1
|
Liénard JF, Aubin L, Cos I, Girard B. Estimation of the transmission delays in the basal ganglia of the macaque monkey and subsequent predictions about oscillatory activity under dopamine depletion. Eur J Neurosci 2024; 59:1657-1680. [PMID: 38414108 DOI: 10.1111/ejn.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/31/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
The timescales of the dynamics of a system depend on the combination of the timescales of its components and of its transmission delays between components. Here, we combine experimental stimulation data from 10 studies in macaque monkeys that reveal the timing of excitatory and inhibitory events in the basal ganglia circuit, to estimate its set of transmission delays. In doing so, we reveal possible inconsistencies in the existing data, calling for replications, and we propose two possible sets of transmission delays. We then integrate these delays in a model of the primate basal ganglia that does not rely on direct and indirect pathways' segregation and show that extrastriatal dopaminergic depletion in the external part of the globus pallidus and in the subthalamic nucleus is sufficient to generate β-band oscillations (in the high part, 20-35 Hz, of the band). More specifically, we show that D2 and D5 dopamine receptors in these nuclei play opposing roles in the emergence of these oscillations, thereby explaining how completely deactivating D5 receptors in the subthalamic nucleus can, paradoxically, cancel oscillations.
Collapse
Affiliation(s)
- Jean F Liénard
- Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique (ISIR), Paris, France
| | - Lise Aubin
- Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique (ISIR), Paris, France
| | - Ignasi Cos
- Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique (ISIR), Paris, France
- Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
- Serra-Hunter Fellow Program, Barcelona, Spain
| | - Benoît Girard
- Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique (ISIR), Paris, France
| |
Collapse
|
2
|
Wincza R, Hartley C, Readman M, Linkenauger S, Crawford T. Susceptibility to geometrical visual illusions in Parkinson's disorder. Front Psychol 2024; 14:1289160. [PMID: 38259525 PMCID: PMC10800652 DOI: 10.3389/fpsyg.2023.1289160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disorder (PD) is a common neurodegenerative disorder affecting approximately 1-3% of the population aged 60 years and older. In addition to motor difficulties, PD is also marked by visual disturbances, including depth perception, abnormalities in basal ganglia functioning, and dopamine deficiency. Reduced ability to perceive depth has been linked to an increased risk of falling in this population. The purpose of this paper was to determine whether disturbances in PD patients' visual processing manifest through atypical performance on visual illusion (VI) tasks. This insight will advance understanding of high-level perception in PD, as well as indicate the role of dopamine deficiency and basal ganglia pathophysiology in VIs susceptibility. Groups of 28 PD patients (Mage = 63.46, SD = 7.55) and 28 neurotypical controls (Mage = 63.18, SD = 9.39) matched on age, general cognitive abilities (memory, numeracy, attention, language), and mood responded to Ebbinghaus, Ponzo, and Müller-Lyer illusions in a computer-based task. Our results revealed no reliable differences in VI susceptibility between PD and neurotypical groups. In the early- to mid-stage of PD, abnormalities of the basal ganglia and dopamine deficiency are unlikely to be involved in top-down processing or depth perception, which are both thought to be related to VI susceptibility. Furthermore, depth-related issues experienced by PD patients (e.g., increased risk for falling) may not be subserved by the same cognitive mechanisms as VIs. Further research is needed to investigate if more explicit presentations of illusory depth are affected in PD, which might help to understand the depth processing deficits in PD.
Collapse
Affiliation(s)
- Radoslaw Wincza
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Calum Hartley
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Megan Readman
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
| | - Sally Linkenauger
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Trevor Crawford
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
3
|
Cai X, Chen F, Wang S, Pan P, Mu T, Dong C, Dai Z, Chen Z. Knowledge, attitude, and practice of healthcare professionals toward cognitive dysfunction in Parkinson's disease and cognitive rehabilitation. BMC MEDICAL EDUCATION 2024; 24:26. [PMID: 38178059 PMCID: PMC10768106 DOI: 10.1186/s12909-023-04989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND To investigate the knowledge, attitude, and practice (KAP) of healthcare professionals regarding cognitive dysfunction and cognitive rehabilitation in Parkinson's disease (PD). METHODS This multicenter, cross-sectional survey enrolled physicians and nurses in 10 hospitals between October 2022 and November 2022. A self-administered questionnaire was developed to collect the demographic information of the participants and their knowledge, attitude, and practice toward cognitive dysfunction in PD and cognitive rehabilitation. RESULTS This study enrolled 224 physicians and 229 nurses. The knowledge, attitude, and practice scores were 12.57 ± 3.76 (total score: 22), 29.10 ± 3.71 (total score: 32), and 21.07 ± 8.03 (total score: 28) among physicians, and 9.97 ± 4.70 (total score: 22), 25.27 ± 8.96 (total score: 32), and 25.27 ± 8.96 (total score: 28) among nurses. Among physicians, the knowledge scores (OR = 4.23, 95%CI: 2.36-7.58, P < 0.001) and attitude scores (OR = 3.00, 95%CI: 1.67-5.37, P < 0.001) were independently associated with good practice. Among nurses, the knowledge scores (OR = 4.31, 95%CI: 2.31-8.05, P < 0.001), attitude scores (OR = 5.18, 95%CI: 2.82-9.53, P < 0.001), working department (Ref: rehabilitation; neurology: OR = 2.26, 95%CI: 1.01-5.08, P = 0.048; public health service/chronic disease follow-up center: OR = 2.98, 95%CI: 1.12-7.92, P = 0.028) were independently associated with good practice. CONCLUSIONS Physicians and nurses have insufficient knowledge, favorable attitudes, and active practice regarding cognitive dysfunction and cognitive rehabilitation in PD. This study identified gaps in KAP and suggested education activities to improve the KAP toward cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Xia Cai
- Department of Public Health Management and Preventive Care, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), 224008, Yancheng, China
| | - Fei Chen
- Department of Academic Research, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), 224008, Yancheng, China
- Department of Radiology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), 224008, Yancheng, China
| | - Shufang Wang
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), 224008, Yancheng, China
| | - Pinglei Pan
- Department of Academic Research, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), 224008, Yancheng, China
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), 224008, Yancheng, China
| | - Tianchi Mu
- Department of Radiology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), 224008, Yancheng, China
| | - Congsong Dong
- Department of Radiology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), 224008, Yancheng, China.
| | - Zhenyu Dai
- Department of Radiology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), 224008, Yancheng, China.
| | - Zhipeng Chen
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), 224008, Yancheng, China.
| |
Collapse
|
4
|
Su W, Liang Z, Mao W, Shao M, Hu X, Wu Y, Wei W, Liu Z, Zhang K, Tang B, Cao S, Song Z, Chen H. Safety and Effectiveness of Rasagiline in Chinese Patients with Parkinson's Disease: A Prospective, Multicenter, Non-interventional Post-marketing Study. Drug Saf 2023:10.1007/s40264-023-01288-2. [PMID: 37195560 DOI: 10.1007/s40264-023-01288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Rasagiline is indicated for treating idiopathic Parkinson's disease (PD) as monotherapy and adjunct therapy to levodopa in patients. OBJECTIVES To assess the post-marketing safety and tolerability of rasagiline in Chinese PD patients, as well as its effectiveness in improving motor symptoms. METHODS This prospective, non-interventional, multicenter, cohort study included PD patients administered rasagiline monotherapy or adjunct therapy to levodopa. The primary outcome was the incidence of adverse drug reactions (ADRs) according to MedDRA® (version 22.0), and the secondary outcomes were the Parkinson's Disease Unified Rating Scale (UPDRS) part III, Clinical Global Impression-Severity (CGI-S), and Clinical Global Impression-Global-Improvement (CGI-I), assessed at Weeks 4, 12, and 24. RESULTS In total, 734 patients, 95 in the monotherapy subgroup and 639 in the adjunct therapy subgroup, were included in the safety population. The incidence rates of all ADRs were comparable between the monotherapy (15.8%) and adjunct therapy (13.6%) subgroups. The most common ADRs by system organ class were nervous system disorders (5.6%), gastrointestinal disorders (3.3%), psychiatric disorders (1.8%), vascular disorders (1.2%), and general disorders and administration site conditions (1.1%). Five (0.7%) participants experienced 5 serious ADRs. Improvements in UPDRS part III, CGI-S and CGI-I at Weeks 4, 12 and 24 from baseline were observed. CONCLUSIONS Safety data in this study indicated no extra safety concerns. Rasagiline is generally safe and well tolerated in Chinese PD patients. The safety profile and tolerability were in line with the established safety profile. Moreover, rasagiline reduced the severity of PD motor symptoms, confirming findings by previous clinical trials.
Collapse
Affiliation(s)
- Wen Su
- Department of Neurology, Beijing Hospital, Beijing, 100730, China
- National Center of Gerontology, Beijing, 100730, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhanhua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100032, China
| | - Ming Shao
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Xingyue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 133000, China
| | - Yuncheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, 20040, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shuai Cao
- Department of China Drug Development, Lundbeck (Beijing) Pharmaceutical Consulting Co, Ltd., Beijing, 100020, China
| | - Zhuolun Song
- Department of China Drug Development, Lundbeck (Beijing) Pharmaceutical Consulting Co, Ltd., Beijing, 100020, China
| | - Haibo Chen
- Department of Neurology, Beijing Hospital, Beijing, 100730, China.
- National Center of Gerontology, Beijing, 100730, China.
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
5
|
Anwar MJ, Alenezi SK, Alhowail AH. Molecular insights into the pathogenic impact of vitamin D deficiency in neurological disorders. Biomed Pharmacother 2023; 162:114718. [PMID: 37084561 DOI: 10.1016/j.biopha.2023.114718] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
Neurological disorders are the major cause of disability, leading to a decrease in quality of life by impairing cognitive, sensorimotor, and motor functioning. Several factors have been proposed in the pathogenesis of neurobehavioral changes, including nutritional, environmental, and genetic predisposition. Vitamin D (VD) is an environmental and nutritional factor that is widely distributed in the central nervous system's subcortical grey matter, neurons of the substantia nigra, hippocampus, thalamus, and hypothalamus. It is implicated in the regulation of several brain functions by preserving neuronal structures. It is a hormone rather than a nutritional vitamin that exerts a regulatory role in the pathophysiology of several neurological disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and multiple sclerosis. A growing body of epidemiological evidence suggests that VD is critical in neuronal development and shows neuroprotective effects by influencing the production and release of neurotrophins, antioxidants, immunomodulatory, regulation of intracellular calcium balance, and direct effect on the growth and differentiation of nerve cells. This review provides up-to-date and comprehensive information on vitamin D deficiency, risk factors, and clinical and preclinical evidence on its relationship with neurological disorders. Furthermore, this review provides mechanistic insight into the implications of vitamin D and its deficiency on the pathogenesis of neurological disorders. Thus, an understanding of the crucial role of vitamin D in the neurobiology of neurodegenerative disorders can assist in the better management of vitamin D-deficient individuals.
Collapse
Affiliation(s)
- Md Jamir Anwar
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia.
| | - Ahmad Hamad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, Buraydah 51452, Saudi Arabia
| |
Collapse
|
6
|
Chegão A, Vicente Miranda H. Unveiling new secrets in Parkinson's disease: The glycatome. Behav Brain Res 2023; 442:114309. [PMID: 36706808 DOI: 10.1016/j.bbr.2023.114309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
We are witnessing a considerable increase in the incidence of Parkinson's disease (PD), which may be due to the general ageing of the population. While there is a plethora of therapeutic strategies for this disease, they still fail to arrest disease progression as they do not target and prevent the neurodegenerative process. The identification of disease-causing mutations allowed researchers to better dissect the underlying causes of this disease, highlighting, for example, the pathogenic role of alpha-synuclein. However, most PD cases are sporadic, which is making it hard to unveil the major causative mechanisms of this disease. In the recent years, epidemiological evidence suggest that type-2 diabetes mellitus (T2DM) individuals have higher risk and worst outcomes of PD, allowing to raise the hypothesis that some dysregulated processes in T2DM may contribute or even trigger the neurodegenerative process in PD. One major consequence of T2DM is the unprogrammed reaction between sugars, increased in T2DM, and proteins, a reaction named glycation. Pre-clinical reports show that alpha-synuclein is a target of glycation, and glycation potentiates its pathogenicity which contributes for the neurodegenerative process. Moreover, it triggers, anticipates, or aggravates several PD-like motor and non-motor complications. A given profile of proteins are differently glycated in diseased conditions, altering the brain proteome and leading to brain dysfunction and neurodegeneration. Herein we coin the term Glycatome as the profile of glycated proteins. In this review we report on the mechanisms underlying the association between T2DM and PD, with particular focus on the impact of protein glycation.
Collapse
Affiliation(s)
- Ana Chegão
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Daghi M, Lakhdar A, Otmani HE. Parkinson's disease research in Morocco: a review. Neurodegener Dis Manag 2023; 13:129-139. [PMID: 36803100 DOI: 10.2217/nmt-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Aim: To quantify and provide an overview on the scientific productivity made by Moroccan academics in the research on Parkinson's disease (PD) and parkinsonism. Materials & methods: Scientific articles, in either English or French, were gathered from published literature in three recognized databases: PubMed, ScienceDirect and Scopus. Results: We identified 95 published papers from which 39 articles have been extracted after removing inadequate publications and duplications between databases. All articles were published between 2006 and 2021. The selected articles were subdivided into five categories. Conclusion: The Moroccan academia is presently facing a low productivity issues and a lack of research laboratories focusing on PD research. We anticipate that providing more budgetary funds will significantly improve the productivity of PD research.
Collapse
Affiliation(s)
- Mohamed Daghi
- Research Laboratory of Nervous System Diseases, Neurosensory Disorders & Disability, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco
| | - Abdelhakim Lakhdar
- Research Laboratory of Nervous System Diseases, Neurosensory Disorders & Disability, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco.,Department of Neurosurgery, Ibn Rochd University Hospital, Casablanca, 20360, Morocco
| | - Hicham El Otmani
- Laboratory of Medical Genetics & Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, 20250, Morocco.,Department of Neurology, Ibn Rochd University Hospital, Casablanca, 20360, Morocco
| |
Collapse
|
8
|
Kogutek D, Ready E, Holmes JD, Grahn JA. Evaluating Note Frequency and Velocity During Improvised Active Music Therapy in Clients With Parkinson's Disease. J Music Ther 2023; 60:36-63. [PMID: 36610070 DOI: 10.1093/jmt/thac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this article was to report on the findings of the note frequency and velocity measures during Improvised Active Music Therapy (IAMT) sessions with individuals with Parkinson's disease (PD). In this single-subject multiple baseline design across subjects, the article reports the note frequency (note count) and velocity of movement (mean note velocity) played by three right-handed participants while playing uninterrupted improvised music on a simplified electronic drum-set. During baseline, the music therapist played rhythmic accompaniment on guitar using a low-moderate density of syncopation. During treatment, the Music Therapist introduced rhythms with a moderate-high density of syncopation. The music content of the sessions was transformed into digital music using a musical instrument digital interface. Results of this study indicated that all participants exhibited an increase in note count during baseline until reaching a plateau at treatment condition and were found to be significantly positively correlated with the Music Therapist's note count. All participants played more notes with upper extremity (UE) across conditions than with lower extremity. All participants also scored similar total mean velocity across conditions. Two participants demonstrated higher mean note velocity with UE than right foot, whereas the other participant did not demonstrate this difference. Two participants also exhibited greater mean note velocity variability with left foot within and across conditions. More research is required to identify commonalities in note count and mean note velocity measures in individuals with PD during IAMT sessions.
Collapse
|
9
|
Patricio F, Morales Dávila E, Patricio-Martínez A, Arana Del Carmen N, Martínez I, Aguilera J, Perez-Aguilar JM, Limón ID. Intrapallidal injection of cannabidiol or a selective GPR55 antagonist decreases motor asymmetry and improves fine motor skills in hemiparkinsonian rats. Front Pharmacol 2022; 13:945836. [PMID: 36120297 PMCID: PMC9479130 DOI: 10.3389/fphar.2022.945836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Cannabidiol (CBD) presents antiparkinsonian properties and neuromodulatory effects, possibly due to the pleiotropic activity caused at multiple molecular targets. Recently, the GPR55 receptor has emerged as a molecular target of CBD. Interestingly, GPR55 mRNA is expressed in the external globus pallidus (GPe) and striatum, hence, it has been suggested that its activity is linked to motor dysfunction in Parkinson’s disease (PD). The present study aimed to evaluate the effect of the intrapallidal injection of both CBD and a selective GPR55 antagonist (CID16020046) on motor asymmetry, fine motor skills, and GAD-67 expression in hemiparkinsonian rats. The hemiparkinsonian animal model applied involved the induction of a lesion in male Wistar rats via the infusion of the neurotoxin 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle via stereotaxic surgery. After a period of twenty days, a second surgical procedure was performed to implant a guide cannula into the GPe. Seven days later, lysophosphatidylinositol (LPI), CBD, or CID16020046 were injected once a day for three consecutive days (from the 28th to the 30th day post-lesion). Amphetamine-induced turning behavior was evaluated on the 14th and 30th days post-injury. The staircase test and fine motor skills were evaluated as follows: the rats were subject to a ten-day training period prior to the 6-OHDA injury; from the 15th to the 19th days post-lesion, the motor skills alterations were evaluated under basal conditions; and, from the 28th to the 30th day post-lesion, the pharmacological effects of the drugs administered were evaluated. The results obtained show that the administration of LPI or CBD generated lower levels of motor asymmetry in the turning behavior of hemiparkinsonian rats. It was also found that the injection of CBD or CID16020046, but not LPI, in the hemiparkinsonian rats generated significantly superior performance in the staircase test, in terms of the use of the forelimb contralateral to the 6-OHDA-induced lesion, when evaluated from the 28th to the 30th day post-lesion. Similar results were also observed for superior fine motor skills performance for pronation, grasp, and supination. Finally, the immunoreactivity levels were found to decrease for the GAD-67 enzyme in the striatum and the ipsilateral GPe of the rats injected with CBD and CID16020046, in contrast with those lesioned with 6-OHDA. The results obtained suggest that the inhibitory effects of CBD and CID16020046 on GPR55 in the GPe could be related to GABAergic overactivation in hemiparkinsonism, thus opening new perspectives to explain, at a cellular level, the reversal of the motor impairment observed in PD models.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Eliud Morales Dávila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Nayeli Arana Del Carmen
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Isabel Martínez
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - José Aguilera
- Departament de Bioquímica i de Biologia Molecular, Facultad de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Ilhuicamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Ilhuicamina Daniel Limón, ,
| |
Collapse
|
10
|
Kogutek D, Ready E, Holmes JD, Grahn JA. Synchronization during Improvised Active Music Therapy in clients with Parkinson’s disease. NORDIC JOURNAL OF MUSIC THERAPY 2022. [DOI: 10.1080/08098131.2022.2107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Demian Kogutek
- Faculty of Music, Wilfrid Laurier University, London, ON, Canada
| | - Emily Ready
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Jeffrey D. Holmes
- School of Occupational Therapy, Elborn College, Western University, London, ON, Canada
| | - Jessica A. Grahn
- Department of Psychology and Brain and Mind Institute, Western University, London, ON, Canada
| |
Collapse
|
11
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
12
|
Glycation modulates glutamatergic signaling and exacerbates Parkinson's disease-like phenotypes. NPJ Parkinsons Dis 2022; 8:51. [PMID: 35468899 PMCID: PMC9038780 DOI: 10.1038/s41531-022-00314-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 01/17/2023] Open
Abstract
Alpha-synuclein (aSyn) is a central player in the pathogenesis of synucleinopathies due to its accumulation in typical protein aggregates in the brain. However, it is still unclear how it contributes to neurodegeneration. Type-2 diabetes mellitus is a risk factor for Parkinson's disease (PD). Interestingly, a common molecular alteration among these disorders is the age-associated increase in protein glycation. We hypothesized that glycation-induced neuronal dysfunction is a contributing factor in synucleinopathies. Here, we dissected the impact of methylglyoxal (MGO, a glycating agent) in mice overexpressing aSyn in the brain. We found that MGO-glycation potentiates motor, cognitive, olfactory, and colonic dysfunction in aSyn transgenic (Thy1-aSyn) mice that received a single dose of MGO via intracerebroventricular injection. aSyn accumulates in the midbrain, striatum, and prefrontal cortex, and protein glycation is increased in the cerebellum and midbrain. SWATH mass spectrometry analysis, used to quantify changes in the brain proteome, revealed that MGO mainly increase glutamatergic-associated proteins in the midbrain (NMDA, AMPA, glutaminase, VGLUT and EAAT1), but not in the prefrontal cortex, where it mainly affects the electron transport chain. The glycated proteins in the midbrain of MGO-injected Thy1-aSyn mice strongly correlate with PD and dopaminergic pathways. Overall, we demonstrated that MGO-induced glycation accelerates PD-like sensorimotor and cognitive alterations and suggest that the increase of glutamatergic signaling may underly these events. Our study sheds new light into the enhanced vulnerability of the midbrain in PD-related synaptic dysfunction and suggests that glycation suppressors and anti-glutamatergic drugs may hold promise as disease-modifying therapies for synucleinopathies.
Collapse
|
13
|
Salminen LE, Tubi MA, Bright J, Thomopoulos SI, Wieand A, Thompson PM. Sex is a defining feature of neuroimaging phenotypes in major brain disorders. Hum Brain Mapp 2022; 43:500-542. [PMID: 33949018 PMCID: PMC8805690 DOI: 10.1002/hbm.25438] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Sex is a biological variable that contributes to individual variability in brain structure and behavior. Neuroimaging studies of population-based samples have identified normative differences in brain structure between males and females, many of which are exacerbated in psychiatric and neurological conditions. Still, sex differences in MRI outcomes are understudied, particularly in clinical samples with known sex differences in disease risk, prevalence, and expression of clinical symptoms. Here we review the existing literature on sex differences in adult brain structure in normative samples and in 14 distinct psychiatric and neurological disorders. We discuss commonalities and sources of variance in study designs, analysis procedures, disease subtype effects, and the impact of these factors on MRI interpretation. Lastly, we identify key problems in the neuroimaging literature on sex differences and offer potential recommendations to address current barriers and optimize rigor and reproducibility. In particular, we emphasize the importance of large-scale neuroimaging initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analyses consortium, the UK Biobank, Human Connectome Project, and others to provide unprecedented power to evaluate sex-specific phenotypes in major brain diseases.
Collapse
Affiliation(s)
- Lauren E. Salminen
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Meral A. Tubi
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Joanna Bright
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Alyssa Wieand
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| |
Collapse
|
14
|
Ademuyiwa OH, Fasogbon BM, Adebo OA. The potential role of Piper guineense (black pepper) in managing geriatric brain aging: a review. Crit Rev Food Sci Nutr 2021; 63:2840-2850. [PMID: 34609267 DOI: 10.1080/10408398.2021.1980764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Brain aging is one of the unavoidable aspects of geriatric life. As one ages, changes such as the shrinking of certain parts (particularly the frontal cortex, which is vital to learning and other complex mental activities) of the brain may occur. Consequently, communications between neurons are less effective, and blood flow to the brain could also decrease. Efforts made at the biological level for repair become inadequate, leading to the accumulation of β-amyloid peptide in the brain faster than its probable degradation mechanism, resulting in cognitive malfunction. Subsequent clinical usage of drugs in battling related brain-aging ailments has been associated with several undesirable side effects. However, recent research has investigated the potential use of natural compounds from food in combating such occurrences. This review provides information about the use of Piper guineense (black pepper) as a possible agent in managing brain aging because of its implications for practical brain function. P. guineense contains an alkaloid (piperine) reported to be an antioxidant, anti-depressant, and central nervous system stimulant. This alkaloid and other related compounds are neuroprotective agents that reduce lipid oxidation and inhibit tangles in the brain tissues.
Collapse
Affiliation(s)
| | - Beatrice Mofoluwaso Fasogbon
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doorfontein, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doorfontein, Gauteng, South Africa
| |
Collapse
|
15
|
Reduced Dopamine Signaling Impacts Pyramidal Neuron Excitability in Mouse Motor Cortex. eNeuro 2021; 8:ENEURO.0548-19.2021. [PMID: 34556558 PMCID: PMC8525657 DOI: 10.1523/eneuro.0548-19.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
Dopaminergic modulation is essential for the control of voluntary movement; however, the role of dopamine in regulating the neural excitability of the primary motor cortex (M1) is not well understood. Here, we investigated two modes by which dopamine influences the input/output function of M1 neurons. To test the direct regulation of M1 neurons by dopamine, we performed whole-cell recordings of excitatory neurons and measured excitability before and after local, acute dopamine receptor blockade. We then determined whether chronic depletion of dopaminergic input to the entire motor circuit, via a mouse model of Parkinson's disease, was sufficient to shift M1 neuron excitability. We show that D1 receptor (D1R) and D2R antagonism altered subthreshold and suprathreshold properties of M1 pyramidal neurons in a layer-specific fashion. The effects of D1R antagonism were primarily driven by changes to intrinsic properties, while the excitability shifts following D2R antagonism relied on synaptic transmission. In contrast, chronic depletion of dopamine to the motor circuit with 6-hydroxydopamine induced layer-specific synaptic transmission-dependent shifts in M1 neuron excitability that only partially overlapped with the effects of acute D1R antagonism. These results suggest that while acute and chronic changes in dopamine modulate the input/output function of M1 neurons, the mechanisms engaged are distinct depending on the duration and origin of the manipulation. Our study highlights the broad influence of dopamine on M1 excitability by demonstrating the consequences of local and global dopamine depletion on neuronal input/output function.
Collapse
|
16
|
Taximaimaiti R, Luo X, Wang XP. Pharmacological and Non-pharmacological Treatments of Sleep Disorders in Parkinson's Disease. Curr Neuropharmacol 2021; 19:2233-2249. [PMID: 33998990 PMCID: PMC9185775 DOI: 10.2174/1570159x19666210517115706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Sleep disorders are one of the most common non-motor symptoms in Parkinson's disease (PD). It can cause a notable decrease in quality of life and functioning in PD patients, as well as place a huge burden on both patients and caregivers. The most cited sleep disorders in PD included insomnia, restless legs syndrome (RLS), rapid eye movement (REM), sleep behavior disorders (RBD), excessive daytime sleepiness (EDS) and sleep disordered breathing (SDB), which can appear alone or several at the same time. In this review, we listed the recommended pharmacological treatments for common sleep disorders in PD, and discussed the recommended dosages, benefits and side effects of relative drugs. We also discussed non-pharmacological treatments to improve sleep quality, including sleep hygiene education, exercise, deep brain stimulation, cognitive behavior therapy and complementary therapies. We tried to find proper interventions for different types of sleep disorders in PD, while minimizing relative side effects.
Collapse
Affiliation(s)
| | | | - Xiao-Ping Wang
- Address correspondence to this author at the Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China; Tel: +86-021-52039999-72223; Fax: +86-021-52039999-72223; E-mail:
| |
Collapse
|
17
|
Mujittapha SU, Kauthar M, Azeez IO, Oyem JC. Ascorbic acid improves extrapyramidal syndromes and corpus striatal degeneration induced by dopamine-2 receptor inhibition in Wistar rats. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0137/dmdi-2020-0137.xml. [PMID: 33125337 DOI: 10.1515/dmdi-2020-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022]
Abstract
Objectives The prolonged uses of fourth-generation antipsychotics have been implicated in inducing extrapyramidal syndromes characterized by the motor deficit. This was attributed to the loss of dopamine-2 receptor (D2R) signaling. However, ascorbic acid (SVCT2R stimulation) in the brain is proposed to modulate D2R activity. We, therefore, investigated the beneficial roles of ascorbic acid in improving the extrapyramidal symptoms seen in D2R loss. Methods Twenty adult male Wistar rats of average weight 200 g were distributed randomly into four groups. The control (NS) received normal saline for 28 days, Untreated D2R inhibition group (-D2R) received normal saline for seven days and then subsequently received chlorpromazine for 21 days, D2R inhibition group treated with ascorbic acid (-D2R+SVCT2R) received chlorpromazine for 21 days and was subsequently treated with ascorbate for seven days while the withdrawal group (WG) received chlorpromazine for 21 days and subsequently received normal saline for seven days. Motor deficits were assessed using a rotarod and cylinder test. The corpus striatum was harvested, processed, and stained using H&E and Nissl stains. Cellular density was analyzed using Image J software 1.8.0. Results Motor deficit was observed in -D2R animals administered chlorpromazine with less improvement in WG compared to control (p<0.05) in both rotarod and cylinder test. Ascorbic acid (SVCT2R stimulation) significantly (p<0.001) improved the latency of fall and climbing attempts observed in -D2R animals. The density of basophilic trigoid bodies was significantly (p<0.001) restored in -D2R+SVCT2R group, suggesting recovery of neural activity in the corpus striatum. Moreover, the hallmarks of neuronal degeneration were less expressed in the ascorbic acid treatment groups. Conclusions Ascorbic acid putatively ameliorates extrapyramidal symptoms observed in D2R blockage by chlorpromazine in Wistar rats.
Collapse
Affiliation(s)
| | - Murtala Kauthar
- Department of Medical Laboratory, Ahmadu Bello University, Kano, Nigeria
| | - Ishola O Azeez
- Department of Human Anatomy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - John C Oyem
- Department of Anatomy, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
18
|
Lv L, Tan X, Peng X, Bai R, Xiao Q, Zou T, Tan J, Zhang H, Wang C. The relationships of vitamin D, vitamin D receptor gene polymorphisms, and vitamin D supplementation with Parkinson's disease. Transl Neurodegener 2020; 9:34. [PMID: 32867847 PMCID: PMC7460797 DOI: 10.1186/s40035-020-00213-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, many studies have investigated the correlations between Parkinson's disease (PD) and vitamin D status, but the conclusion remains elusive. The present review focuses on the associations between PD and serum vitamin D levels by reviewing studies on the associations of PD with serum vitamin D levels and vitamin D receptor (VDR) gene polymorphisms from PubMed, Web of Science, Cochrane Library, and Embase databases. We found that PD patients have lower vitamin D levels than healthy controls and that the vitamin D concentrations are negatively correlated with PD risk and severity. Furthermore, higher vitamin D concentrations are linked to better cognitive function and mood in PD patients. Findings on the relationship between VDR gene polymorphisms and the risk of PD are inconsistent, but the FokI (C/T) polymorphism is significantly linked with PD. The occurrence of FokI (C/T) gene polymorphism may influence the risk, severity, and cognitive ability of PD patients, while also possibly influencing the effect of Vitamin D3 supplementation in PD patients. In view of the neuroprotective effects of vitamin D and the close association between vitamin D and dopaminergic neurotransmission, interventional prospective studies on vitamin D supplementation in PD patients should be conducted in the future.
Collapse
Affiliation(s)
- Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xuling Tan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinke Peng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Rongrong Bai
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qile Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ting Zou
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
19
|
Sugiyama E, Guerrini MM, Honda K, Hattori Y, Abe M, Källback P, Andrén PE, Tanaka KF, Setou M, Fagarasan S, Suematsu M, Sugiura Y. Detection of a High-Turnover Serotonin Circuit in the Mouse Brain Using Mass Spectrometry Imaging. iScience 2019; 20:359-372. [PMID: 31614319 PMCID: PMC6818351 DOI: 10.1016/j.isci.2019.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Monoamine neurotransmitters are released by specialized neurons regulating behavioral, motor, and cognitive functions. Although the localization of monoaminergic neurons in the brain is well known, the distribution and kinetics of monoamines remain unclear. Here, we generated a murine brain atlas of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) levels using mass spectrometry imaging (MSI). We found several nuclei rich in both 5-HT and a catecholamine (DA or NE) and identified the paraventricular nucleus of the thalamus (PVT), where 5-HT and NE are co-localized. The analysis of 5-HT fluctuations in response to acute tryptophan depletion and infusion of isotope-labeled tryptophan in vivo revealed a close kinetic association between the raphe nuclei, PVT, and amygdala but not the other nuclei. Our findings imply the existence of a highly dynamic 5-HT-mediated raphe to PVT pathway that likely plays a role in the brain monoamine system. A murine brain atlas of monoamine (5-HT, DA, NE) levels was generated via MS imaging We identified several nuclei rich in both 5-HT and a catecholamine (DA or NE) The paraventricular nucleus of the thalamus (PVT) had high levels of 5-HT and NE The level of 5-HT in raphe to PVT pathway changed dynamically in response to blood Trp level
Collapse
Affiliation(s)
- Eiji Sugiyama
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Matteo M Guerrini
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi Ward, Suehirocho, 1 Chome-7-22, Yokohama, Kanagawa Prefecture 230-0045, Japan
| | - Kurara Honda
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yuko Hattori
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8585, Japan
| | - Patrik Källback
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden; Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden; Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi Ward, Suehirocho, 1 Chome-7-22, Yokohama, Kanagawa Prefecture 230-0045, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
20
|
El Aouni A, Daoudi K, Yahia H, Minaoui K, Benazzouz A. Surface mixing and biological activity in the North-West African upwelling. CHAOS (WOODBURY, N.Y.) 2019; 29:011104. [PMID: 30709139 DOI: 10.1063/1.5067253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Near-shore water along the North-West African margin is one of the world's major upwelling regions. It is associated with physical structures of oceanic fronts which influence the biological productivity. The study of these coherent structures in connection with chlorophyll concentration data is of fundamental importance for understanding the spatial distributions of the plankton. In this work, we study the horizontal stirring and mixing in different upwelling areas using Lagrangian coherent structures (LCSs). These LCSs are calculated using the recent geodesic theory of LCSs. We use these LCSs to study the link between the chlorophyll fronts concentrations and surface mixing, based on 10 years of satellite data. These LCSs move with the flow as material lines, thus the horizontal mixing is calculated from the intersection of these LCSs with the finite time Lyapunov exponent maps. We compare our results with those of a recent study conducted over the same area, but based on finite size Lyapunov exponents (FSLEs), whose output is a plot of scalar distributions. We discuss the differences between FSLE and geodesic theory of LCS. The latter yields analytical solutions of LCSs, while FSLEs can only provide LCSs for sharp enough ridges of nearly constant height.
Collapse
Affiliation(s)
- Anass El Aouni
- Geostat Team, INRIA Bordeaux Sud-Ouest, 33400 Talence, France
| | - Khalid Daoudi
- Geostat Team, INRIA Bordeaux Sud-Ouest, 33400 Talence, France
| | - Hussein Yahia
- Geostat Team, INRIA Bordeaux Sud-Ouest, 33400 Talence, France
| | - Khalid Minaoui
- University Mohammed V, Faculty of Sciences, LRIT, 10106 Rabat, Morocco
| | - Aïssa Benazzouz
- The Higher Institute of Maritime Studies, 20000 Casablanca, Morocco
| |
Collapse
|
21
|
Marques CR, Marote A, Mendes-Pinheiro B, Teixeira FG, Salgado AJ. Cell secretome based approaches in Parkinson’s disease regenerative medicine. Expert Opin Biol Ther 2018; 18:1235-1245. [DOI: 10.1080/14712598.2018.1546840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cláudia R. Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Miller D, Shaerzadeh F, Phan L, Sharif N, Gamble-George J, McLaughlin J, Streit WJ, Khoshbouei H. HIV-1 Tat regulation of dopamine transmission and microglial reactivity is brain region specific. Glia 2018; 66:1915-1928. [PMID: 29733459 PMCID: PMC6185750 DOI: 10.1002/glia.23447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
The transactivator of transcription protein, HIV-1 Tat, is linked to neuroAIDS, where degeneration of dopamine neurons occurs. Using a mouse model expressing GFAP-driven Tat protein under doxycycline (Dox) regulation, we investigated microglial-neuronal interactions in the rostral substantia nigra pars compacta (SNc). Immunohistochemistry for microglia and tyrosine hydroxylase (TH) showed that the ratio of microglia to dopamine neurons is smaller in the SNc than in the ventral tegmental area (VTA) and that this difference is maintained following 7-day Dox exposure in wild type animals. Administration of Dox to wild types had no effect on microglial densities. In addressing the sensitivity of neurons to potentially adverse effects of HIV-1 Tat, we found that HIV-1 Tat exposure in vivo selectively decreased TH immunoreactivity in the SNc but not in the VTA, while levels of TH mRNA in the SNc remained unchanged. HIV-1 Tat induction in vivo did not alter the total number of neurons in these brain regions. Application of Tat (5 ng) into dopamine neurons with whole-cell patch pipette decreased spontaneous firing activity. Tat induction also produced a decline in microglial cell numbers, but no microglial activation. Thus, disappearance of dopaminergic phenotype is due to a loss of TH immunoreactivity rather than to neuronal death, which would have triggered microglial activation. We conclude that adverse effects of HIV-1 Tat produce a hypodopamine state by decreasing TH immunoreactivity and firing activity of dopamine neurons. Reduced microglial numbers after Tat exposure in vivo suggest impaired microglial functions and altered bidirectional interactions between dopamine neurons and microglia.
Collapse
Affiliation(s)
- Douglas Miller
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Leah Phan
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Nesrin Sharif
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Joyonna Gamble-George
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Jay McLaughlin
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL 32610
| | - Wolfgang J. Streit
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610
| |
Collapse
|
23
|
Zebrowitz LA, Boshyan J, Ward N, Hanlin L, Wolf JM, Hadjikhani N. Dietary dopamine depletion blunts reward network sensitivity to face trustworthiness. J Psychopharmacol 2018; 32:965-978. [PMID: 29620428 DOI: 10.1177/0269881118758303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Research demonstrating responsiveness of the neural reward network to face trustworthiness has not assessed whether the effects are mediated by dopaminergic function. We filled this gap in the literature by investigating whether dietary dopamine depletion would blunt the sensitivity of neural activation to faces varying in trustworthiness across reward regions as well as the sensitivity of behavioral responses to those faces. As prolactin release is negatively regulated by dopamine, peripheral prolactin levels confirmed the efficacy of our manipulation. The dopamine depletion manipulation moderated neural activation to face trustworthiness in the amygdala, medial orbital frontal cortex, and ventral medial prefrontal cortex. Control participants ( n=20) showed nonlinear and linear neural activation to face trustworthiness in the amygdala and ventral medial prefrontal cortex, and nonlinear activation in the medial orbital frontal cortex, while depleted participants ( n=20) showed only a linear effect in the amygdala. Controls also showed stronger amygdala activation to high trustworthy faces than depleted participants. In contrast to effects on neural activation, dopamine depletion did not blunt the sensitivity of behavioral ratings. While this is the first study to demonstrate that dopamine depletion blunts the sensitivity of the neural reward system to social stimuli, namely faces varying in trustworthiness, future research should investigate behavioral measures that may be more responsive to dopaminergic effects than face ratings. Such research would shed further light on the possibility that individual differences in dopaminergic function that were simulated by our manipulation influence social interactions with people who vary in facial trustworthiness.
Collapse
Affiliation(s)
| | - Jasmine Boshyan
- 1 Department of Psychology, Brandeis University, Waltham, MA, USA.,3 Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Noreen Ward
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Luke Hanlin
- 1 Department of Psychology, Brandeis University, Waltham, MA, USA
| | - Jutta M Wolf
- 1 Department of Psychology, Brandeis University, Waltham, MA, USA
| | - Nouchine Hadjikhani
- 2 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA.,4 Gillberg Neuropsychiatry Center, University of Gothenburg, Sweden
| |
Collapse
|
24
|
Wang Y, Zhou FM. Striatal But Not Extrastriatal Dopamine Receptors Are Critical to Dopaminergic Motor Stimulation. Front Pharmacol 2017; 8:935. [PMID: 29311936 PMCID: PMC5742616 DOI: 10.3389/fphar.2017.00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/11/2017] [Indexed: 11/19/2022] Open
Abstract
Dopamine (DA) is required for motor function in vertebrate animals including humans. The striatum, a key motor control center, receives a dense DA innervation and express high levels of DA D1 receptors (D1Rs) and D2 receptors (D2Rs). Other brain areas involved in motor function such as the globus pallidus external segment (GPe) and the substantia nigra pars reticulata (SNr) and the motor cortex (MC) also receive DA innervation and express DA receptors. Thus, the relative contribution of the striatal and extrastriatal DA systems to the motor function has been an important question critical for understanding the functional operation of the motor control circuits and also for therapeutic targeting. We have now experimentally addressed this question in the transcription factor Pitx3 null mutant (Pitx3Null) mice that have an autogenic and parkinsonian-like striatal DA denervation and hence supersensitive motor response to DA stimulation. Using DA agonist unilateral microinjection-induced rotation as a reliable readout of motor stimulation, our results show that L-dopa microinjection into the dorsal striatum (DS) induced 5–10 times more rotations than that induced by L-dopa microinjection into GPe and SNr, while L-dopa microinjection into the primary MC induced the least number of rotations. Furthermore, our results show that separate microinjection of the D1R-like agonist SKF81297 and the D2R-like agonist ropinirole into the DS each induced only modest numbers of rotation, whereas concurrent injection of the two agonists triggered more rotations than the sum of the rotations induced by each of these two agonists separately, indicating D1R–D2R synergy. These results suggest that the striatum, not GPe, SNr or MC, is the primary site for D1Rs and D2Rs to synergistically stimulate motor function in L-dopa treatment of Parkinson’s disease (PD). Our results also predict that non-selective, broad spectrum DA agonists activating both D1Rs and D2Rs are more efficacious anti-PD drugs than the current D2R agonists.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
25
|
Hawlitschka A, Holzmann C, Witt S, Spiewok J, Neumann AM, Schmitt O, Wree A, Antipova V. Intrastriatally injected botulinum neurotoxin-A differently effects cholinergic and dopaminergic fibers in C57BL/6 mice. Brain Res 2017; 1676:46-56. [DOI: 10.1016/j.brainres.2017.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/10/2017] [Accepted: 09/12/2017] [Indexed: 11/29/2022]
|
26
|
Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H. HIV, Tat and dopamine transmission. Neurobiol Dis 2017; 105:51-73. [PMID: 28457951 PMCID: PMC5541386 DOI: 10.1016/j.nbd.2017.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/04/2017] [Accepted: 04/16/2017] [Indexed: 01/02/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system, affecting more than 37 million people around the world. While combinatorial antiretroviral therapy (cART) has lowered mortality rates and improved quality of life in infected individuals, the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins may be involved in this decline, and several studies have indicated that the HIV protein transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically, data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the function of the dopamine transporter and specifically damaging dopamine-rich regions of the CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission may be, at least partially, a mechanism by which HIV infection directly or indirectly induces dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic neurotransmission. Further, this will provide a discussion of the experiments needed to further these investigations, and may help to identify or develop new therapeutic approaches for the prevention or treatment of these disorders in HIV-infected individuals.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Joyonna Gamble-George
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Hideaki Yano
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
27
|
Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson's disease. J Neural Transm (Vienna) 2017; 125:337-363. [PMID: 28861737 DOI: 10.1007/s00702-017-1774-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically characterized by cardinal motor deficits including bradykinesia, tremor, rigidity and postural instability. Over the past decades, it has become clear that PD symptoms extend far beyond motor signs to include cognitive, autonomic and psychiatric impairments, most likely resulting from cortical and subcortical lesions of non-dopaminergic systems. In addition to nigrostriatal dopaminergic degeneration, pathological examination of PD brains, indeed, reveals widespread distribution of intracytoplasmic inclusions (Lewy bodies) and death of non-dopaminergic neurons in the brainstem and thalamus. For that past three decades, the MPTP-treated monkey has been recognized as the gold standard PD model because it displays some of the key behavioral and pathophysiological changes seen in PD patients. However, a common criticism raised by some authors about this model, and other neurotoxin-based models of PD, is the lack of neuronal loss beyond the nigrostriatal dopaminergic system. In this review, we argue that this assumption is largely incorrect and solely based on data from monkeys intoxicated with acute administration of MPTP. Work achieved in our laboratory and others strongly suggest that long-term chronic administration of MPTP leads to brain pathology beyond the dopaminergic system that displays close similarities to that seen in PD patients. This review critically examines these data and suggests that the chronically MPTP-treated nonhuman primate model may be suitable to study the pathophysiology and therapeutics of some non-motor features of PD.
Collapse
Affiliation(s)
- Gunasingh J Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
| |
Collapse
|
28
|
Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna) 2017; 125:291-324. [PMID: 28391443 DOI: 10.1007/s00702-017-1722-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.
Collapse
|
29
|
FUS-linked essential tremor associated with motor dysfunction in Drosophila. Hum Genet 2016; 135:1223-1232. [PMID: 27395408 PMCID: PMC5052300 DOI: 10.1007/s00439-016-1709-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/04/2016] [Indexed: 11/02/2022]
Abstract
Essential tremor (ET) is one of the most common adult-onset neurological disorders which produce motor and non-motor symptoms. To date, there are no gold standard pathological hallmarks of ET, and despite a strong genetic contribution toward ET development, only a few pathogenic mutations have been identified. Recently, a pathogenic FUS-Q290X mutation has been reported in a large ET-affected family; however, the pathophysiologic mechanism underlying FUS-linked ET is unknown. Here, we generated transgenic Drosophila expressing hFUS-WT and hFUS-Q290X and targeted their expression in different tissues. We found that the targeted expression of hFUS-Q290X in the dopaminergic and the serotonergic neurons did not cause obvious neuronal degeneration, but it resulted in motor dysfunction which was accompanied by impairment in the GABAergic pathway. The involvement of the GABAergic pathway was supported by rescue of motor symptoms with gabapentin. Interestingly, we observed gender specific downregulation of GABA-R and NMDA-R expression and reduction in serotonin level. Overexpression of hFUS-Q290X also caused an increase in longevity and this was accompanied by downregulation of the IIS/TOR signalling pathway. Our in vivo studies of the hFUS-Q290X mutation in Drosophila link motor dysfunction to impairment in the GABAergic pathway. Our findings would facilitate further efforts in unravelling the pathophysiology of ET.
Collapse
|
30
|
Ho T, Jobling AI, Greferath U, Chuang T, Ramesh A, Fletcher EL, Vessey KA. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain. Front Cell Neurosci 2015; 9:389. [PMID: 26500494 PMCID: PMC4593860 DOI: 10.3389/fncel.2015.00389] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022] Open
Abstract
Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons.
Collapse
Affiliation(s)
- Tracy Ho
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Andrew I Jobling
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Ursula Greferath
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Trinette Chuang
- Polyclonal Antibody Development, R&D Antibody Development, EMD Millipore Temecula, CA, USA
| | - Archana Ramesh
- Polyclonal Antibody Development, R&D Antibody Development, EMD Millipore Temecula, CA, USA
| | - Erica L Fletcher
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| | - Kirstan A Vessey
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
31
|
Eid L, Parent M. Morphological evidence for dopamine interactions with pallidal neurons in primates. Front Neuroanat 2015; 9:111. [PMID: 26321923 PMCID: PMC4531254 DOI: 10.3389/fnana.2015.00111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/27/2015] [Indexed: 12/04/2022] Open
Abstract
The external (GPe) and internal (GPi) segments of the primate globus pallidus receive dopamine (DA) axonal projections arising mainly from the substantia nigra pars compacta and this innervation is here described based on tyrosine hydroxylase (TH) immunohistochemical observations gathered in the squirrel monkey (Saimiri sciureus). At the light microscopic level, unbiased stereological quantification of TH positive (+) axon varicosities reveals a similar density of innervation in the GPe (0.19 ± 0.02 × 106 axon varicosities/mm3 of tissue) and GPi (0.17 ± 0.01 × 106), but regional variations occur in the anteroposterior and dorsoventral axes in both GPe and GPi and along the mediolateral plane in the GPe. Estimation of the neuronal population in the GPe (3.47 ± 0.15 × 103 neurons/mm3) and GPi (2.69 ± 0.18 × 103) yields a mean ratio of, respectively, 28 ± 3 and 68 ± 15 TH+ axon varicosities/pallidal neuron. At the electron microscopic level, TH+ axon varicosities in the GPe appear significantly smaller than those in the GPi and very few TH+ axon varicosities are engaged in synaptic contacts in the GPe (17 ± 3%) and the GPi (15 ± 4%) compared to their unlabeled counterparts (77 ± 6 and 50 ± 12%, respectively). Genuine synaptic contacts made by TH+ axon varicosities in the GPe and GPi are of the symmetrical and asymmetrical type. Such synaptic contacts together with the presence of numerous synaptic vesicles in all TH+ axon varicosities observed in the GPe and GPi support the functionality of the DA pallidal innervation. By virtue of its predominantly volumic mode of action, DA appears to exert a key modulatory effect upon pallidal neurons in concert with the more direct GABAergic inhibitory and glutamatergic excitatory actions of the striatum and subthalamic nucleus. We argue that the DA pallidal innervation plays a major role in the functional organization of the primate basal ganglia under both normal and pathological conditions.
Collapse
Affiliation(s)
- Lara Eid
- Department of Psychiatry and Neuroscience, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval Quebec City, QC, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval Quebec City, QC, Canada
| |
Collapse
|
32
|
Leyva-Gómez G, Cortés H, Magaña JJ, Leyva-García N, Quintanar-Guerrero D, Florán B. Nanoparticle technology for treatment of Parkinson's disease: the role of surface phenomena in reaching the brain. Drug Discov Today 2015; 20:824-37. [DOI: 10.1016/j.drudis.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/22/2015] [Accepted: 02/13/2015] [Indexed: 01/03/2023]
|
33
|
Investigating the role of Sirt1-modulated oxidative stress in relation to benign paroxysmal positional vertigo and Parkinson's disease. Neurobiol Aging 2015; 36:2607-16. [PMID: 26130063 DOI: 10.1016/j.neurobiolaging.2015.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/29/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023]
Abstract
Benign paroxysmal positional vertigo (BPPV) is one of the most frequently encountered primary complaints in dizziness clinics. The incidence of BPPV has been proven to increase with age. The relationship between BPPV and another neurodegenerative disease, Parkinson's disease (PD), has not been previously discussed. This study aimed to investigate the relationship of BPPV and PD with oxidative stress. A total of 30,811 subjects participated in our cohort study. The study cohort comprised 5057 BPPV patients and a comparison cohort of 25,754 nonBPPV patients. SIRT1 axis gene expression was investigated in BPPV patient blood samples and a PD cell model of 6-hydroxydopamine (6-OHDA)-treated PC-12 cells to elucidate the potential in vitro and in vivo mechanisms of degeneration in PD and BPPV. Our data suggest that BPPV patients with histories of head injuries show a significantly higher hazard to develop subsequent PD (hazard ratio, 3.942; confidence interval, 1.523-10.205, p = 0.005). We also observed that oxidative status is increased in blood samples from patients with BPPV. Our in vitro study suggests that SIRT1 function is inhibited by oxidative stress, which thereby promotes 6-hydroxydopamine-induced cell death. We conclude that BPPV is independently associated with an increased risk of PD. This finding may be attributed to oxidative stress-mediated inhibition of SIRT1 expression levels.
Collapse
|
34
|
Hernández-Martínez R, Aceves JJ, Rueda-Orozco PE, Hernández-Flores T, Hernández-González O, Tapia D, Galarraga E, Bargas J. Muscarinic presynaptic modulation in GABAergic pallidal synapses of the rat. J Neurophysiol 2015; 113:796-807. [DOI: 10.1152/jn.00385.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The external globus pallidus (GPe) is central for basal ganglia processing. It expresses muscarinic cholinergic receptors and receives cholinergic afferents from the pedunculopontine nuclei (PPN) and other regions. The role of these receptors and afferents is unknown. Muscarinic M1-type receptors are expressed by synapses from striatal projection neurons (SPNs). Because axons from SPNs project to the GPe, one hypothesis is that striatopallidal GABAergic terminals may be modulated by M1 receptors. Alternatively, some M1 receptors may be postsynaptic in some pallidal neurons. Evidence of muscarinic modulation in any of these elements would suggest that cholinergic afferents from the PPN, or other sources, could modulate the function of the GPe. In this study, we show this evidence using striatopallidal slice preparations: after field stimulation in the striatum, the cholinergic muscarinic receptor agonist muscarine significantly reduced the amplitude of inhibitory postsynaptic currents (IPSCs) from synapses that exhibited short-term synaptic facilitation. This inhibition was associated with significant increases in paired-pulse facilitation, and quantal content was proportional to IPSC amplitude. These actions were blocked by atropine, pirenzepine, and mamba toxin-7, suggesting that receptors involved were M1. In addition, we found that some pallidal neurons have functional postsynaptic M1 receptors. Moreover, some evoked IPSCs exhibited short-term depression and a different kind of modulation: they were indirectly modulated by muscarine via the activation of presynaptic cannabinoid CB1 receptors. Thus pallidal synapses presenting distinct forms of short-term plasticity were modulated differently.
Collapse
Affiliation(s)
- Ricardo Hernández-Martínez
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José J. Aceves
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pavel E. Rueda-Orozco
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Teresa Hernández-Flores
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Hernández-González
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dagoberto Tapia
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
35
|
Cifuentes Castro VH, López Valenzuela CL, Salazar Sánchez JC, Peña KP, López Pérez SJ, Ibarra JO, Villagrán AM. An update of the classical and novel methods used for measuring fast neurotransmitters during normal and brain altered function. Curr Neuropharmacol 2014; 12:490-508. [PMID: 25977677 PMCID: PMC4428024 DOI: 10.2174/1570159x13666141223223657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 11/22/2022] Open
Abstract
To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alberto Morales Villagrán
- Department of Molecular and Cellular Biology, Camino Ramón Padilla Sánchez 2100, Nextipac, Zapopan,
Jalisco, México, Zip code: 45110, Mexico
| |
Collapse
|