1
|
Abadal S, Galván P, Mármol A, Mammone N, Ieracitano C, Lo Giudice M, Salvini A, Morabito FC. Graph neural networks for electroencephalogram analysis: Alzheimer's disease and epilepsy use cases. Neural Netw 2024; 181:106792. [PMID: 39471577 DOI: 10.1016/j.neunet.2024.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/21/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
Electroencephalography (EEG) is widely used as a non-invasive technique for the diagnosis of several brain disorders, including Alzheimer's disease and epilepsy. Until recently, diseases have been identified over EEG readings by human experts, which may not only be specific and difficult to find, but are also subject to human error. Despite the recent emergence of machine learning methods for the interpretation of EEGs, most approaches are not capable of capturing the underlying arbitrary non-Euclidean relations between signals in the different regions of the human brain. In this context, Graph Neural Networks (GNNs) have gained attention for their ability to effectively analyze complex relationships within different types of graph-structured data. This includes EEGs, a use case still relatively unexplored. In this paper, we aim to bridge this gap by presenting a study that applies GNNs for the EEG-based detection of Alzheimer's disease and discrimination of two different types of seizures. To this end, we demonstrate the value of GNNs by showing that a single GNN architecture can achieve state-of-the-art performance in both use cases. Through design space explorations and explainability analysis, we develop a graph-based transformer that achieves cross-validated accuracies over 89% and 96% in the ternary classification variants of Alzheimer's disease and epilepsy use cases, respectively, matching the intuitions drawn by expert neurologists. We also argue about the computational efficiency, generalizability and potential for real-time operation of GNNs for EEGs, positioning them as a valuable tool for classifying various neurological pathologies and opening up new prospects for research and clinical practice.
Collapse
Affiliation(s)
- Sergi Abadal
- Universitat Politècnica de Catalunya, 08034, Barcelona, Spain.
| | - Pablo Galván
- Universitat Politècnica de Catalunya, 08034, Barcelona, Spain
| | - Alberto Mármol
- Universitat Politècnica de Catalunya, 08034, Barcelona, Spain
| | - Nadia Mammone
- DICEAM, University Mediterranea of Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Cosimo Ieracitano
- DICEAM, University Mediterranea of Reggio Calabria, 89122, Reggio Calabria, Italy
| | | | | | | |
Collapse
|
2
|
Li J, Li X, Chen F, Li W, Chen J, Zhang B. Studying the Alzheimer's disease continuum using EEG and fMRI in single-modality and multi-modality settings. Rev Neurosci 2024; 35:373-386. [PMID: 38157429 DOI: 10.1515/revneuro-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Alzheimer's disease (AD) is a biological, clinical continuum that covers the preclinical, prodromal, and clinical phases of the disease. Early diagnosis and identification of the stages of Alzheimer's disease (AD) are crucial in clinical practice. Ideally, biomarkers should reflect the underlying process (pathological or otherwise), be reproducible and non-invasive, and allow repeated measurements over time. However, the currently known biomarkers for AD are not suitable for differentiating the stages and predicting the trajectory of disease progression. Some objective parameters extracted using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are widely applied to diagnose the stages of the AD continuum. While electroencephalography (EEG) has a high temporal resolution, fMRI has a high spatial resolution. Combined EEG and fMRI (EEG-fMRI) can overcome single-modality drawbacks and obtain multi-dimensional information simultaneously, and it can help explore the hemodynamic changes associated with the neural oscillations that occur during information processing. This technique has been used in the cognitive field in recent years. This review focuses on the different techniques available for studying the AD continuum, including EEG and fMRI in single-modality and multi-modality settings, and the possible future directions of AD diagnosis using EEG-fMRI.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xin Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Futao Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Weiping Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, Jiangsu, 210008, China
- Institute of Brain Science, Nanjing University, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
3
|
Babiloni C, Jakhar D, Tucci F, Del Percio C, Lopez S, Soricelli A, Salvatore M, Ferri R, Catania V, Massa F, Arnaldi D, Famà F, Güntekin B, Yener G, Stocchi F, Vacca L, Marizzoni M, Giubilei F, Yıldırım E, Hanoğlu L, Hünerli D, Frisoni GB, Noce G. Resting state electroencephalographic alpha rhythms are sensitive to Alzheimer's disease mild cognitive impairment progression at a 6-month follow-up. Neurobiol Aging 2024; 137:19-37. [PMID: 38402780 DOI: 10.1016/j.neurobiolaging.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
Are posterior resting-state electroencephalographic (rsEEG) alpha rhythms sensitive to the Alzheimer's disease mild cognitive impairment (ADMCI) progression at a 6-month follow-up? Clinical, cerebrospinal, neuroimaging, and rsEEG datasets in 52 ADMCI and 60 Healthy old seniors (equivalent groups for demographic features) were available from an international archive (www.pdwaves.eu). The ADMCI patients were arbitrarily divided into two groups: REACTIVE and UNREACTIVE, based on the reduction (reactivity) in the posterior rsEEG alpha eLORETA source activities from the eyes-closed to eyes-open condition at ≥ -10% and -10%, respectively. 75% of the ADMCI patients were REACTIVE. Compared to the UNREACTIVE group, the REACTIVE group showed (1) less abnormal posterior rsEEG source activity during the eyes-closed condition and (2) a decrease in that activity at the 6-month follow-up. These effects could not be explained by neuroimaging and neuropsychological biomarkers of AD. Such a biomarker might reflect abnormalities in cortical arousal in quiet wakefulness to be used for clinical studies in ADMCI patients using 6-month follow-ups.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy.
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | | | | | | | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Duygu Hünerli
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
4
|
Lopez S, Hampel H, Chiesa PA, Del Percio C, Noce G, Lizio R, Teipel SJ, Dyrba M, González-Escamilla G, Bakardjian H, Cavedo E, Lista S, Vergallo A, Lemercier P, Spinelli G, Grothe MJ, Potier MC, Stocchi F, Ferri R, Habert MO, Dubois B, Babiloni C. The association between posterior resting-state EEG alpha rhythms and functional MRI connectivity in older adults with subjective memory complaint. Neurobiol Aging 2024; 137:62-77. [PMID: 38431999 DOI: 10.1016/j.neurobiolaging.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Resting-state eyes-closed electroencephalographic (rsEEG) alpha rhythms are dominant in posterior cortical areas in healthy adults and are abnormal in subjective memory complaint (SMC) persons with Alzheimer's disease amyloidosis. This exploratory study in 161 SMC participants tested the relationships between those rhythms and seed-based resting-state functional magnetic resonance imaging (rs-fMRI) connectivity between thalamus and visual cortical networks as a function of brain amyloid burden, revealed by positron emission tomography and cognitive reserve, measured by educational attainment. The SMC participants were divided into 4 groups according to 2 factors: Education (Edu+ and Edu-) and Amyloid burden (Amy+ and Amy-). There was a statistical interaction (p < 0.05) between the two factors, and the subgroup analysis using estimated marginal means showed a positive association between the mentioned rs-fMRI connectivity and the posterior rsEEG alpha rhythms in the SMC participants with low brain amyloidosis and high CR (Amy-/Edu+). These results suggest that in SMC persons, early Alzheimer's disease amyloidosis may contrast the beneficial effects of cognitive reserve on neurophysiological oscillatory mechanisms at alpha frequencies and connectivity between the thalamus and visual cortical networks.
Collapse
Affiliation(s)
- Susanna Lopez
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Patrizia Andrea Chiesa
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Roberta Lizio
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE), Greifswald, Rostock, Germany
| | - Martin Dyrba
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Gabriel González-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hovagim Bakardjian
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Enrica Cavedo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France; Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Giuseppe Spinelli
- Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Greifswald, Rostock, Germany
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University, San Raffaele, Rome, Italy
| | | | - Marie-Odile Habert
- Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France; AP-HP, Pitié-Salpêtrière Hospital, Department of Nuclear Medicine, Paris F-75013, France
| | - Bruno Dubois
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; San Raffaele Cassino, Cassino, FR, Italy.
| |
Collapse
|
5
|
Babiloni C, Lopez S, Noce G, Ferri R, Panerai S, Catania V, Soricelli A, Salvatore M, Nobili F, Arnaldi D, Famà F, Massa F, Buttinelli C, Giubilei F, Stocchi F, Vacca L, Marizzoni M, D'Antonio F, Bruno G, De Lena C, Güntekin B, Yıldırım E, Hanoğlu L, Yener G, Yerlikaya D, Taylor JP, Schumacher J, McKeith I, Bonanni L, Pantano P, Piervincenzi C, Petsas N, Frisoni GB, Del Percio C, Carducci F. Relationship between default mode network and resting-state electroencephalographic alpha rhythms in cognitively unimpaired seniors and patients with dementia due to Alzheimer's disease. Cereb Cortex 2023; 33:10514-10527. [PMID: 37615301 PMCID: PMC10588004 DOI: 10.1093/cercor/bhad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Here we tested the hypothesis of a relationship between the cortical default mode network (DMN) structural integrity and the resting-state electroencephalographic (rsEEG) rhythms in patients with Alzheimer's disease with dementia (ADD). Clinical and instrumental datasets in 45 ADD patients and 40 normal elderly (Nold) persons originated from the PDWAVES Consortium (www.pdwaves.eu). Individual rsEEG delta, theta, alpha, and fixed beta and gamma bands were considered. Freeware platforms served to derive (1) the (gray matter) volume of the DMN, dorsal attention (DAN), and sensorimotor (SMN) cortical networks and (2) the rsEEG cortical eLORETA source activities. We found a significant positive association between the DMN gray matter volume, the rsEEG alpha source activity estimated in the posterior DMN nodes (parietal and posterior cingulate cortex), and the global cognitive status in the Nold and ADD participants. Compared with the Nold, the ADD group showed lower DMN gray matter, lower rsEEG alpha source activity in those nodes, and lower global cognitive status. This effect was not observed in the DAN and SMN. These results suggest that the DMN structural integrity and the rsEEG alpha source activities in the DMN posterior hubs may be related and predict the global cognitive status in ADD and Nold persons.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino (FR), Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Flavio Nobili
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Dario Arnaldi
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy
| | - Francesco Famà
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federico Massa
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Carlo De Lena
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Bahar Güntekin
- Department of Biophysics, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir School of Economics, Faculty of Medicine, Izmir, Turkey
| | - Deniz Yerlikaya
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - John Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Ian McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Nikolaos Petsas
- Scuola di Specializzazione in Statistica Medica e Biometria, Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza University of Rome, Rome, Italy
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| | - Filippo Carducci
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Pusil S, Zegarra-Valdivia J, Cuesta P, Laohathai C, Cebolla AM, Haueisen J, Fiedler P, Funke M, Maestú F, Cheron G. Effects of spaceflight on the EEG alpha power and functional connectivity. Sci Rep 2023; 13:9489. [PMID: 37303002 DOI: 10.1038/s41598-023-34744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 06/13/2023] Open
Abstract
Electroencephalography (EEG) can detect changes in cerebral activity during spaceflight. This study evaluates the effect of spaceflight on brain networks through analysis of the Default Mode Network (DMN)'s alpha frequency band power and functional connectivity (FC), and the persistence of these changes. Five astronauts' resting state EEGs under three conditions were analyzed (pre-flight, in-flight, and post-flight). DMN's alpha band power and FC were computed using eLORETA and phase-locking value. Eyes-opened (EO) and eyes-closed (EC) conditions were differentiated. We found a DMN alpha band power reduction during in-flight (EC: p < 0.001; EO: p < 0.05) and post-flight (EC: p < 0.001; EO: p < 0.01) when compared to pre-flight condition. FC strength decreased during in-flight (EC: p < 0.01; EO: p < 0.01) and post-flight (EC: ns; EO: p < 0.01) compared to pre-flight condition. The DMN alpha band power and FC strength reduction persisted until 20 days after landing. Spaceflight caused electrocerebral alterations that persisted after return to earth. Periodic assessment by EEG-derived DMN analysis has the potential to become a neurophysiologic marker of cerebral functional integrity during exploration missions to space.
Collapse
Affiliation(s)
- Sandra Pusil
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Jonathan Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Global Brain Health Institute (GBHI), University of California, San Francisco (UCSF), San Francisco, CA, USA
- Universidad Señor de Sipán, Chiclayo, Peru
| | - Pablo Cuesta
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Radiology, Rehabilitation, and Physiotherapy, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Michael Funke
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitario, Hospital Clínico San Carlos, Madrid, Spain
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
7
|
Gallina J, Marsicano G, Romei V, Bertini C. Electrophysiological and Behavioral Effects of Alpha-Band Sensory Entrainment: Neural Mechanisms and Clinical Applications. Biomedicines 2023; 11:biomedicines11051399. [PMID: 37239069 DOI: 10.3390/biomedicines11051399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Alpha-band (7-13 Hz) activity has been linked to visuo-attentional performance in healthy participants and to impaired functionality of the visual system in a variety of clinical populations including patients with acquired posterior brain lesion and neurodevelopmental and psychiatric disorders. Crucially, several studies suggested that short uni- and multi-sensory rhythmic stimulation (i.e., visual, auditory and audio-visual) administered in the alpha-band effectively induces transient changes in alpha oscillatory activity and improvements in visuo-attentional performance by synchronizing the intrinsic brain oscillations to the external stimulation (neural entrainment). The present review aims to address the current state of the art on the alpha-band sensory entrainment, outlining its potential functional effects and current limitations. Indeed, the results of the alpha-band entrainment studies are currently mixed, possibly due to the different stimulation modalities, task features and behavioral and physiological measures employed in the various paradigms. Furthermore, it is still unknown whether prolonged alpha-band sensory entrainment might lead to long-lasting effects at a neural and behavioral level. Overall, despite the limitations emerging from the current literature, alpha-band sensory entrainment may represent a promising and valuable tool, inducing functionally relevant changes in oscillatory activity, with potential rehabilitative applications in individuals characterized by impaired alpha activity.
Collapse
Affiliation(s)
- Jessica Gallina
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Gianluca Marsicano
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Vincenzo Romei
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| | - Caterina Bertini
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121 Bologna, Italy
| |
Collapse
|
8
|
Hampel H, Gao P, Cummings J, Toschi N, Thompson PM, Hu Y, Cho M, Vergallo A. The foundation and architecture of precision medicine in neurology and psychiatry. Trends Neurosci 2023; 46:176-198. [PMID: 36642626 PMCID: PMC10720395 DOI: 10.1016/j.tins.2022.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Neurological and psychiatric diseases have high degrees of genetic and pathophysiological heterogeneity, irrespective of clinical manifestations. Traditional medical paradigms have focused on late-stage syndromic aspects of these diseases, with little consideration of the underlying biology. Advances in disease modeling and methodological design have paved the way for the development of precision medicine (PM), an established concept in oncology with growing attention from other medical specialties. We propose a PM architecture for central nervous system diseases built on four converging pillars: multimodal biomarkers, systems medicine, digital health technologies, and data science. We discuss Alzheimer's disease (AD), an area of significant unmet medical need, as a case-in-point for the proposed framework. AD can be seen as one of the most advanced PM-oriented disease models and as a compelling catalyzer towards PM-oriented neuroscience drug development and advanced healthcare practice.
Collapse
Affiliation(s)
- Harald Hampel
- Alzheimer's Disease & Brain Health, Eisai Inc., Nutley, NJ, USA.
| | - Peng Gao
- Alzheimer's Disease & Brain Health, Eisai Inc., Nutley, NJ, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yan Hu
- Alzheimer's Disease & Brain Health, Eisai Inc., Nutley, NJ, USA
| | - Min Cho
- Alzheimer's Disease & Brain Health, Eisai Inc., Nutley, NJ, USA
| | - Andrea Vergallo
- Alzheimer's Disease & Brain Health, Eisai Inc., Nutley, NJ, USA
| |
Collapse
|
9
|
Liang B, Alosco ML, Armañanzas R, Martin BM, Tripodis Y, Stern RA, Prichep LS. Long-Term Changes in Brain Connectivity Reflected in Quantitative Electrophysiology of Symptomatic Former National Football League Players. J Neurotrauma 2023; 40:309-317. [PMID: 36324216 PMCID: PMC9902050 DOI: 10.1089/neu.2022.0029] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure to repetitive head impacts (RHI) has been associated with long-term disturbances in cognition, mood, and neurobehavioral dysregulation, and reflected in neuroimaging. Distinct patterns of changes in quantitative features of the brain electrical activity (quantitative electroencephalogram [qEEG]) have been demonstrated to be sensitive to brain changes seen in neurodegenerative disorders and in traumatic brain injuries (TBI). While these qEEG biomarkers are highly sensitive at time of injury, the long-term effects of exposure to RHI on brain electrical activity are relatively unexplored. Ten minutes of eyes closed resting EEG data were collected from a frontal and frontotemporal electrode montage (BrainScope Food and Drug Administration-cleared EEG acquisition device), as well as assessments of neuropsychiatric function and age of first exposure (AFE) to American football. A machine learning methodology was used to derive a qEEG-based algorithm to discriminate former National Football League (NFL) players (n = 87, 55.40 ± 7.98 years old) from same-age men without history of RHI (n = 68, 54.94 ± 7.63 years old), and a second algorithm to discriminate former players with AFE <12 years (n = 33) from AFE ≥12 years (n = 54). The algorithm separating NFL retirees from controls had a specificity = 80%, a sensitivity = 60%, and an area under curve (AUC) = 0.75. Within the NFL population, the algorithm separating AFE <12 from AFE ≥12 resulted in a sensitivity = 76%, a specificity = 52%, and an AUC = 0.72. The presence of a profile of EEG abnormalities in the NFL retirees and in those with younger AFE includes features associated with neurodegeneration and the disruption of neuronal transmission between regions. These results support the long-term consequences of RHI and the potential of EEG as a biomarker of persistent changes in brain function.
Collapse
Affiliation(s)
- Bo Liang
- BrainScope Company, Chevy Chase, Maryland, USA
| | - Michael L. Alosco
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Ruben Armañanzas
- BrainScope Company, Chevy Chase, Maryland, USA
- Institute for Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain
- Tecnun School of Engineering, Universidad de Navarra, Donostia-San Sebastian, Spain
| | - Brett M. Martin
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
| | - Yorghos Tripodis
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University, Boston, Massachusetts, USA
| | - Robert A. Stern
- Boston University CTE Center, Boston University, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
- Departments of Neurosurgery and Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | | |
Collapse
|
10
|
Caravaglios G, Muscoso EG, Blandino V, Di Maria G, Gangitano M, Graziano F, Guajana F, Piccoli T. EEG Resting-State Functional Networks in Amnestic Mild Cognitive Impairment. Clin EEG Neurosci 2023; 54:36-50. [PMID: 35758261 DOI: 10.1177/15500594221110036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background. Alzheimer's cognitive-behavioral syndrome is the result of impaired connectivity between nerve cells, due to misfolded proteins, which accumulate and disrupt specific brain networks. Electroencephalography, because of its excellent temporal resolution, is an optimal approach for assessing the communication between functionally related brain regions. Objective. To detect and compare EEG resting-state networks (RSNs) in patients with amnesic mild cognitive impairment (aMCI), and healthy elderly (HE). Methods. We recruited 125 aMCI patients and 70 healthy elderly subjects. One hundred and twenty seconds of artifact-free EEG data were selected and compared between patients with aMCI and HE. We applied standard low-resolution brain electromagnetic tomography (sLORETA)-independent component analysis (ICA) to assess resting-state networks. Each network consisted of a set of images, one for each frequency (delta, theta, alpha1/2, beta1/2). Results. The functional ICA analysis revealed 17 networks common to groups. The statistical procedure demonstrated that aMCI used some networks differently than HE. The most relevant findings were as follows. Amnesic-MCI had: i) increased delta/beta activity in the superior frontal gyrus and decreased alpha1 activity in the paracentral lobule (ie, default mode network); ii) greater delta/theta/alpha/beta in the superior frontal gyrus (i.e, attention network); iii) lower alpha in the left superior parietal lobe, as well as a lower delta/theta and beta, respectively in post-central, and in superior frontal gyrus(ie, attention network). Conclusions. Our study confirms sLORETA-ICA method is effective in detecting functional resting-state networks, as well as between-groups connectivity differences. The findings provide support to the Alzheimer's network disconnection hypothesis.
Collapse
Affiliation(s)
- G Caravaglios
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - E G Muscoso
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - V Blandino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), 18998University of Palermo, Palermo, Italy
| | - G Di Maria
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - M Gangitano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), 18998University of Palermo, Palermo, Italy
| | - F Graziano
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - F Guajana
- U.O.C. Neurologia, A.O. Cannizzaro per l'emergenza, Catania, Italy
| | - T Piccoli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), 18998University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Ponomareva NV, Andreeva TV, Protasova M, Konovalov RN, Krotenkova MV, Kolesnikova EP, Malina DD, Kanavets EV, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Genetic association of apolipoprotein E genotype with EEG alpha rhythm slowing and functional brain network alterations during normal aging. Front Neurosci 2022; 16:931173. [PMID: 35979332 PMCID: PMC9376365 DOI: 10.3389/fnins.2022.931173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
The ε4 allele of the apolipoprotein E (APOE4+) genotype is a major genetic risk factor for Alzheimer’s disease (AD), but the mechanisms underlying its influence remain incompletely understood. The study aimed to investigate the possible effect of the APOE genotype on spontaneous electroencephalogram (EEG) alpha characteristics, resting-state functional MRI (fMRI) connectivity (rsFC) in large brain networks and the interrelation of alpha rhythm and rsFC characteristics in non-demented adults during aging. We examined the EEG alpha subband’s relative power, individual alpha peak frequency (IAPF), and fMRI rsFC in non-demented volunteers (age range 26–79 years) stratified by the APOE genotype. The presence of the APOE4+ genotype was associated with lower IAPF and lower relative power of the 11–13 Hz alpha subbands. The age related decrease in EEG IAPF was more pronounced in the APOE4+ carriers than in the APOE4+ non-carriers (APOE4-). The APOE4+ carriers had a stronger fMRI positive rsFC of the interhemispheric regions of the frontoparietal, lateral visual and salience networks than the APOE4– individuals. In contrast, the negative rsFC in the network between the left hippocampus and the right posterior parietal cortex was reduced in the APOE4+ carriers compared to the non-carriers. Alpha rhythm slowing was associated with the dysfunction of hippocampal networks. Our results show that in adults without dementia APOE4+ genotype is associated with alpha rhythm slowing and that this slowing is age-dependent. Our data suggest predominant alterations of inhibitory processes in large-scale brain network of non-demented APOE4+ carriers. Moreover, dysfunction of large-scale hippocampal network can influence APOE-related alpha rhythm vulnerability.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- *Correspondence: Natalya V. Ponomareva,
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Maria Protasova
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | | | | | | | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
- Brudnick Neuropsychiatric Research Institute (BNRI), University of Massachusetts Medical School, Worcester, MA, United States
- Evgeny I. Rogaev,
| |
Collapse
|
12
|
Ebrahimzadeh E, Saharkhiz S, Rajabion L, Oskouei HB, Seraji M, Fayaz F, Saliminia S, Sadjadi SM, Soltanian-Zadeh H. Simultaneous electroencephalography-functional magnetic resonance imaging for assessment of human brain function. Front Syst Neurosci 2022; 16:934266. [PMID: 35966000 PMCID: PMC9371554 DOI: 10.3389/fnsys.2022.934266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Electroencephalography (EEG) and functional Magnetic Resonance Imaging (MRI) have long been used as tools to examine brain activity. Since both methods are very sensitive to changes of synaptic activity, simultaneous recording of EEG and fMRI can provide both high temporal and spatial resolution. Therefore, the two modalities are now integrated into a hybrid tool, EEG-fMRI, which encapsulates the useful properties of the two. Among other benefits, EEG-fMRI can contribute to a better understanding of brain connectivity and networks. This review lays its focus on the methodologies applied in performing EEG-fMRI studies, namely techniques used for the recording of EEG inside the scanner, artifact removal, and statistical analysis of the fMRI signal. We will investigate simultaneous resting-state and task-based EEG-fMRI studies and discuss their clinical and technological perspectives. Moreover, it is established that the brain regions affected by a task-based neural activity might not be limited to the regions in which they have been initiated. Advanced methods can help reveal the regions responsible for or affected by a developed neural network. Therefore, we have also looked into studies related to characterization of structure and dynamics of brain networks. The reviewed literature suggests that EEG-fMRI can provide valuable complementary information about brain neural networks and functions.
Collapse
Affiliation(s)
- Elias Ebrahimzadeh
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- *Correspondence: Elias Ebrahimzadeh, ,
| | - Saber Saharkhiz
- Department of Pharmacology-Physiology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Canada
| | - Lila Rajabion
- School of Graduate Studies, State University of New York Empire State College, Manhattan, NY, United States
| | | | - Masoud Seraji
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Farahnaz Fayaz
- Department of Biomedical Engineering, School of Electrical Engineering, Payame Noor University of North Tehran, Tehran, Iran
| | - Sarah Saliminia
- Department of Biomedical Engineering, School of Electrical Engineering, Payame Noor University of North Tehran, Tehran, Iran
| | - Seyyed Mostafa Sadjadi
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Soltanian-Zadeh
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
13
|
Schroder HS, Iturra-Mena AM, Breiger M, Linton SR, Robble MA, Kangas B, Bergman J, Nickels S, Vitaliano G, Der-Avakian A, Barnes SA, Carlezon WA, Pizzagalli DA. Error-related Alpha Suppression: Scalp Topography and (Lack of) Modulation by Modafinil. J Cogn Neurosci 2022; 34:864-876. [PMID: 35195725 DOI: 10.1162/jocn_a_01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Errors in performance trigger cognitive and neural changes that are implemented to adaptively adjust to fluctuating demands. Error-related alpha suppression (ERAS)-which refers to decreased power in the alpha frequency band after an incorrect response-is thought to reflect cognitive arousal after errors. Much of this work has been correlational, however, and there are no direct investigations into its pharmacological sensitivity. In Study 1 (n = 61), we evaluated the presence and scalp distribution of ERAS in a novel flanker task specifically developed for cross-species assessments. Using this same task in Study 2 (n = 26), which had a placebo-controlled within-subject design, we evaluated the sensitivity of ERAS to placebo (0 mg), low (100 mg), and high (200 mg) doses of modafinil, a wakefulness promoting agent. Consistent with previous work, ERAS was maximal at parieto-occipital recording sites in both studies. In Study 2, modafinil did not have strong effects on ERAS (a significant Accuracy × Dose interaction emerged, but drug-placebo differences did not reach statistical significance after correction for multiple comparisons and was absent after controlling for accuracy rate). ERAS was correlated with accuracy rates in both studies. Thus, modafinil did not impact ERAS as hypothesized, and findings indicate ERAS may reflect an orienting response to infrequent events.
Collapse
Affiliation(s)
- Hans S Schroder
- McLean Hospital/Harvard Medical School, Boston, MA.,University of Michigan Medical School
| | | | | | | | | | - Brian Kangas
- McLean Hospital/Harvard Medical School, Boston, MA
| | - Jack Bergman
- McLean Hospital/Harvard Medical School, Boston, MA
| | | | | | | | | | | | | |
Collapse
|
14
|
Medina R, Bouhaben J, de Ramón I, Cuesta P, Antón-Toro L, Pacios J, Quintero J, Quiroga AR, Maestú F. Alfa band power increases in posterior brain regions in attention deficit hyperactivity disorder after digital cognitive stimulation treatment. Brain Commun 2022; 4:fcac038. [PMID: 35402910 PMCID: PMC8984701 DOI: 10.1093/braincomms/fcac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/11/2021] [Accepted: 02/15/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The changes triggered by pharmacological treatments in resting-state alpha-band (8–14 Hz) oscillations have been widely studied in attention deficit hyperactivity disorder. However, to date, there has been no evidence regarding the possible changes in cognitive stimulation treatments on these oscillations. This paper sets out to verify whether cognitive stimulation treatments based on progressive increases in cognitive load can be effective in triggering changes in alpha-band power in attention deficit hyperactivity disorder. With this objective, we compared a cognitive stimulation treatment (n = 13) to placebo treatment (n = 13) for 12 weeks (36 sessions of 15 min) in child patients (8–11 years old) with attention deficit hyperactivity disorder. Two magnetoencephalographic recordings were acquired for all the participants. In order to extract the areas with changes in alpha power between both magnetoencephalographic recordings, the differences in the power ratio (pre/post-condition) were calculated using an Analysis of Covariance test adjusted for the age variable. The results show an increase in the post-treatment power ratio in the experimental group versus the placebo group (P < 0.01) in posterior regions and the default mode network. In addition, these alpha changes were related to measures of attention, working memory and cognitive flexibility. The results seem to indicate that cognitive stimulation treatment based on progressive increases in cognitive load triggers alpha-band power changes in child attention deficit hyperactivity disorder patients in the direction of their peers without this disorder.
Collapse
Affiliation(s)
| | | | - Ignacio de Ramón
- Sincrolab, Ltd., Madrid 28033, Spain
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid, Madrid 28660, Spain
| | - Pablo Cuesta
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid, Madrid 28660, Spain
| | - Luis Antón-Toro
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid, Madrid 28660, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid 28223, Spain
| | - Javier Pacios
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid, Madrid 28660, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid 28223, Spain
| | - Javier Quintero
- Department of Psychiatry, University Hospital Infanta Leonor, Madrid 28031, Spain
| | | | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology (CTB), Technical University of Madrid, Madrid 28660, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid 28223, Spain
| |
Collapse
|
15
|
Um YH, Wang SM, Kang DW, Kim NY, Lim HK. Subcortical and Cerebellar Neural Correlates of Prodromal Alzheimer’s Disease with Prolonged Sleep Latency. J Alzheimers Dis 2022; 86:565-578. [PMID: 35068468 PMCID: PMC9028620 DOI: 10.3233/jad-215460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Despite the important associations among sleep, Alzheimer’s disease (AD), subcortical structures, and the cerebellum, structural and functional magnetic resonance imaging (MRI) with regard to these regions and sleep on patients in AD trajectory are scarce. Objective: This study aimed to evaluate the influence of prolonged sleep latency on the structural and functional alterations in the subcortical and cerebellar neural correlates in amyloid-β positive amnestic mild cognitive impairment patients (Aβ+aMCI). Methods: A total of 60 patients with aMCI who were identified as amyloid positive ([18F] flutemetamol+) were recruited in the study, 24 patients with normal sleep latency (aMCI-n) and 36 patients prolonged sleep latency (aMCI-p). Cortical thickness and volumes between the two groups were compared. Volumetric analyses were implemented on the brainstem, thalamus, and hippocampus. Subcortical and cerebellar resting state functional connectivity (FC) differences were measured between the both groups through seed-to-voxel analysis. Additionally, group x Aβ interactive effects on FC values were tested with a general linear model. Result: There was a significantly decreased brainstem volume in aMCI-p subjects. We observed a significant reduction of the locus coeruleus (LC) FC with frontal, temporal, insular cortices, hippocampus, and left thalamic FC with occipital cortex. Moreover, the LC FC with occipital cortex and left hippocampal FC with frontal cortex were increased in aMCI-p subjects. In addition, there was a statistically significant group by regional standardized uptake value ratio interactions discovered in cerebro-cerebellar networks. Conclusion: The aforementioned findings suggest that prolonged sleep latency may be a detrimental factor in compromising structural and functional correlates of subcortical structures and the cerebellum, which may accelerate AD pathophysiology.
Collapse
Affiliation(s)
- Yoo Hyun Um
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nak-Young Kim
- Department of Psychiatry, Keyo Hospital, Keyo Medical Foundation, Uiwang, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
16
|
Fakhraei L, Francoeur M, Balasubramani PP, Tang T, Hulyalkar S, Buscher N, Mishra J, Ramanathan DS. Electrophysiological Correlates of Rodent Default-Mode Network Suppression Revealed by Large-Scale Local Field Potential Recordings. Cereb Cortex Commun 2021; 2:tgab034. [PMID: 34296178 PMCID: PMC8166125 DOI: 10.1093/texcom/tgab034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
The default-mode network (DMN) in humans consists of a set of brain regions that, as measured with functional magnetic resonance imaging (fMRI), show both intrinsic correlations with each other and suppression during externally oriented tasks. Resting-state fMRI studies have previously identified similar patterns of intrinsic correlations in overlapping brain regions in rodents (A29C/posterior cingulate cortex, parietal cortex, and medial temporal lobe structures). However, due to challenges with performing rodent behavior in an MRI machine, it is still unclear whether activity in rodent DMN regions are suppressed during externally oriented visual tasks. Using distributed local field potential measurements in rats, we have discovered that activity in DMN brain regions noted above show task-related suppression during an externally oriented visual task at alpha and low beta-frequencies. Interestingly, this suppression (particularly in posterior cingulate cortex) was linked with improved performance on the task. Using electroencephalography recordings from a similar task in humans, we identified a similar suppression of activity in posterior cingulate cortex at alpha/low beta-frequencies. Thus, we have identified a common electrophysiological marker of DMN suppression in both rodents and humans. This observation paves the way for future studies using rodents to probe circuit-level functioning of DMN function. SIGNIFICANCE Here we show that alpha/beta frequency oscillations in rats show key features of DMN activity, including intrinsic correlations between DMN brain regions, task-related suppression, and interference with attention/decision-making. We found similar task-related suppression at alpha/low beta-frequencies of DMN activity in humans.
Collapse
Affiliation(s)
- Leila Fakhraei
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Miranda Francoeur
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | | | - Tianzhi Tang
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Sidharth Hulyalkar
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Nathalie Buscher
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Jyoti Mishra
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Dhakshin S Ramanathan
- Mental Health Service, VA San Diego Healthcare System., La Jolla, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Michels L, Riese F, Meyer R, Kälin AM, Leh SE, Unschuld PG, Luechinger R, Hock C, O'Gorman R, Kollias S, Gietl A. EEG-fMRI Signal Coupling Is Modulated in Subjects With Mild Cognitive Impairment and Amyloid Deposition. Front Aging Neurosci 2021; 13:631172. [PMID: 33967737 PMCID: PMC8104007 DOI: 10.3389/fnagi.2021.631172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cognitive impairment indicates disturbed brain physiology which can be due to various mechanisms including Alzheimer's pathology. Combined functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) recordings (EEG-fMRI) can assess the interplay between complementary measures of brain activity and EEG changes to be localized to specific brain regions. We used a two-step approach, where we first examined changes related to a syndrome of mild cognitive impairment irrespective of pathology and then studied the specific impact of amyloid pathology. After detailed clinical and neuropsychological characterization as well as a positron emission tomography (PET) scans with the tracer 11-[C]-Pittsburgh Compound B to estimate cerebral amyloid deposition, 14 subjects with mild cognitive impairment (MCI) (mean age 75.6 SD: 8.9) according to standard criteria and 21 cognitively healthy controls (HCS) (mean age 71.8 SD: 4.2) were assessed with EEG-fMRI. Thalamo-cortical alpha-fMRI signal coupling was only observed in HCS. Additional EEG-fMRI signal coupling differences between HCS and MCI were observed in parts of the default mode network, salience network, fronto-parietal network, and thalamus. Individuals with significant cerebral amyloid deposition (amyloid-positive MCI and HCS combined compared to amyloid-negative HCS) displayed abnormal EEG-fMRI signal coupling in visual, fronto-parietal regions but also in the parahippocampus, brain stem, and cerebellum. This finding was paralleled by stronger absolute fMRI signal in the parahippocampus and weaker absolute fMRI signal in the inferior frontal gyrus in amyloid-positive subjects. We conclude that the thalamocortical coupling in the alpha band in HCS more closely reflects previous findings observed in younger adults, while in MCI there is a clearly aberrant coupling in several networks dominated by an anticorrelation in the posterior cingulate cortex. While these findings may broadly indicate physiological changes in MCI, amyloid pathology was specifically associated with abnormal fMRI signal responses and disrupted coupling between brain oscillations and fMRI signal responses, which especially involve core regions of memory: the hippocampus, para-hippocampus, and lateral prefrontal cortex.
Collapse
Affiliation(s)
- Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Florian Riese
- Department of Geriatric Psychiatry, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,University Research Priority Programs (URPP) ≪Dynamics of Healthy Aging≫, University of Zurich, Zurich, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Andrea M Kälin
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sandra E Leh
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Paul G Unschuld
- Department of Geriatric Psychiatry, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Geriatric Psychiatry, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Roger Luechinger
- Institute of Biomedical Engineering, University and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune AG, Schlieren, Switzerland
| | - Ruth O'Gorman
- Center for Magnetic Resonance Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Anton Gietl
- Department of Geriatric Psychiatry, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Chiarelli AM, Perpetuini D, Croce P, Filippini C, Cardone D, Rotunno L, Anzoletti N, Zito M, Zappasodi F, Merla A. Evidence of Neurovascular Un-Coupling in Mild Alzheimer's Disease through Multimodal EEG-fNIRS and Multivariate Analysis of Resting-State Data. Biomedicines 2021; 9:biomedicines9040337. [PMID: 33810484 PMCID: PMC8066873 DOI: 10.3390/biomedicines9040337] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is associated with modifications in cerebral blood perfusion and autoregulation. Hence, neurovascular coupling (NC) alteration could become a biomarker of the disease. NC might be assessed in clinical settings through multimodal electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Multimodal EEG-fNIRS was recorded at rest in an ambulatory setting to assess NC and to evaluate the sensitivity and specificity of the methodology to AD. Global NC was evaluated with a general linear model (GLM) framework by regressing whole-head EEG power envelopes in three frequency bands (theta, alpha and beta) with average fNIRS oxy- and deoxy-hemoglobin concentration changes in the frontal and prefrontal cortices. NC was lower in AD compared to healthy controls (HC) with significant differences in the linkage of theta and alpha bands with oxy- and deoxy-hemoglobin, respectively (p = 0.028 and p = 0.020). Importantly, standalone EEG and fNIRS metrics did not highlight differences between AD and HC. Furthermore, a multivariate data-driven analysis of NC between the three frequency bands and the two hemoglobin species delivered a cross-validated classification performance of AD and HC with an Area Under the Curve, AUC = 0.905 (p = 2.17 × 10−5). The findings demonstrate that EEG-fNIRS may indeed represent a powerful ecological tool for clinical evaluation of NC and early identification of AD.
Collapse
Affiliation(s)
- Antonio M. Chiarelli
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (D.P.); (P.C.); (C.F.); (D.C.); (F.Z.); (A.M.)
- Correspondence: ; Tel.: +39-087-1355-6954
| | - David Perpetuini
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (D.P.); (P.C.); (C.F.); (D.C.); (F.Z.); (A.M.)
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (D.P.); (P.C.); (C.F.); (D.C.); (F.Z.); (A.M.)
| | - Chiara Filippini
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (D.P.); (P.C.); (C.F.); (D.C.); (F.Z.); (A.M.)
| | - Daniela Cardone
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (D.P.); (P.C.); (C.F.); (D.C.); (F.Z.); (A.M.)
| | - Ludovica Rotunno
- Department of Medicine and Science of Ageing, Faculty of Medicine, University G. d’Annunzio of Chieti-Pescara, Via Dei Vestini 31, 66100 Chieti, Italy; (L.R.); (N.A.); (M.Z.)
| | - Nelson Anzoletti
- Department of Medicine and Science of Ageing, Faculty of Medicine, University G. d’Annunzio of Chieti-Pescara, Via Dei Vestini 31, 66100 Chieti, Italy; (L.R.); (N.A.); (M.Z.)
| | - Michele Zito
- Department of Medicine and Science of Ageing, Faculty of Medicine, University G. d’Annunzio of Chieti-Pescara, Via Dei Vestini 31, 66100 Chieti, Italy; (L.R.); (N.A.); (M.Z.)
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (D.P.); (P.C.); (C.F.); (D.C.); (F.Z.); (A.M.)
| | - Arcangelo Merla
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Faculty of Medicine, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; (D.P.); (P.C.); (C.F.); (D.C.); (F.Z.); (A.M.)
| |
Collapse
|
19
|
Wang C, Kang M, Li Z, Li Y, Guan M, Zou Z, Wu M, Lou W, Xu J. Altered relation of resting-state alpha rhythm with blood oxygen level dependent signal in healthy aging: Evidence by EEG-fMRI fusion analysis. Clin Neurophysiol 2020; 131:2105-2114. [PMID: 32682238 DOI: 10.1016/j.clinph.2020.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/12/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The goal of this study is to explore the changes of spatial correlates of alpha rhythm in the aged adults. METHODS Electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data were simultaneously recorded from 27 young and 19 elderly adults at resting state with their eyes closed. Alpha rhythm power fluctuation was extracted from EEG signal of parietal-occipital region and was fused with fMRI data by correlating alpha rhythm with blood oxygen level dependent (BOLD) signal using general linear models. RESULTS For both young adults and the elderly, the regions correlated with alpha rhythm power were widely distributed in cortical and subcortical regions. However, compared to young adults, correlations between alpha rhythm and the activity of thalamus and frontal regions were significantly reduced in the elderly. In addition, an increased correlation with alpha rhythm was found in frontal, insula and cingulate gyrus regions in the elderly. CONCLUSIONS Changes in the roles of the above brain regions may be present in the generation or modulation of alpha rhythm due to age advancing. SIGNIFICANCE This study provides novel insight into the alteration of the spatial correlates of alpha rhythm in the elderly by using simultaneous EEG-fMRI data fusion analysis.
Collapse
Affiliation(s)
- Chao Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Mengfei Kang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Zhonglin Li
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yongli Li
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China; Department of Health Management, Henan Provincial People's Hospital, Zhengzhou, China
| | - Min Guan
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhi Zou
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Min Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; National Engineering Research Center for Healthcare Devices, Guangzhou, China
| | - Wutao Lou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; National Engineering Research Center for Healthcare Devices, Guangzhou, China.
| |
Collapse
|
20
|
Prawiroharjo P, Yamashita KI, Yamashita K, Togao O, Hiwatashi A, Yamasaki R, Kira JI. Disconnection of the right superior parietal lobule from the precuneus is associated with memory impairment in oldest-old Alzheimer's disease patients. Heliyon 2020; 6:e04516. [PMID: 32728647 PMCID: PMC7381702 DOI: 10.1016/j.heliyon.2020.e04516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/26/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022] Open
Abstract
There is a wide range of onset age in Alzheimer's disease (AD). Emerging evidence indicates variation of AD manifestations in oldest-old AD (OOAD); however, the pattern of cognitive dysfunctions remains unclear. We aimed to reveal cognitive performance characteristics and changes in brain functional connectivity in OOAD patients by a resting-state fMRI (rs-fMRI) study. We enrolled AD patients who had been referred to Kyushu University Hospital (KUH) or Sanno Hospital, and classified them into middle-old AD (MOAD) (65-79 years old) and OOAD (≥80 years old) according to the age of onset. Our subjects consisted of 19 OOAD, 17 MOAD, and 8 normal subjects. Cognitive performance was evaluated using Mini Mental State Examination-Japanese (MMSE-J) and Clinical Dementia Rating (CDR). rs-fMRI scanning and independent component analysis (ICA) were performed on Sanno Hospital patients and MOAD vs. OOAD patients were compared. The resulting significant regions were used as seeds for ROI-to-ROI analysis of the KUH dataset. Collectively, MMSE-J delayed recall sub-scores were significantly lower in OOAD patients compared with MOAD patients. ICA of the Sanno Hospital data indicated significant connectivity decrease in the default mode network (DMN) in the OOAD group compared with the MOAD group in the right superior parietal lobule (SPL). ROI-to-ROI analysis of the KUH dataset indicated significant disconnection in the OOAD group of the right SPL from the precuneus (p < 0.01). The functional connectivity from the right SPL to the precuneus was positively correlated with the MMSE-J delayed recall sub-score (p = 0.03) and negatively correlated with the CDR memory sub-scale (p = 0.04). These findings indicate that disconnection between the right SPL and the precuneus may contribute to worse memory capability in OOAD compared with MOAD.
Collapse
Affiliation(s)
- Pukovisa Prawiroharjo
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Ken-ichiro Yamashita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akio Hiwatashi
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Cakir Y. Hybrid modeling of alpha rhythm and the amplitude of low‐frequency fluctuations abnormalities in the thalamocortical region and basal ganglia in Alzheimer's disease. Eur J Neurosci 2020; 52:2944-2961. [DOI: 10.1111/ejn.14666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yuksel Cakir
- Department of Electronics and Communication Engineering Istanbul Technical University Istanbul Turkey
- ICube IMAGeS Strasbourg University Strasbourg France
| |
Collapse
|
22
|
Solis E, Hascup KN, Hascup ER. Alzheimer's Disease: The Link Between Amyloid-β and Neurovascular Dysfunction. J Alzheimers Dis 2020; 76:1179-1198. [PMID: 32597813 PMCID: PMC7483596 DOI: 10.3233/jad-200473] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While prevailing evidence supports that the amyloid cascade hypothesis is a key component of Alzheimer's disease (AD) pathology, many recent studies indicate that the vascular system is also a major contributor to disease progression. Vascular dysfunction and reduced cerebral blood flow (CBF) occur prior to the accumulation and aggregation of amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles. Although research has predominantly focused on the cellular processes involved with Aβ-mediated neurodegeneration, effects of Aβ on CBF and neurovascular coupling are becoming more evident. This review will describe AD vascular disturbances as they relate to Aβ, including chronic cerebral hypoperfusion, hypertension, altered neurovascular coupling, and deterioration of the blood-brain barrier. In addition, we will describe recent findings about the relationship between these vascular defects and Aβ accumulation with emphasis on in vivo studies utilizing rodent AD models.
Collapse
Affiliation(s)
- Ernesto Solis
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N. Hascup
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Department of Neurology, Neuroscience Institute, Center for Alzheimer’s Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
23
|
Bi XA, Cai R, Wang Y, Liu Y. Effective Diagnosis of Alzheimer's Disease via Multimodal Fusion Analysis Framework. Front Genet 2019; 10:976. [PMID: 31649738 PMCID: PMC6795747 DOI: 10.3389/fgene.2019.00976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/13/2019] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disease involving a variety of pathogenic factors, and the etiology detection of this disease has been a major concern of researchers. Neuroimaging is a basic and important means to explore the problem. It is the main current scientific research direction for combining neuroimaging with other modal data to dig deep into the potential information of AD through the complementarities among multiple data points. Machine learning methods possess great potentiality and have reached some achievements in this research area. A few studies have proposed some solutions to the effects of multimodal data fusion, however, the overall analytical framework for data fusion and fusion result analysis has thus far been ignored. In this paper, we first put forward a novel multimodal data fusion method, and further present a new machine learning framework of data fusion, classification, feature selection, and disease-causing factor extraction. The real dataset of 37 AD patients and 35 normal controls (NC) with functional magnetic resonance imaging (fMRI) and genetic data was used to verify the effectiveness of the framework, which was more accurate in classification and optimal feature extraction than other methods. Furthermore, we revealed disease-causing brain regions and genes, such as the olfactory cortex, insula, posterior cingulate gyrus, lingual gyrus, CNTNAP2, LRP1B, FRMD4A, and DAB1. The results show that the machine learning framework could effectively perform multimodal data fusion analysis, providing new insights and perspectives for the diagnosis of Alzheimer’s disease.
Collapse
Affiliation(s)
- Xia-An Bi
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China.,College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Ruipeng Cai
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China.,College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yang Wang
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China.,College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yingchao Liu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China.,College of Information Science and Engineering, Hunan Normal University, Changsha, China
| |
Collapse
|
24
|
Tait L, Stothart G, Coulthard E, Brown JT, Kazanina N, Goodfellow M. Network substrates of cognitive impairment in Alzheimer’s Disease. Clin Neurophysiol 2019; 130:1581-1595. [DOI: 10.1016/j.clinph.2019.05.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/26/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022]
|
25
|
Mele G, Cavaliere C, Alfano V, Orsini M, Salvatore M, Aiello M. Simultaneous EEG-fMRI for Functional Neurological Assessment. Front Neurol 2019; 10:848. [PMID: 31456735 PMCID: PMC6700249 DOI: 10.3389/fneur.2019.00848] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
The increasing incidence of neurodegenerative and psychiatric diseases requires increasingly sophisticated tools for their diagnosis and monitoring. Clinical assessment takes advantage of objective parameters extracted by electroencephalogram and magnetic resonance imaging (MRI) among others, to support clinical management of neurological diseases. The complementarity of these two tools can be now emphasized by the possibility of integrating the two technologies in a hybrid solution, allowing simultaneous acquisition of the two signals by the novel EEG-fMRI technology. This review will focus on simultaneous EEG-fMRI technology and related early studies, dealing about issues related to the acquisition and processing of simultaneous signals, and including critical discussion about clinical and technological perspectives.
Collapse
|
26
|
Chowdhury MEH, Khandakar A, Mullinger KJ, Al-Emadi N, Bowtell R. Simultaneous EEG-fMRI: Evaluating the Effect of the EEG Cap-Cabling Configuration on the Gradient Artifact. Front Neurosci 2019; 13:690. [PMID: 31354408 PMCID: PMC6635558 DOI: 10.3389/fnins.2019.00690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/18/2019] [Indexed: 01/11/2023] Open
Abstract
Electroencephalography (EEG) data recorded during simultaneous EEG-fMRI experiments are contaminated by large gradient artifacts (GA). The amplitude of the GA depends on the area of the wire loops formed by the EEG leads, as well as on the rate of switching of the magnetic field gradients, which are essential for MR imaging. Average artifact subtraction (AAS), the most commonly used method for GA correction, relies on the EEG amplifier having a large enough dynamic range to characterize the artifact voltages. Low-pass filtering (250 Hz cut-off) is generally used to attenuate the high-frequency voltage fluctuations of the GA, but even with this precaution channel saturation can occur, particularly during acquisition of high spatial resolution MRI data. Previous work has shown that the ribbon cable, used to connect the EEG cap and amplifier, makes a significant contribution to the GA, since the cable geometry produces large effective wire-loop areas. However, by appropriately connecting the wires of the ribbon cable to the EEG cap it should be possible to minimize the overall range and root mean square (RMS) amplitude of the GA by producing partial cancelation of the cap and cable contributions. Here by modifying the connections of the EEG cap to a 1 m ribbon cable we were able to reduce the range of the GA for a high-resolution coronal echo planar Imaging (EPI) acquisition by a factor of ∼ 1.6 and by a factor of ∼ 1.15 for a standard axial EPI acquisition. These changes could potentially be translated into a reduction in the required dynamic range, an increase in the EEG bandwidth or an increase in the achievable image resolution without saturation, all of which could be beneficially exploited in EEG-fMRI studies. The re-wiring could also prevent the system from saturating when small subject movements occur using the standard recording bandwidth.
Collapse
Affiliation(s)
- Muhammad E H Chowdhury
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Amith Khandakar
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom.,Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Nasser Al-Emadi
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
27
|
Evangelisti S, Pittau F, Testa C, Rizzo G, Gramegna LL, Ferri L, Coito A, Cortelli P, Calandra-Buonaura G, Bisquoli F, Bianchini C, Manners DN, Talozzi L, Tonon C, Lodi R, Tinuper P. L-Dopa Modulation of Brain Connectivity in Parkinson's Disease Patients: A Pilot EEG-fMRI Study. Front Neurosci 2019; 13:611. [PMID: 31258465 PMCID: PMC6587436 DOI: 10.3389/fnins.2019.00611] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/28/2019] [Indexed: 01/08/2023] Open
Abstract
Studies of functional neurosurgery and electroencephalography in Parkinson's disease have demonstrated abnormally synchronous activity between basal ganglia and motor cortex. Functional neuroimaging studies investigated brain dysfunction during motor task or resting state and primarily have shown altered patterns of activation and connectivity for motor areas. L-dopa administration relatively normalized these functional alterations. The aim of this pilot study was to examine the effects of L-dopa administration on functional connectivity in early-stage PD, as revealed by simultaneous recording of functional magnetic resonance imaging (fMRI) and electroencephalographic (EEG) data. Six patients with diagnosis of probable PD underwent EEG-fMRI acquisitions (1.5 T MR scanner and 64-channel cap) before and immediately after the intake of L-dopa. Regions of interest in the primary motor and sensorimotor regions were used for resting state fMRI analysis. From the EEG data, weighted partial directed coherence was computed in the inverse space after the removal of gradient and cardioballistic artifacts. fMRI results showed that the intake of L-dopa increased functional connectivity within the sensorimotor network, and between motor areas and both attention and default mode networks. EEG connectivity among regions of the motor network did not change significantly, while regions of the default mode network showed a strong tendency to increase their outflow toward the rest of the brain. This pilot study provided a first insight into the potentiality of simultaneous EEG-fMRI acquisitions in PD patients, showing for both techniques the analogous direction of increased connectivity after L-dopa intake, mainly involving motor, dorsal attention and default mode networks.
Collapse
Affiliation(s)
- Stefania Evangelisti
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Pittau
- EEG and Epilepsy Unit, Geneva University Hospitals, Geneva, Switzerland
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Giovanni Rizzo
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lorenzo Ferri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Ana Coito
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio Bisquoli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudio Bianchini
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - David Neil Manners
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Functional MR Unit, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paolo Tinuper
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
28
|
Liu J, Tao J, Liu W, Huang J, Xue X, Li M, Yang M, Zhu J, Lang C, Park J, Tu Y, Wilson G, Chen L, Kong J. Different modulation effects of Tai Chi Chuan and Baduanjin on resting-state functional connectivity of the default mode network in older adults. Soc Cogn Affect Neurosci 2019; 14:217-224. [PMID: 30690554 PMCID: PMC6374601 DOI: 10.1093/scan/nsz001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 11/14/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023] Open
Abstract
The default mode network (DMN) plays an important role in age-related cognitive decline. This study aims to explore the modulation effect of two mind-body interventions (Tai Chi Chuan and Baduanjin) on DMN in elderly individuals. Participants between 50 and 70 years old were recruited and randomized into a Tai Chi Chuan, Baduanjin or control group. The Wechsler Memory Scale-Chinese Revision and resting-state fMRI scans were administered at baseline and following 12 weeks of exercise. Seed-based resting-state functional connectivity (rsFC) was calculated. We found that (i) compared to the Baduanjin group, Tai Chi Chuan was significantly associated with increased rsFC between the medial prefrontal cortex (mPFC) and right putamen/caudate and (ii) compared to the control group, Tai Chi Chuan increased posterior cingulate cortex rsFC with the right putamen/caudate, while Baduanjin decreased rsFC between the mPFC and orbital prefrontal gyrus/putamen. Baseline mPFC rsFC with orbital prefrontal gyrus was negatively correlated with visual reproduction subscore. These results suggest that both Tai Chi Chuan and Baduanjin can modulate the DMN, but through different pathways. Elucidating the mechanisms underlying different mind-body interventions may shed light on the development of new methods to prevent age-related diseases as well as other disorders associated with disrupted DMN.
Collapse
Affiliation(s)
- Jiao Liu
- Fujian Rehabilitation Tech Co-innovation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jing Tao
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weilin Liu
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jia Huang
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiehua Xue
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ming Li
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Mingge Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jingfang Zhu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yiheng Tu
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lidian Chen
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
29
|
Ning YZ, Wu FZ, Xue S, Yin DQ, Zhu H, Liu J, Jia HX. Enhanced functional connectivity of the default mode network (DMN) in patients with spleen deficiency syndrome: A resting-state fMRI study. Medicine (Baltimore) 2019; 98:e14372. [PMID: 30702629 PMCID: PMC6380821 DOI: 10.1097/md.0000000000014372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous studies had investigated the biological basis of spleen deficiency syndrome on gastrointestinal dysfunctions. However, little was known about neuropsychological mechanism of spleen deficiency syndrome. The default model network (DMN) plays an important role in cognitive processing. Our aim is to investigate the change of neuropsychological tests and DMN in patients with spleen deficiency syndrome.Sixteen patients and 12 healthy subjects underwent functional magnetic resonance imaging examination, and 15 patients with spleen deficiency syndrome and 6 healthy subjects take part in the two neuropsychological tests.Compared with healthy subjects, patients with spleen deficiency syndrome revealed significantly increased functional connectivity within DMN, and significantly higher in the scores of 2-FT (P = .002) and 3-FT (P = .014).Our findings suggest that patients with spleen deficiency syndrome are associated with abnormal functional connectivity of DMN and part of neuropsychological tests, which provide new evidence in neuroimaging to support the notion of TCM that the spleen stores Yi and domains thoughts.
Collapse
Affiliation(s)
- Yan-zhe Ning
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University
- Advanced Innovation Center for Human Brain Protection, Capital Medical University
| | | | - Song Xue
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Dong-qing Yin
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University
- Advanced Innovation Center for Human Brain Protection, Capital Medical University
| | - Hong Zhu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University
- Advanced Innovation Center for Human Brain Protection, Capital Medical University
| | - Jia Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Hong-xiao Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University
- Advanced Innovation Center for Human Brain Protection, Capital Medical University
- Beijing University of Chinese Medicine
| |
Collapse
|
30
|
Effects of the Phantom Shape on the Gradient Artefact of Electroencephalography (EEG) Data in Simultaneous EEG–fMRI. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electroencephalography (EEG) signals greatly suffer from gradient artefacts (GAs) due to the time-varying field gradients in the magnetic resonance (MR) scanner during the simultaneous acquisition of EEG and functional magnetic resonance imaging (fMRI) data. The GAs are the principal contributors of artefacts while recording EEG inside an MR scanner, and most of them come from the interaction of the EEG cap and the subject’s head. Many researchers have been using a spherical phantom to characterize the GA in EEG data in combined EEG–fMRI studies. In this study, we investigated how the phantom shape could affect the characterization of the GA. EEG data were recorded with a spherical phantom, a head-shaped phantom, and six human subjects, individually, during the execution of customized and standard echo-planar imaging (EPI) sequences. The spatial potential maps of the root-mean-square (RMS) voltage of the GA over EEG channels for the trials with a head-shaped phantom closely mimicked those related to the human head rather than those obtained for the spherical phantom. This was confirmed by measuring the average similarity index (0.85/0.68). Moreover, a paired t-test showed that the head-shaped phantom’s and the spherical phantom’s data were significantly different (p < 0.005) from the subjects’ data, whereas the difference between the head-shaped phantom’s and the spherical phantom’s data was not significant (p = 0.07). The results of this study strongly suggest that a head-shaped phantom should be used for GA characterization studies in concurrent EEG–fMRI.
Collapse
|