1
|
Speechley EM, Ashton BJ, Foo YZ, Simmons LW, Ridley AR. Meta-analyses reveal support for the Social Intelligence Hypothesis. Biol Rev Camb Philos Soc 2024; 99:1889-1908. [PMID: 38855980 DOI: 10.1111/brv.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
The Social Intelligence Hypothesis (SIH) is one of the leading explanations for the evolution of cognition. Since its inception a vast body of literature investigating the predictions of the SIH has accumulated, using a variety of methodologies and species. However, the generalisability of the hypothesis remains unclear. To gain an understanding of the robustness of the SIH as an explanation for the evolution of cognition, we systematically searched the literature for studies investigating the predictions of the SIH. Accordingly, we compiled 103 studies with 584 effect sizes from 17 taxonomic orders. We present the results of four meta-analyses which reveal support for the SIH across interspecific, intraspecific and developmental studies. However, effect sizes did not differ significantly between the cognitive or sociality metrics used, taxonomy or testing conditions. Thus, support for the SIH is similar across studies using neuroanatomy and cognitive performance, those using broad categories of sociality, group size and social interactions, across taxonomic groups, and for tests conducted in captivity or the wild. Overall, our meta-analyses support the SIH as an evolutionary and developmental explanation for cognitive variation.
Collapse
Affiliation(s)
- Elizabeth M Speechley
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Benjamin J Ashton
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- School of Natural Sciences, Macquarie University, 205b Culloden Road, Sydney, NSW, 2109, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Amanda R Ridley
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
2
|
Sun PC, Shen HW. The Effect of Home- and Community-Based Services on Social Engagement. J Appl Gerontol 2024; 43:242-250. [PMID: 37914279 DOI: 10.1177/07334648231205386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Objectives: Home- and community-based services (HCBS) help older adults to remain active in community settings. However, it is not known if there is a causal relationship between HCBS and social engagement. Methods: We used data from the 2010 and 2012 Health and Retirement Study and measured the effect of HCBS on social engagement via nearest-neighbor Mahalanobis matching, optimal pair matching, genetic matching, and optimal full matching. Results: Genetic matching showed that the odds of social engagement for participants who received at least one HCBS (congregate meal, home-delivered meal, transportation service, case management, homemaker or housekeeping services, or caregiver services) in the prior two years was 1.07 times more likely than participants who have not received any HCBS (robust SE = .030, p = .040). Discussion: HCBS may remove barriers to social engagement through increasing older adults' personal resources and personal networks.
Collapse
Affiliation(s)
- Peter C Sun
- Brown School, Washington University in St. Louis, St Louis, MO, USA
| | - Huei-Wern Shen
- Department of Social Work, College of Health and Public Service, University of North Texas, Denton, TX, USA
| |
Collapse
|
3
|
Lang B, Kahnau P, Hohlbaum K, Mieske P, Andresen NP, Boon MN, Thöne-Reineke C, Lewejohann L, Diederich K. Challenges and advanced concepts for the assessment of learning and memory function in mice. Front Behav Neurosci 2023; 17:1230082. [PMID: 37809039 PMCID: PMC10551171 DOI: 10.3389/fnbeh.2023.1230082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The mechanisms underlying the formation and retrieval of memories are still an active area of research and discussion. Manifold models have been proposed and refined over the years, with most assuming a dichotomy between memory processes involving non-conscious and conscious mechanisms. Despite our incomplete understanding of the underlying mechanisms, tests of memory and learning count among the most performed behavioral experiments. Here, we will discuss available protocols for testing learning and memory using the example of the most prevalent animal species in research, the laboratory mouse. A wide range of protocols has been developed in mice to test, e.g., object recognition, spatial learning, procedural memory, sequential problem solving, operant- and fear conditioning, and social recognition. Those assays are carried out with individual subjects in apparatuses such as arenas and mazes, which allow for a high degree of standardization across laboratories and straightforward data interpretation but are not without caveats and limitations. In animal research, there is growing concern about the translatability of study results and animal welfare, leading to novel approaches beyond established protocols. Here, we present some of the more recent developments and more advanced concepts in learning and memory testing, such as multi-step sequential lockboxes, assays involving groups of animals, as well as home cage-based assays supported by automated tracking solutions; and weight their potential and limitations against those of established paradigms. Shifting the focus of learning tests from the classical experimental chamber to settings which are more natural for rodents comes with a new set of challenges for behavioral researchers, but also offers the opportunity to understand memory formation and retrieval in a more conclusive way than has been attainable with conventional test protocols. We predict and embrace an increase in studies relying on methods involving a higher degree of automatization, more naturalistic- and home cage-based experimental setting as well as more integrated learning tasks in the future. We are confident these trends are suited to alleviate the burden on animal subjects and improve study designs in memory research.
Collapse
Affiliation(s)
- Benjamin Lang
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Pia Kahnau
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Paul Mieske
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Niek P. Andresen
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Computer Vision and Remote Sensing, Technical University Berlin, Berlin, Germany
| | - Marcus N. Boon
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Modeling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
| | - Christa Thöne-Reineke
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Lars Lewejohann
- Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Institute for Animal Welfare, Free University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kai Diederich
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
4
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Bozkurt S, Lannin NA, Mychasiuk R, Semple BD. Environmental modifications to rehabilitate social behavior deficits after acquired brain injury: What is the evidence? Neurosci Biobehav Rev 2023; 152:105278. [PMID: 37295762 DOI: 10.1016/j.neubiorev.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/22/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Social behavior deficits are a common, debilitating consequence of traumatic brain injury and stroke, particularly when sustained during childhood. Numerous factors influence the manifestation of social problems after acquired brain injuries, raising the question of whether environmental manipulations can minimize or prevent such deficits. Here, we examine both clinical and preclinical evidence addressing this question, with a particular focus on environmental enrichment paradigms and differing housing conditions. We aimed to understand whether environmental manipulations can ameliorate injury-induced social behavior deficits. In summary, promising data from experimental models supports a beneficial role of environmental enrichment on social behavior. However, limited studies have considered social outcomes in the chronic setting, and few studies have addressed the social context specifically as an important component of the post-injury environment. Clinically, limited high-caliber evidence supports the use of specific interventions for social deficits after acquired brain injuries. An improved understanding of how the post-injury environment interacts with the injured brain, particularly during development, is needed to validate the implementation of rehabilitative interventions that involve manipulating an individuals' environment.
Collapse
Affiliation(s)
- Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Natasha A Lannin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; School of Allied Health (Occupational Therapy), La Trobe University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Coleman ME, Roessler MEH, Peng S, Roth AR, Risacher SL, Saykine AJ, Apostolova LG, Perry BL. Social enrichment on the job: Complex work with people improves episodic memory, promotes brain reserve, and reduces the risk of dementia. Alzheimers Dement 2023; 19:2655-2665. [PMID: 37037592 PMCID: PMC10272079 DOI: 10.1002/alz.13035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 04/12/2023]
Abstract
Individuals with more complex jobs experience better cognitive function in old age and a lower risk of dementia, yet complexity has multiple dimensions. Drawing on the Social Networks in Alzheimer Disease study, we examine the association between occupational complexity and cognition in a sample of older adults (N = 355). A standard deviation (SD) increase in complex work with people is associated with a 9% to 12% reduction in the probability of mild cognitive impairment or dementia, a 0.14-0.19 SD increase in episodic memory, and a 0.18-0.25 SD increase in brain reserve, defined as the gap (residual) between global cognitive function and magnetic resonance imaging (MRI) indicators of brain atrophy. In contrast, complexity with data or things is rarely associated with cognitive outcomes. We discuss the clinical and methodological implications of these findings, including the need to complement data-centered activities (e.g., Sudoku puzzles) with person-centered interventions that increase social complexity.
Collapse
Affiliation(s)
- Max E. Coleman
- Department of Sociology, University of Utah, Salt Lake City, Utah, USA
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
| | - Meghan E. H. Roessler
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
- Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA
| | - Siyun Peng
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
| | - Adam R. Roth
- Department of Sociology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Shannon L. Risacher
- Stark Neurosciences Research Institute, Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J. Saykine
- Stark Neurosciences Research Institute, Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Departments of Neurology, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Liana G. Apostolova
- Stark Neurosciences Research Institute, Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Departments of Neurology, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brea L. Perry
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
7
|
Grothe J, Röhr S, Luppa M, Pabst A, Kleineidam L, Heser K, Fuchs A, Pentzek M, Oey A, Wiese B, Lühmann D, van den Bussche H, Weyerer S, Werle J, Weeg D, Bickel H, Scherer M, König HH, Hajek A, Wagner M, Riedel-Heller SG. Social Isolation and Incident Dementia in the Oldest-Old-A Competing Risk Analysis. Front Psychiatry 2022; 13:834438. [PMID: 35757202 PMCID: PMC9226337 DOI: 10.3389/fpsyt.2022.834438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose Social isolation is considered a risk factor for dementia. However, less is known about social isolation and dementia with respect to competing risk of death, particularly in the oldest-old, who are at highest risk for social isolation, dementia and mortality. Therefore, we aimed to examine these associations in a sample of oldest-old individuals. Methods Analyses were based on follow-up (FU) 5-9 of the longitudinal German study AgeCoDe/AgeQualiDe. Social isolation was assessed using the short form of the Lubben Social Network Scale (LSNS-6), with a score ≤ 12 indicating social isolation. Structured interviews were used to identify dementia cases. Competing risk analysis based on the Fine-Gray model was conducted to test the association between social isolation and incident dementia. Results Excluding participants with prevalent dementia, n = 1,161 individuals were included. Their mean age was 86.6 (SD = 3.1) years and 67.0% were female. The prevalence of social isolation was 34.7% at FU 5, 9.7% developed dementia and 36.0% died during a mean FU time of 4.3 (SD = 0.4) years. Adjusting for covariates and cumulative mortality risk, social isolation was not significantly associated with incident dementia; neither in the total sample (sHR: 1.07, 95%CI 0.65-1.76, p = 0.80), nor if stratified by sex (men: sHR: 0.71, 95%CI 0.28-1.83, p = 0.48; women: sHR: 1.39, 95%CI 0.77-2.51, p = 0.27). Conclusion In contrast to the findings of previous studies, we did not find an association between social isolation and incident dementia in the oldest-old. However, our analysis took into account the competing risk of death and the FU period was rather short. Future studies, especially with longer FU periods and more comprehensive assessment of qualitative social network characteristics (e.g., loneliness and satisfaction with social relationships) may be useful for clarification.
Collapse
Affiliation(s)
- Jessica Grothe
- Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
| | - Susanne Röhr
- Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Melanie Luppa
- Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
| | - Alexander Pabst
- Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
| | - Luca Kleineidam
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Kathrin Heser
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Angela Fuchs
- Institute of General Practice (ifam), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Pentzek
- Institute of General Practice (ifam), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anke Oey
- Institute of General Practice, Hannover Medical School, Hannover, Germany
| | - Birgitt Wiese
- Institute of General Practice, Hannover Medical School, Hannover, Germany
| | - Dagmar Lühmann
- Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik van den Bussche
- Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Siegfried Weyerer
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jochen Werle
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dagmar Weeg
- Department of Psychiatry, Technical University of Munich, Munich, Germany
| | - Horst Bickel
- Department of Psychiatry, Technical University of Munich, Munich, Germany
| | - Martin Scherer
- Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Helmut König
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - André Hajek
- Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Steffi G. Riedel-Heller
- Medical Faculty, Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Maneechote C, Chunchai T, Apaijai N, Chattipakorn N, Chattipakorn SC. Pharmacological Targeting of Mitochondrial Fission and Fusion Alleviates Cognitive Impairment and Brain Pathologies in Pre-diabetic Rats. Mol Neurobiol 2022; 59:3690-3702. [PMID: 35364801 DOI: 10.1007/s12035-022-02813-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
It has recently been accepted that long-term high-fat diet (HFD) intake is a significant possible cause for prediabetes and cognitive and brain dysfunction through the disruption of brain mitochondrial function and dynamic balance. Although modulation of mitochondrial dynamics by inhibiting fission and promoting fusion has been shown to reduce the morbidity and mortality associated with a variety of chronic diseases, the impact of either pharmacological inhibition of mitochondrial fission (Mdivi-1) or stimulation of fusion (M1) on brain function in HFD-induced prediabetic models has never been studied. Thirty-two male Wistar rats were separated into 2 groups and fed either a normal diet (ND, n = 8) or HFD (n = 24) for 14 weeks. At week 12, HFD-fed rats were divided into 3 subgroups (n = 8/subgroup) and given an intraperitoneal injection of either saline, Mdivi-1 (1.2 mg/kg/day), or M1 (2 mg/kg/day) for 2 weeks. Cognitive function and metabolic parameters were determined toward the end of the protocol. The rats then were euthanized, and the brain was immediately removed in order to evaluate brain mitochondrial function and mitochondrial dynamics. HFD-fed rats experienced prediabetes, evidenced by elevated plasma insulin and the HOMA index, impaired mitochondrial function in the brain, altered dynamic regulation, and cognitive impairment were also found. Mdivi-1 and M1 treatment exerted neuroprotection to a similar extent by improving metabolic parameters, balancing mitochondrial dynamics, and reducing mitochondrial dysfunction, resulting in a gradual increase in cognitive function. Therefore, pharmacological targeting of mitochondrial fission and fusion protected the brain against chronic HFD-induced prediabetes.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
9
|
Rieskamp JD, Sarchet P, Smith BM, Kirby ED. Estimation of the density of neural, glial, and endothelial lineage cells in the adult mouse dentate gyrus. Neural Regen Res 2021; 17:1286-1292. [PMID: 34782573 PMCID: PMC8643033 DOI: 10.4103/1673-5374.327354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The dentate gyrus subregion of the mammalian hippocampus is an adult neural stem cell niche and site of lifelong neurogenesis. Hypotheses regarding the role of adult-born neuron synaptic integration in hippocampal circuit function are framed by robust estimations of adult-born versus pre/perinatally-born neuron number. In contrast, the non-neurogenic functions of adult neural stem cells and their immediate progeny, such as secretion of bioactive growth factors and expression of extracellular matrix-modifying proteins, lack similar framing due to few estimates of their number versus other prominent secretory cells. Here, we apply immunohistochemical methods to estimate cell density of neural stem/progenitor cells versus other major classes of glial and endothelial cell types that are potentially secretory in the dentate gyrus of adult mice. Of the cell types quantified, we found that GFAP+SOX2+ stellate astrocytes were the most numerous, followed by CD31+ endothelia, GFAP–SOX2+ intermediate progenitors, Olig2+ oligodendrocytes, Iba1+ microglia, and GFAP+SOX2+ radial glia-like neural stem cells. We did not observe any significant sex differences in density of any cell population. Notably, neural stem/progenitor cells were present at a similar density as several cell types known to have potent functional roles via their secretome. These findings may be useful for refining hypotheses regarding the contributions of these cell types to regulating hippocampal function and their potential therapeutic uses. All experimental protocols were approved by the Ohio State University Institutional Animal Care and Use Committee (protocol# 2016A00000068) on July 14, 2016.
Collapse
Affiliation(s)
- Joshua D Rieskamp
- Neuroscience Graduate Program; Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Patricia Sarchet
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Bryon M Smith
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Elizabeth D Kirby
- Department of Psychology; Department of Neuroscience; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Hosseini L, Farazi N, Erfani M, Mahmoudi J, Akbari M, Hosseini SH, Sadigh-Eteghad S. Effect of transcranial near-infrared photobiomodulation on cognitive outcomes in D-galactose/AlCl 3 induced brain aging in BALB/c mice. Lasers Med Sci 2021; 37:1787-1798. [PMID: 34596786 DOI: 10.1007/s10103-021-03433-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Brain photobiomodulation (PBM) therapy (PBMT) modulates various biological and cognitive processes in senescence rodent models. This study was designed to investigate the effects of transcranial near-infrared (NIR) laser treatment on D-galactose (D-gal)/aluminum chloride (AlCl3) induced inflammation, synaptic dysfunction, and cognitive impairment in mice. The aged mouse model was induced by subcutaneously injecting D-gal (60 mg/kg/day) followed by intragastrically administering AlCl3 (200 mg/kg/day) for 2 months. NIR PBM (810 nm laser, 32, 16, and 8 J/cm2) was administered transcranially every other day (3 days/week) for 2 months. Social, contextual, and spatial memories were assessed by social interaction test, passive avoidance test, and Lashley III maze, respectively. Then, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and synaptic markers including growth-associated protein 43 (GAP-43), post-synaptic density-95 (PSD-95), and synaptophysin (SYN) levels were measured in the hippocampus using western blot method. Behavioral results revealed that NIR PBM at fluencies of 16 and 8 J/cm2 could reduce D-gal/AlCl3 impaired social and spatial memories. Treatment with NIR attenuated neuroinflammation through down-regulation of TNF-α and IL-6. Additionally, NIR significantly inhibited the down-regulation of GAP-43 and SYN. The results indicate that transcranial PBM at the fluencies 16 and 8 J/cm2 effectively prevents cognitive impairment in mice model of aging by inhibiting the production of the inflammatory cytokines and enhancing synaptic markers.
Collapse
Affiliation(s)
- Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Marjan Erfani
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hojjat Hosseini
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Metabolic Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 51666-14756, Tabriz, Iran.
| |
Collapse
|
11
|
Lambert CT, Guillette LM. The impact of environmental and social factors on learning abilities: a meta-analysis. Biol Rev Camb Philos Soc 2021; 96:2871-2889. [PMID: 34342125 DOI: 10.1111/brv.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Abstract
Since the 1950s, researchers have examined how differences in the social and asocial environment affect learning in rats, mice, and, more recently, a variety of other species. Despite this large body of research, little has been done to synthesize these findings and to examine if social and asocial environmental factors have consistent effects on cognitive abilities, and if so, what aspects of these factors have greater or lesser impact. Here, we conducted a systematic review and meta-analysis examining how different external environmental features, including the social environment, impact learning (both speed of acquisition and performance). Using 531 mean-differences from 176 published articles across 27 species (with studies on rats and mice being most prominent) we conducted phylogenetically corrected mixed-effects models that reveal: (i) an average absolute effect size |d| = 0.55 and directional effect size d = 0.34; (ii) interventions manipulating the asocial environment result in larger effects than social interventions alone; and (iii) the length of the intervention is a significant predictor of effect size, with longer interventions resulting in larger effects. Additionally, much of the variation in effect size remained unexplained, possibly suggesting that species differ widely in how they are affected by environmental interventions due to varying ecological and evolutionary histories. Overall our results suggest that social and asocial environmental factors do significantly affect learning, but these effects are highly variable and perhaps not always as predicted. Most notably, the type (social or asocial) and length of interventions are important in determining the strength of the effect.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
12
|
Perea C, Vázquez-Ágredos A, Ruiz-Leyva L, Morón I, Zúñiga JM, Cendán CM. Caloric Restriction in Group-Housed Mice: Littermate and Sex Influence on Behavioral and Hormonal Data. Front Vet Sci 2021; 8:639187. [PMID: 33937370 PMCID: PMC8081842 DOI: 10.3389/fvets.2021.639187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Much of the research done on aging, oxidative stress, anxiety, and cognitive and social behavior in rodents has focused on caloric restriction (CR). This often involves several days of single housing, which can cause numerous logistical problems, as well as cognitive and social dysfunctions. Previous results in our laboratory showed the viability of long-term CR in grouped rats. Our research has studied the possibility of CR in grouped female and male littermates and unrelated CB6F1/J (C57BL/6J × BALBc/J hybrid strain) mice, measuring: (i) possible differences in body mass proportions between mice in ad libitum and CR conditions (at 70% of ad libitum), (ii) aggressive behavior, using the number of pushes and chasing behavior time as an indicator and social behavior using the time under the feeder as indicator, and (iii) difference in serum adrenocorticotropic hormone (ACTH) concentrations (stress biomarker), under ad libitum and CR conditions. Results showed the impossibility of implementing CR in unrelated male mice. In all other groups, CR was possible, with a less aggressive behavior (measured only with the number of pushes) observed in the unrelated female mice under CR conditions. In that sense, the ACTH levels measured on the last day of CR showed no difference in stress levels. These results indicate that implementantion of long-term CR in mice can be optimized technically and also related to their well-being by grouping animals, in particular, related mice.
Collapse
Affiliation(s)
- Cristina Perea
- Center of Scientific Instrumentation, University of Granada, Granada, Spain
| | - Ana Vázquez-Ágredos
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Leandro Ruiz-Leyva
- Department of Pharmacology, Faculty of Medicine, Biomedical Research Center, Institute of Neuroscience, University of Granada, Parque Tecnológico de Ciencias de la Salud, Granada, Spain.,Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Ignacio Morón
- Department of Psychobiology, Faculty of Psychology, Center of Investigation of Mind, Brain, and Behavior, University of Granada, Granada, Spain
| | | | - Cruz Miguel Cendán
- Department of Pharmacology, Faculty of Medicine, Biomedical Research Center, Institute of Neuroscience, University of Granada, Parque Tecnológico de Ciencias de la Salud, Granada, Spain.,Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| |
Collapse
|
13
|
Jara C, Cerpa W, Tapia-Rojas C, Quintanilla RA. Tau Deletion Prevents Cognitive Impairment and Mitochondrial Dysfunction Age Associated by a Mechanism Dependent on Cyclophilin-D. Front Neurosci 2021; 14:586710. [PMID: 33679286 PMCID: PMC7928299 DOI: 10.3389/fnins.2020.586710] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022] Open
Abstract
Aging is an irreversible process and the primary risk factor for the development of neurodegenerative diseases, such as Alzheimer’s disease (AD). Mitochondrial impairment is a process that generates oxidative damage and ATP deficit; both factors are important in the memory decline showed during normal aging and AD. Tau is a microtubule-associated protein, with a strong influence on both the morphology and physiology of neurons. In AD, tau protein undergoes post-translational modifications, which could play a relevant role in the onset and progression of this disease. Also, these abnormal forms of tau could be present during the physiological aging that could be related to memory impairment present during this stage. We previously showed that tau ablation improves mitochondrial function and cognitive abilities in young wild-type mice. However, the possible contribution of tau during aging that could predispose to the development of AD is unclear. Here, we show that tau deletion prevents cognitive impairment and improves mitochondrial function during normal aging as indicated by a reduction in oxidative damage and increased ATP production. Notably, we observed a decrease in cyclophilin-D (CypD) levels in aged tau−/− mice, resulting in increased calcium buffering and reduced mitochondrial permeability transition pore (mPTP) opening. The mPTP is a mitochondrial structure, whose opening is dependent on CypD expression, and new evidence suggests that this could play an essential role in the neurodegenerative process showed during AD. In contrast, hippocampal CypD overexpression in aged tau−/− mice impairs mitochondrial function evidenced by an ATP deficit, increased mPTP opening, and memory loss; all effects were observed in the AD pathology. Our results indicate that the absence of tau prevents age-associated cognitive impairment by maintaining mitochondrial function and reducing mPTP opening through a CypD-dependent mechanism. These findings are novel and represent an important advance in the study of how tau contributes to the cognitive and mitochondrial failure present during aging and AD in the brain.
Collapse
Affiliation(s)
- Claudia Jara
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
14
|
Abstract
OBJECTIVES Previous cross-sectional studies have documented associations between positive psychosocial factors, such as self-efficacy and emotional support, and late-life cognition. Further, the magnitudes of concurrent associations may differ across racial and ethnic groups that differ in Alzheimer's disease risk. The goals of this longitudinal study were to characterize prospective associations between positive psychosocial factors and cognitive decline and explicitly test for differential impact across race and ethnicity. METHODS 578 older adults (42% non-Hispanic Black, 31% non-Hispanic White, and 28% Hispanic) in the Washington Heights-Inwood Columbia Aging Project completed cognitive and psychosocial measures from the NIH Toolbox and standard neuropsychological tests over 2.4 years. Latent difference scores were used to model associations between positive psychosocial factors and cognitive decline controlling for baseline cognition, sociodemographics, depressive symptoms, physical health, and other positive psychosocial factors. Multiple-group modeling was used to test interactions between the positive psychosocial factors and race/ethnicity. RESULTS Higher NIH Toolbox Friendship scores predicted less episodic memory decline. One standard deviation increase in friendship corresponded to 6 fewer years of memory aging. This association did not significantly differ across racial/ethnic groups. CONCLUSIONS This longitudinal study provides support for the potential importance of friendships for subsequent episodic memory trajectories among older adults from three ethnic groups. Further study into culturally informed interventions is needed to investigate whether and how friend networks may be targeted to promote cognitive health in late life.
Collapse
|
15
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
16
|
ÇAM ME. Camellia sinensis leaves hydroalcoholic extract improves the Alzheimer's disease-like alterations induced by type 2 diabetes in rats. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.685280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Avila JA, Kiprowska M, Jean-Louis T, Rockwell P, Figueiredo-Pereira ME, Serrano PA. PACAP27 mitigates an age-dependent hippocampal vulnerability to PGJ2-induced spatial learning deficits and neuroinflammation in mice. Brain Behav 2020; 10:e01465. [PMID: 31769222 PMCID: PMC6955932 DOI: 10.1002/brb3.1465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/20/2019] [Accepted: 10/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Inflammation in the brain is mediated by the cyclooxygenase pathway, which leads to the production of prostaglandins. Prostaglandin (PG) D2, the most abundant PG in the brain, increases under pathological conditions and is spontaneously metabolized to PGJ2. PGJ2 is highly neurotoxic, with the potential to transition neuroinflammation into a chronic state and contribute to neurodegeneration as seen in many neurological diseases. Conversely, PACAP27 is a lipophilic peptide that raises intracellular cAMP and is an anti-inflammatory agent. The aim of our study was to investigate the therapeutic potential of PACAP27 to counter the behavioral and neurotoxic effects of PGJ2 observed in aged subjects. METHODS PGJ2 was injected bilaterally into the hippocampal CA1 region of 53-week-old and 12-week-old C57BL/6N male mice, once per week over 3 weeks (three total infusions) and included co-infusions of PACAP27 within respective treatment groups. Our behavioral assessments looked at spatial learning and memory performance on the 8-arm radial maze, followed by histological analyses of fixed hippocampal tissue using Fluoro-Jade C and fluorescent immunohistochemistry focused on IBA-1 microglia. RESULTS Aged mice treated with PGJ2 exhibited spatial learning and long-term memory deficits, as well as neurodegeneration in CA3 pyramidal neurons. Aged mice that received co-infusions of PACAP27 exhibited remediated learning and memory performance and decreased neurodegeneration in CA3 pyramidal neurons. Moreover, microglial activation in the CA3 region was also reduced in aged mice cotreated with PACAP27. CONCLUSIONS Our data show that PGJ2 can produce a retrograde spread of damage not observed in PGJ2-treated young mice, leading to age-dependent neurodegeneration of hippocampal neurons producing learning and memory deficits. PACAP27 can remediate the behavioral and neurodegenerative effects that PGJ2 produces in aged subjects. Targeting specific neurotoxic prostaglandins, such as PGJ2, offers great promise as a new therapeutic strategy downstream of cyclooxygenases, to combat the neuronal deficits induced by chronic inflammation.
Collapse
Affiliation(s)
- Jorge A Avila
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA.,The Graduate Center of CUNY, New York, NY, USA
| | - Magdalena Kiprowska
- The Graduate Center of CUNY, New York, NY, USA.,Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Teneka Jean-Louis
- The Graduate Center of CUNY, New York, NY, USA.,Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Patricia Rockwell
- The Graduate Center of CUNY, New York, NY, USA.,Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Maria E Figueiredo-Pereira
- The Graduate Center of CUNY, New York, NY, USA.,Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Peter A Serrano
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA.,The Graduate Center of CUNY, New York, NY, USA
| |
Collapse
|
18
|
Salissou MTM, Mahaman YAR, Zhu F, Huang F, Wang Y, Xu Z, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Wang X. Methanolic extract of Tamarix Gallica attenuates hyperhomocysteinemia induced AD-like pathology and cognitive impairments in rats. Aging (Albany NY) 2019; 10:3229-3248. [PMID: 30425189 PMCID: PMC6286848 DOI: 10.18632/aging.101627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022]
Abstract
Although few drugs are available today for the management of Alzheimer’s disease (AD) and many plants and their extracts are extensively employed in animals’ studies and AD patients, yet no drug or plant extract is able to reverse AD symptoms adequately. In the present study, Tamarix gallica (TG), a naturally occurring plant known for its strong antioxidative, anti-inflammatory and anti-amyloidogenic properties, was evaluated on homocysteine (Hcy) induced AD-like pathology and cognitive impairments in rats. We found that TG attenuated Hcy-induced oxidative stress and memory deficits. TG also improved neurodegeneration and neuroinflammation by upregulating synaptic proteins such as PSD95 and synapsin 1 and downregulating inflammatory markers including CD68 and GFAP with concomitant decrease in proinflammatory mediators interlukin-1β (IL1β) and tumor necrosis factor α (TNFα). TG attenuated tau hyperphosphorylation at multiple AD-related sites through decreasing some kinases and increasing phosphatase activities. Moreover, TG rescued amyloid-β (Aβ) pathology through downregulating BACE1. Our data for the first time provide evidence that TG attenuates Hcy-induced AD-like pathological changes and cognitive impairments, making TG a promising candidate for the treatment of AD-associated pathological changes.
Collapse
Affiliation(s)
- Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong Province, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong Province, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuman Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhendong Xu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| |
Collapse
|
19
|
Yao W, Liu W, Deng K, Wang Z, Wang DH, Zhang XY. GnRH expression and cell proliferation are associated with seasonal breeding and food hoarding in Mongolian gerbils (Meriones unguiculatus). Horm Behav 2019; 112:42-53. [PMID: 30922890 DOI: 10.1016/j.yhbeh.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Seasonal brain plasticity contributes to a variety of physiological and behavioral processes. We hypothesized that variations in GnRH expression and cell proliferation facilitated seasonal breeding and food hoarding. Here, we reported seasonal changes in sexual and social behavior, GnRH expression and brain cell proliferation, and the role of photoperiod in inducing seasonal breeding and brain plasticity in Mongolian gerbils (Meriones unguiculatus). The gerbils captured in April and July had more mature sexual development, higher exploratory behavior, and preferred novelty much more than those captured in September. Male gerbils captured in April and July had consistently higher GnRH expression than those captured in September. GnRH expression was also found to be suppressed by food-induced hoarding behavior in the breeding season. Both subadult and adult gerbils from April and July had higher cell proliferation in SVZ, hypothalamus and amygdala compared to those in September. However, adult gerbils captured in September preferred familiar objects, and no seasonal differences were found in cell proliferation in hippocampal dentate gyrus among the three seasons. The laboratory study showed that photoperiod alone did not alter reproductive traits, behavior, cell proliferation or cell survival in the detected brain regions. These findings suggest that the structural variations in GnRH expression in hypothalamus and cell proliferation in hypothalamus, amygdala and hippocampus are associated with seasonal breeding and food hoarding in gerbils. It gives a new insight into the proximate physiological and neural basis for these seasonal life-history traits of breeding and food hoarding in small mammals.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Health Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Deng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, Ribeiro RV. Aging, lifestyle and dementia. Neurobiol Dis 2019; 130:104481. [PMID: 31136814 DOI: 10.1016/j.nbd.2019.104481] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Aging is the greatest risk factor for most diseases including cancer, cardiovascular disorders, and neurodegenerative disease. There is emerging evidence that interventions that improve metabolic health with aging may also be effective for brain health. The most robust interventions are non-pharmacological and include limiting calorie or protein intake, increasing aerobic exercise, or environmental enrichment. In humans, dietary patterns including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) and Okinawan diets are associated with improved age-related health and may reduce neurodegenerative disease including dementia. Rapamycin, metformin and resveratrol act on nutrient sensing pathways that improve cardiometabolic health and decrease the risk for age-associated disease. There is some evidence that they may reduce the risk for dementia in rodents. There is a growing recognition that improving metabolic function may be an effective way to optimize brain health during aging.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia.
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Luigi Fontana
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Rosilene V Ribeiro
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
21
|
Dause TJ, Kirby ED. Aging gracefully: social engagement joins exercise and enrichment as a key lifestyle factor in resistance to age-related cognitive decline. Neural Regen Res 2019; 14:39-42. [PMID: 30531067 PMCID: PMC6262997 DOI: 10.4103/1673-5374.243698] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment is a consequence of the normal aging process that effects many species, including humans and rodent models. Decline in hippocampal memory function is especially prominent with age and often reduces quality of life. As the aging population expands, the need for interventional strategies to prevent cognitive decline has become more pressing. Fortunately, several major lifestyle factors have proven effective at combating hippocampal aging, the most well-known of which are environmental enrichment and exercise. While the evidence supporting the beneficial nature of these factors is substantial, a less well-understood factor may also contribute to healthy cognitive aging: social engagement. We review the evidence supporting the role of social engagement in preserving hippocampal function in old age. In elderly humans, high levels of social engagement correlate with better hippocampal function, yet there is a dearth of work to indicate a causative role. Existing rodent literature is also limited but has begun to provide causative evidence and establish candidate mechanisms. Summed together, while many unanswered questions remain, it is clear that social engagement is a viable lifestyle factor for preserving cognitive function in old age. Social integration across the lifespan warrants more investigation and more appreciation when designing living circumstances for the elderly.
Collapse
Affiliation(s)
- Tyler J Dause
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Elizabeth D Kirby
- Department of Psychology; Neuroscience; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Denninger JK, Smith BM, Kirby ED. Novel Object Recognition and Object Location Behavioral Testing in Mice on a Budget. J Vis Exp 2018. [PMID: 30531711 DOI: 10.3791/58593] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Ethologically relevant behavioral testing is a critical component of any study that uses mouse models to study the cognitive effects of various physiological or pathological changes. The object location task (OLT) and the novel object recognition task (NORT) are two effective behavioral tasks commonly used to reveal the function and relative health of specific brain regions involved in memory. While both of these tests exploit the inherent preference of mice for the novelty to reveal memory for previously encountered objects, the OLT primarily evaluates spatial learning, which relies heavily on hippocampal activity. The NORT, in contrast, evaluates non-spatial learning of object identity, which relies on multiple brain regions. Both tasks require an open-field-testing arena, objects with equivalent intrinsic value to mice, appropriate environmental cues, and video recording equipment and the software. Commercially available systems, while convenient, can be costly. This manuscript details a simple, cost-effective method for building the arenas and setting up the equipment necessary to perform the OLT and NORT. Furthermore, the manuscript describes an efficient testing protocol that incorporates both OLT and NORT and provides typical methods for data acquisition and analysis, as well as representative results. Successful completion of these tests can provide valuable insight into the memory function of various mouse model systems and appraise the underlying neural regions that support these functions.
Collapse
Affiliation(s)
| | | | - Elizabeth D Kirby
- Department of Psychology, Ohio State University; Department of Neuroscience, Ohio State University; Center for Chronic Brain Injury, Ohio State University;
| |
Collapse
|
23
|
Wang L, Cao M, Pu T, Huang H, Marshall C, Xiao M. Enriched Physical Environment Attenuates Spatial and Social Memory Impairments of Aged Socially Isolated Mice. Int J Neuropsychopharmacol 2018; 21:1114-1127. [PMID: 30247630 PMCID: PMC6276026 DOI: 10.1093/ijnp/pyy084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/19/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Social isolation in the elderly is one of the principal health risks in an aging society. Physical environmental enrichment is shown to improve sensory, cognitive, and motor functions, but it is unknown whether environmental enrichment can protect against brain impairments caused by social isolation. METHODS Eighteen-month-old mice were housed, either grouped or isolated, in a standard or enriched environment for 2 months, respectively. Behavioral tests were performed to evaluate cognitive functional and social interaction ability. Synaptic protein levels, myelination, neuroinflammation, brain derived neurotrophic factor, and NOD-like receptor protein 3 inflammasome signaling pathways were examined in the medial prefrontal cortex and hippocampus. RESULTS Isolated aged mice exhibited declines in spatial memory and social memory compared with age-matched littermates living within group housing. The aforementioned memory malfunctions were mitigated in isolated aged mice that were housed in a large cage with a running wheel and novel toys. Enriched housing prevented synaptic protein loss, myelination defects, and downregulation of brain derived neurotrophic factor, while also increasing interleukin 1 beta and tumor necrosis factor alpha in the medial prefrontal cortex and hippocampus of isolated mice. In addition, activation of glial cells and NOD-like receptor protein 3 inflammasomes was partially ameliorated in the hippocampus of isolated mice treated with physical environmental enrichment. CONCLUSIONS These results suggest that an enriched physical environment program may serve as a nonpharmacological intervention candidate to help maintain healthy brain function of elderly people living alone.
Collapse
Affiliation(s)
- Linmei Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Cao
- Key Laboratory for Aging & Disease, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tinglin Pu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huang Huang
- Key Laboratory for Aging & Disease, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, Kentucky
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China,Correspondence: Ming Xiao, MD, PhD, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China ()
| |
Collapse
|