 70.6±4.01years). After performing a finger sequence learning exercise and numerical and spatial WM tasks, participants in each age group were randomly assigned to either the experimental (EX) or control (CO) groups. For one hour daily over a 10-day period, the EX group practiced an adaptive n-back spatial task while those in the CO group practiced a non-adaptive version. As a result of WM practice, the EX participants increased their accuracy in the spatial n-back tasks, while accuracy remained unimproved in the numerical n-back tasks. In all groups, reaction times (RT) became shorter in most numerical and spatial n-back tasks. The learners in the EX group - but not in the CO group - showed improvements in their retention of finger sequences. The findings support our hypothesis that computerized visuospatial WM training improves finger sequence learning both in younger and in older adults. We discuss the theoretical implications and clinical relevance of this research for motor learning and functional rehabilitation.
Collapse
|
45
|
Hoff M, Trapp S, Kaminski E, Sehm B, Steele CJ, Villringer A, Ragert P. Switching between hands in a serial reaction time task: a comparison between young and old adults. Front Aging Neurosci 2015; 7:176. [PMID: 26441638 PMCID: PMC4569733 DOI: 10.3389/fnagi.2015.00176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/31/2015] [Indexed: 12/23/2022] Open
Abstract
Healthy aging is associated with a variety of functional and structural brain alterations. These age-related brain alterations have been assumed to negatively impact cognitive and motor performance. Especially important for the execution of everyday activities in older adults (OA) is the ability to perform movements that depend on both hands working together. However, bimanual coordination is typically deteriorated with increasing age. Hence, a deeper understanding of such age-related brain-behavior alterations might offer the opportunity to design future interventional studies in order to delay or even prevent the decline in cognitive and/or motor performance over the lifespan. Here, we examined to what extent the capability to acquire and maintain a novel bimanual motor skill is still preserved in healthy OA as compared to their younger peers (YA). For this purpose, we investigated performance of OA (n = 26) and YA (n = 26) in a bimanual serial reaction time task (B-SRTT), on two experimental sessions, separated by 1 week. We found that even though OA were generally slower in global response times, they showed preserved learning capabilities in the B-SRTT. However, sequence specific learning was more pronounced in YA as compared to OA. Furthermore, we found that switching between hands during B-SRTT learning trials resulted in increased response times (hand switch costs), a phenomenon that was more pronounced in OA. These hand switch costs were reduced in both groups over the time course of learning. More interestingly, there were no group differences in hand switch costs on the second training session. These results provide novel evidence that bimanual motor skill learning is capable of reducing age-related deficits in hand switch costs, a finding that might have important implications to prevent the age-related decline in sensorimotor function.
Collapse
Affiliation(s)
- Maike Hoff
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Sabrina Trapp
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Elisabeth Kaminski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Mind and Brain Institute, Charité and Humboldt University Berlin, Germany
| | - Patrick Ragert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig Leipzig, Germany
| |
Collapse
|
46
|
Eggenberger P, Schumacher V, Angst M, Theill N, de Bruin ED. Does multicomponent physical exercise with simultaneous cognitive training boost cognitive performance in older adults? A 6-month randomized controlled trial with a 1-year follow-up. Clin Interv Aging 2015; 10:1335-49. [PMID: 26316729 PMCID: PMC4544626 DOI: 10.2147/cia.s87732] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Cognitive impairment is a health problem that concerns almost every second elderly person. Physical and cognitive training have differential positive effects on cognition, but have been rarely applied in combination. This study evaluates synergistic effects of multicomponent physical exercise complemented with novel simultaneous cognitive training on cognition in older adults. We hypothesized that simultaneous cognitive–physical components would add training specific cognitive benefits compared to exclusively physical training. Methods Seniors, older than 70 years, without cognitive impairment, were randomly assigned to either: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Cognitive performance was assessed at baseline, after 3 and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were calculated. Results Eighty-nine participants were randomized to the three groups initially, 71 completed the training, while 47 were available at 1-year follow-up. Advantages of the simultaneous cognitive–physical programs were found in two dimensions of executive function. “Shifting attention” showed a time×intervention interaction in favor of DANCE/MEMORY versus PHYS (F[2, 68] =1.95, trend P=0.075, r=0.17); and “working memory” showed a time×intervention interaction in favor of DANCE versus MEMORY (F[1, 136] =2.71, trend P=0.051, R2=0.006). Performance improvements in executive functions, long-term visual memory (episodic memory), and processing speed were maintained at follow-up in all groups. Conclusion Particular executive functions benefit from simultaneous cognitive–physical training compared to exclusively physical multicomponent training. Cognitive–physical training programs may counteract widespread cognitive impairments in the elderly.
Collapse
Affiliation(s)
- Patrick Eggenberger
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Vera Schumacher
- Department of Gerontopsychology and Gerontology, University of Zurich, Zurich, Switzerland ; University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Marius Angst
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Nathan Theill
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland ; Center for Gerontology, University of Zurich, Zurich, Switzerland
| | - Eling D de Bruin
- Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Switzerland ; CAPHRI School for Public Health and Primary Care, Department of Epidemiology, Maastricht University, Maastricht, the Netherlands ; Centre for Evidence Based Physiotherapy, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
47
|
Hoff M, Kaminski E, Rjosk V, Sehm B, Steele CJ, Villringer A, Ragert P. Augmenting mirror visual feedback-induced performance improvements in older adults. Eur J Neurosci 2015; 41:1475-83. [PMID: 25912048 DOI: 10.1111/ejn.12899] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/27/2015] [Accepted: 03/15/2015] [Indexed: 12/31/2022]
Abstract
Previous studies have indicated that age-related behavioral alterations are not irreversible but are subject to amelioration through specific training interventions. Both training paradigms and non-invasive brain stimulation (NIBS) can be used to modulate age-related brain alterations and thereby influence behavior. It has been shown that mirror visual feedback (MVF) during motor skill training improves performance of the trained and untrained hands in young adults. The question remains of whether MVF also improves motor performance in older adults and how performance improvements can be optimised via NIBS. Here, we sought to determine whether anodal transcranial direct current stimulation (a-tDCS) can be used to augment MVF-induced performance improvements in manual dexterity. We found that older adults receiving a-tDCS over the right primary motor cortex (M1) during MVF showed superior performance improvements of the (left) untrained hand relative to sham stimulation. An additional control experiment in participants receiving a-tDCS over the right M1 only (without MVF/motor training of the right hand) revealed no significant behavioral gains in the left (untrained) hand. On the basis of these findings, we propose that combining a-tDCS with MVF might be relevant for future clinical studies that aim to optimise the outcome of neurorehabilitation.
Collapse
Affiliation(s)
- Maike Hoff
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103, Leipzig, Germany
| | - Elisabeth Kaminski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103, Leipzig, Germany
| | - Viola Rjosk
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103, Leipzig, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103, Leipzig, Germany
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103, Leipzig, Germany.,Mind and Brain Institute, Charité and Humboldt University, Berlin, Germany
| | - Patrick Ragert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103, Leipzig, Germany.,Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| |
Collapse
|
48
|
"Kinect-ing" with clinicians: a knowledge translation resource to support decision making about video game use in rehabilitation. Phys Ther 2015; 95:426-40. [PMID: 25256741 PMCID: PMC4348717 DOI: 10.2522/ptj.20130618] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microsoft's Kinect for Xbox 360 virtual reality (VR) video games are promising rehabilitation options because they involve motivating, full-body movement practice. However, these games were designed for recreational use, which creates challenges for clinical implementation. Busy clinicians require decision-making support to inform game selection and implementation that address individual therapeutic goals. This article describes the development and preliminary evaluation of a knowledge translation (KT) resource to support clinical decision making about selection and use of Kinect games in physical therapy. The knowledge-to-action framework guided the development of the Kinecting With Clinicians (KWiC) resource. Five physical therapists with VR and video game expertise analyzed the Kinect Adventure games. A consensus-building method was used to arrive at categories to organize clinically relevant attributes guiding game selection and game play. The process and results of an exploratory usability evaluation of the KWiC resource by clinicians through interviews and focus groups at 4 clinical sites is described. Subsequent steps in the evaluation and KT process are proposed, including making the KWiC resource Web-based and evaluating the utility of the online resource in clinical practice.
Collapse
|
49
|
Burdea GC, Polistico K, House GP, Liu RR, Muñiz R, Macaro NA, Slater LM. Novel integrative virtual rehabilitation reduces symptomatology of primary progressive aphasia--a case report. Int J Neurosci 2014; 125:949-58. [PMID: 25485610 PMCID: PMC6710825 DOI: 10.3109/00207454.2014.993392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE BrightBrainer™ integrative cognitive rehabilitation system evaluation in an Adult Day Program by a subject with Primary Progressive Aphasia (PPA) assumed to be of the mixed nonfluent/logopenic variant, and for determination of potential benefits. METHODS The subject was a 51-year-old Caucasian male diagnosed with PPA who had attended an Adult Day Program for 18 months prior to BrightBrainer training. The subject interacted with therapeutic games using a controller that measured 3D hand movements and flexion of both index fingers. The computer simulations adapted difficulty level based on task performance; results were stored on a remote server. The clinical trial consisted of 16 sessions, twice/week for 8 weeks. The subject was evaluated through neuropsychological measures, therapy notes and caregiver feedback forms. RESULTS Neuropsychological testing indicated no depression (BDI 0) and severe dementia (BIMS 1 and MMSE 3). The 6.5 h of therapy consisted of games targeting Language comprehension; Executive functions; Focusing; Short-term memory; and Immediate/working memory. The subject attained the highest difficulty level in all-but-one game, while averaging 1300-arm task-oriented active movement repetitions and 320 index finger flexion movements per session. While neuropsychological testing showed no benefits, the caregiver reported strong improvements in verbal responses, vocabulary use, speaking in complete sentences, following one-step directions and participating in daily activities. This corroborated well with therapy notes. CONCLUSIONS Preliminary findings demonstrate a meaningful reduction of PPA symptoms for the subject, suggesting follow-up imaging studies to detail neuronal changes induced by BrightBrainer system and controlled studies with a sufficiently large number of PPA subjects.
Collapse
Affiliation(s)
- Grigore C. Burdea
- Bright Cloud International Corp, 29 L’Ambiance Court, Highland Park, NJ 08904, USA
| | - Kevin Polistico
- Bright Cloud International Corp, 29 L’Ambiance Court, Highland Park, NJ 08904, USA
| | - Gregory P. House
- Bright Cloud International Corp, 29 L’Ambiance Court, Highland Park, NJ 08904, USA
| | - Richard R. Liu
- Bright Cloud International Corp, 29 L’Ambiance Court, Highland Park, NJ 08904, USA
| | - Roberto Muñiz
- Francis E. Parker Memorial Home, Inc., 1421 River Road, Piscataway, NJ 08854, USA
| | - Natalie A. Macaro
- Francis E. Parker Memorial Home, Inc., 1421 River Road, Piscataway, NJ 08854, USA
| | - Lisa M. Slater
- Francis E. Parker Memorial Home, Inc., 1421 River Road, Piscataway, NJ 08854, USA
| |
Collapse
|
50
|
Morales-Quezada L, Cosmo C, Carvalho S, Leite J, Castillo-Saavedra L, Rozisky JR, Fregni F. Cognitive effects and autonomic responses to transcranial pulsed current stimulation. Exp Brain Res 2014; 233:701-9. [PMID: 25479736 DOI: 10.1007/s00221-014-4147-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/11/2014] [Indexed: 01/13/2023]
Abstract
Transcranial pulsed current stimulation (tPCS) is emerging as an option in the field of neuromodulation; however, little is known about its effects on cognition and behavior and its neurophysiological correlates as indexed by autonomic responses. Our aim was to identify the effects of tPCS on arithmetic processing and risk-taking behavior, and to further categorize physiological autonomic responses by heart rate variability (HRV) and electrodermal activity measurements before, during, and after exposure to task performance and stimulation. Thirty healthy volunteers were randomized to receive a single session of sham or active stimulation with a current intensity of 2 mA and a random frequency between 1 and 5 Hz. Our results showed that tPCS has a modest and specific effect on cognitive performance as indexed by the cognitive tasks chosen in this study. There was a modest effect of active tPCS only on performance facilitation on a complex-level mathematical task as compared to sham stimulation. On autonomic responses, we observed that HRV total power increased while LF/HF ratio decreased in the tPCS active group compared to sham. There were no group differences for adverse effects. Based on our results, we conclude that tPCS, in healthy subjects, has a modest and specific cognitive effect as shown by the facilitation of arithmetical processing on complex mathematical task. These effects are accompanied by modulation of the central autonomic network providing sympathetic-vagal balance during stressful conditions. Although behavioral results were modest, they contribute to the understanding of tPCS effects and cognitive enhancement.
Collapse
Affiliation(s)
- Leon Morales-Quezada
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, 79/96 13th Street, Charlestown, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|