1
|
Tang X, Wang L, Feng Q, Hu H, Zhu Y, Liao Z, Ding Z, Xu X. Resting-state functional magnetic resonance imaging study on cerebrovascular reactivity changes in the precuneus of Alzheimer's disease and mild cognitive impairment patients. Sci Rep 2025; 15:363. [PMID: 39747269 PMCID: PMC11696737 DOI: 10.1038/s41598-024-82769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory impairment and cognitive decline, ultimately culminating in dementia. This study aims to evaluate cerebrovascular reactivity (CVR) and functional connectivity (FC) in patients with AD and mild cognitive impairment (MCI) using resting-state functional magnetic resonance imaging (rs-fMRI), bypassing the requirement for hypercapnia. The study cohort comprised 53 AD patients, 38 MCI patients, and 39 normal control (NC) subjects. CVR is derived by extracting signals within specific frequency bands of rs-fMRI. This study compares the differences in CVR and FC among the three groups, using the brain regions with CVR differences as region of interest (ROI) for FC analysis. The correlation between CVR and FC and cognitive scale score was discussed. Compared with NC subjects, AD patients exhibited a decrease in CVR in the PCUN.L, whereas MCI patients showed an increase in CVR in the PCUN.R. With PCUN.L as ROI, FC in PCUN.R decreased in AD patients, and FC in SFGmed.R and other brain regions increased in MCI patients compared with NC subjects. The results of the correlation analysis indicate that CVR in all patients, as well as FC with the PCUN.L as the ROI to the PCUN.R and SFGmed.R, show positive correlations with MMSE and MoCA scores. These results suggest that there are significant differences between CVR and FC with CVR differential brain regions as ROI among the AD, MCI, and NC groups, which may help to explain the hemodynamic mechanism. CVR obtained with rs-fMRI may be a potential biomarker for assessing cognitive impairment.
Collapse
Affiliation(s)
- Xue Tang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, China
| | - Luoyu Wang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
- Department of Radiology, Hangzhou First People's Hospital, Hangzhou, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, Hangzhou, China
| | - Hanjun Hu
- Department of Radiology, Hangzhou First People's Hospital, Hangzhou, China
- The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yidi Zhu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, China
| | - Zhengluan Liao
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, Hangzhou, China.
| | - Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
2
|
Thropp P, Phillips E, Jung Y, Thomas DL, Tosun D. Arterial spin labeling perfusion MRI in the Alzheimer's Disease Neuroimaging Initiative: Past, present, and future. Alzheimers Dement 2024; 20:8937-8952. [PMID: 39428971 DOI: 10.1002/alz.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
On the 20th anniversary of the Alzheimer's Disease Neuroimaging Initiative (ADNI), this paper provides a comprehensive overview of the role of arterial spin labeling (ASL) magnetic resonance imaging (MRI) in understanding perfusion changes in the aging brain and the relationship with Alzheimer's disease (AD) pathophysiology and its comorbid conditions. We summarize previously used acquisition protocols, available data, and the motivation for adopting a multi-post-labeling delay (PLD) acquisition scheme in the latest ADNI MRI protocol (ADNI 4). We also detail the process of setting up this scheme on different scanners, emphasizing the potential of ASL imaging in future AD research. HIGHLIGHTS: The Alzheimer's Disease Neuroimaging Initiative (ADNI) adopted multimodal arterial spin labeling magnetic resonance imaging (ASL MRI) to meet evolving biomarker requirements. The ADNI provides one of the largest multisite, multi-vendor ASL data collections. The ADNI 4 incorporates multi-post-labeling delay ASL techniques to jointly quantify cerebral blood flow and arterial transit time. ADNI 4 ASL MRI protocol is apt for detecting early Alzheimer's disease with cerebrovascular pathology.
Collapse
Affiliation(s)
- Pamela Thropp
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Eliana Phillips
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Youngkyoo Jung
- Department of Radiology, University of California Davis, Sacramento, California, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Lodeweyckx T, de Hoon J, Van Laere K, Bautista E, Rizzo G, Bishop C, Rabiner E, Martin RS, Ford A, Vargas G. Effects on cerebral blood flow after single doses of the β 2 agonist, clenbuterol, in healthy volunteers and patients with mild cognitive impairment or Parkinson's disease. Br J Clin Pharmacol 2024; 90:2638-2651. [PMID: 38953404 DOI: 10.1111/bcp.16160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
AIMS Cerebral hypometabolism occurs years prior to a diagnosis of neurodegenerative diseases and coincides with reduced cerebral perfusion and declining noradrenergic transmission from the locus coeruleus. In pre-clinical models, β-adrenoceptor (β-AR) agonists increase cerebrocortical glucose metabolism, and may have therapeutic potential for neurodegenerative diseases. This study investigated the safety and effects on regional cerebral blood flow (rCBF) of the oral, brain-penetrant β2-AR agonist, clenbuterol, in healthy volunteers (HV) and patients with mild cognitive impairment (MCI) or Parkinson's disease (PD). METHODS This study evaluated the safety and effects on cerebral activity of the oral, brain-penetrant, β2-AR agonist clenbuterol (20-160 μg) in healthy volunteers and patients with MCI or PD. Regional CBF, which is tightly coupled to glucose metabolism, was measured by arterial spin labelling MRI in 32 subjects (25 HV and 8 MCI or PD) across five cohorts. In some cohorts, low doses of nadolol (1-5 mg), a β-AR antagonist with minimal brain penetration, were administered with clenbuterol to control peripheral β2-AR responses. RESULTS Significant, dose-dependent increases in rCBF were seen in multiple brain regions, including hippocampus, amygdala and thalamus, following the administration of clenbuterol to HVs (mean changes from baseline in hippocampal rCBF of -1.7%, 7.3%, 22.9%, 28.4% 3 h after 20, 40, 80 and 160 μg clenbuterol, respectively). In patients with MCI or PD, increases in rCBF following 80 μg clenbuterol were observed both without and with 5 mg nadolol (in hippocampus, 18.6%/13.7% without/with nadolol). Clenbuterol was safe and well-tolerated in all subjects; known side effects of β2-agonists, including increased heart rate and tremor, were mild in intensity and were blocked by low-dose nadolol. CONCLUSIONS The effects of clenbuterol on rCBF were evident both in the absence and presence of low-dose nadolol, suggesting central nervous system (CNS) involvement. Concomitant inhibition of the peripheral effects of clenbuterol by nadolol confirms that meaningful β2-AR antagonism in the periphery was achieved without interrupting the central effects of clenbuterol on rCBF.
Collapse
Affiliation(s)
- Thomas Lodeweyckx
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, Catholic University Leuven, Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, Catholic University Leuven, Leuven, Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospital Leuven and Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
| | | | | | | | - Eugenii Rabiner
- Invicro, London, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Anthony Ford
- CuraSen Therapeutics, San Carlos, California, USA
| | | |
Collapse
|
4
|
Woods JG, Achten E, Asllani I, Bolar DS, Dai W, Detre JA, Fan AP, Fernández-Seara M, Golay X, Günther M, Guo J, Hernandez-Garcia L, Ho ML, Juttukonda MR, Lu H, MacIntosh BJ, Madhuranthakam AJ, Mutsaerts HJ, Okell TW, Parkes LM, Pinter N, Pinto J, Qin Q, Smits M, Suzuki Y, Thomas DL, Van Osch MJ, Wang DJJ, Warnert EA, Zaharchuk G, Zelaya F, Zhao M, Chappell MA. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications. Magn Reson Med 2024; 92:469-495. [PMID: 38594906 PMCID: PMC11142882 DOI: 10.1002/mrm.30091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.
Collapse
Affiliation(s)
- Joseph G. Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Eric Achten
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Iris Asllani
- Department of Neuroscience, University of Sussex, UK and Department of Biomedical Engineering, Rochester Institute of Technology, USA
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA, 13902
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, 3 Dulles Building, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Audrey P. Fan
- Department of Biomedical Engineering, Department of Neurology, University of California Davis, Davis, CA, USA
| | - Maria Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Xavier Golay
- UCL Queen Square Institute of Neurology, University College London, London, UK; Gold Standard Phantoms, UK
| | - Matthias Günther
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- Departments of Physics and Electrical Engineering, University of Bremen, Bremen, Germany
| | - Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | | | - Mai-Lan Ho
- Department of Radiology, University of Missouri, Columbia, MO, USA. ORCID: 0000-0002-9455-1350
| | - Meher R. Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences Program, Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Computational Radiology & Artificial Intelligence unit, Oslo University Hospital, Oslo, Norway
| | - Ananth J. Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Henk-Jan Mutsaerts
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, UK
| | - Nandor Pinter
- Dent Neurologic Institute, Buffalo, New York, USA; University at Buffalo Neurosurgery, Buffalo, New York, USA
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David L. Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthias J.P. Van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Esther A.H. Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Moss Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
- Maternal & Child Health Research Institute, Stanford University, Stanford, CA, USA
| | - Michael A. Chappell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Liu P, Lin Z, Hazel K, Pottanat G, Xu C, Jiang D, Pillai JJ, Lucke E, Bauer CE, Gold BT, Greenberg SM, Helmer KG, Jann K, Jicha G, Kramer J, Maillard P, Mulavelil RM, Rodriguez P, Satizabal CL, Schwab K, Seshadri S, Singh H, Velarde Dediós ÁG, Wang DJJ, Kalyani RR, Moghekar A, Rosenberg PB, Yasar S, Albert M, Lu H. Cerebrovascular reactivity MRI as a biomarker for cerebral small vessel disease-related cognitive decline: Multi-site validation in the MarkVCID Consortium. Alzheimers Dement 2024; 20:5281-5289. [PMID: 38951718 PMCID: PMC11350011 DOI: 10.1002/alz.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Vascular contributions to cognitive impairment and dementia (VCID) represent a major factor in cognitive decline in older adults. The present study examined the relationship between cerebrovascular reactivity (CVR) measured by magnetic resonance imaging (MRI) and cognitive function in a multi-site study, using a predefined hypothesis. METHODS We conducted the study in a total of three analysis sites and 263 subjects. Each site performed an identical CVR MRI procedure using 5% carbon dioxide inhalation. A global cognitive measure of Montreal Cognitive Assessment (MoCA) and an executive function measure of item response theory (IRT) score were used as outcomes. RESULTS CVR and MoCA were positively associated, and this relationship was reproduced at all analysis sites. CVR was found to be positively associated with executive function. DISCUSSION The predefined hypothesis on the association between CVR and a global cognitive score was validated in three independent analysis sites, providing support for CVR as a biomarker in VCID. HIGHLIGHTS This study measured a novel functional index of small arteries referred to as cerebrovascular reactivity (CVR). CVR was positively associated with global cognition in older adults. This finding was observed in three independent cohorts at three sites. Our statistical analysis plan was predefined before beginning data collection.
Collapse
Affiliation(s)
- Peiying Liu
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Diagnostic Radiology & Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Zixuan Lin
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kaisha Hazel
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - George Pottanat
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Cuimei Xu
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Dengrong Jiang
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jay J. Pillai
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Division of NeuroradiologyMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Emma Lucke
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Brian T. Gold
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Steven M. Greenberg
- Department of NeurologyMassachusetts General Hospital Stroke Research CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Karl G. Helmer
- Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Kay Jann
- Laboratory of Functional MRI TechnologyKeck School of MedicineStevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Gregory Jicha
- Department of NeurologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Joel Kramer
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Pauline Maillard
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
| | - Rachel M. Mulavelil
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Pavel Rodriguez
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Kristin Schwab
- Department of NeurologyMassachusetts General Hospital Stroke Research CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Herpreet Singh
- Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Ángel G. Velarde Dediós
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Danny J. J. Wang
- Laboratory of Functional MRI TechnologyKeck School of MedicineStevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Rita R. Kalyani
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Abhay Moghekar
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Paul B. Rosenberg
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sevil Yasar
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Marilyn Albert
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hanzhang Lu
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreUSA
- F.M. Kirby Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| |
Collapse
|
6
|
Matt RA, Martin RS, Evans AK, Gever JR, Vargas GA, Shamloo M, Ford AP. Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handb Exp Pharmacol 2024; 285:555-616. [PMID: 37495851 DOI: 10.1007/164_2023_677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
7
|
Rahimzadeh H, Kamkar H, Hoseini-Tabatabaei N, Mobarakeh NM, Habibabadi JM, Hashemi-Fesharaki SS, Nazem-Zadeh MR. Alteration of intracranial blood perfusion in temporal lobe epilepsy, an arterial spin labeling study. Heliyon 2023; 9:e14854. [PMID: 37089370 PMCID: PMC10119575 DOI: 10.1016/j.heliyon.2023.e14854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Background A critical necessity before surgical resection in mesial temporal lobe epilepsy (mTLE) is lateralizing the seizure focus in the temporal lobe. This study aimed to investigate the differences in perfusion pattern changes in right and left mTLE. Methods 42 mTLE patients (22 left and 20 right mTLE) and 14 controls were surveyed with pulsed arterial spin labeling at 3.0 T. The mean cerebral blood flow (CBF) and asymmetry index (AI) were calculated in the bilateral temporal lobe, amygdala, hippocampus, parahippocampus, and nine bilateral vascular territories ROIs. The alterations in whole-brain CBF were identified using statistical parametric mapping (SPM). Results CBF decreased in ipsilateral sides in both epilepsy subcohorts, with right mTLE showing a significant difference in most ROIs while left mTLE exhibiting no significant change. CBF comparison of left mTLE and controls showed a significant drop in ROI analysis in left middle temporal and left intermediate posterior cerebral artery and in AI analysis in parahippocampus, distal anterior cerebral artery, distal middle cerebral artery, and intermediate anterior cerebral artery. CBF hypoperfusion was seen in ROI analysis in the left intermediate anterior cerebral artery, left middle temporal, right middle temporal, left superior temporal in the right mTLE compared to controls. Left mTLE CBF differed significantly from right mTLE CBF in right distal middle cerebral artery ROI and AI of proximal middle cerebral artery. Conclusion Our result revealed that mTLE affects extratemporal regions and both mTLE subcohorts with different perfusion patterns, which may enhance the performance of preoperative MRI assessment in lateralization procedures.
Collapse
Affiliation(s)
- Hossein Rahimzadeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Kamkar
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Bioinformatics and Biophysics Department, Tarbiat Modares University, Tehran, Iran
| | | | - Neda Mohammadi Mobarakeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad-Reza Nazem-Zadeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Monash University, Melbourne, Australia
- Corresponding author.Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Qiu M, Zhou D, Zhu H, Shao Y, Li Y, Wang Y, Zong G, Xi Q. Alterations of Cerebral Blood Flow and its Connectivity Patterns Measured with Arterial Spin Labeling in Mild Cognitive Impairment. Curr Alzheimer Res 2023; 20:567-576. [PMID: 37921165 DOI: 10.2174/0115672050241163231017073139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Cerebral blood flow (CBF) is an important index for measuring brain function. Studies have shown that regional CBF changes inconsistently in mild cognitive impairment (MCI). Arterial spin labeling (ASL) is widely used in the study of CBF in patients with MCI. However, alterations in CBF connectivity in these patients remain poorly understood. METHODS In this study, 3D pseudo-continuous arterial spin labeling (3D-pCASL) technology was used to investigate the changes in regional CBF and CBF connectivity between 32 MCI patients and 32 healthy controls. The normalized CBF was used to reduce inter-subject variations. Both group comparisons in the CBF and correlations between CBF alterations and cognitive scores were assessed. CBF connectivity of brain regions with regional CBF differences was also compared between groups. RESULTS We found that compared with that in controls, the CBF was significantly reduced in the left superior parietal gyrus in MCI patients, whereas it was increased in the left precentral gyrus, right superior temporal gyrus, right putamen, and left supplementary motor area. In patients with MCI, significant correlations were identified between CBF and neuropsychological scales. Importantly, MCI patients exhibited CBF disconnections between the left supplementary motor area and the left superior parietal gyrus. CONCLUSION This study found that there are not only changes in regional CBF but also in CBF connectivity patterns in MCI patients compared with controls. These observations may provide a novel explanation for the neural mechanism underlying the pathophysiology in patients with Alzheimer's disease and MCI.
Collapse
Affiliation(s)
- Mingjuan Qiu
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Di Zhou
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Haiyan Zhu
- Department of Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yongjia Shao
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yan Li
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yibin Wang
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Genlin Zong
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qian Xi
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
9
|
Zhang W, Li M, Zhou X, Huang C, Wan K, Li C, Yin J, Zhao W, Zhang C, Zhu X, Sun Z. Altered serum amyloid beta and cerebral perfusion and their associations with cognitive function in patients with subcortical ischemic vascular disease. Front Neurosci 2022; 16:993767. [PMID: 36312019 PMCID: PMC9608371 DOI: 10.3389/fnins.2022.993767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 01/07/2024] Open
Abstract
Subcortical ischemic vascular disease (SIVD) is one of the important causes of cognitive dysfunction, altered amyloid-beta (Aβ) and cerebral perfusion may be involved in the pathophysiological mechanism of SIVD and are closely related to cognitive function. We aimed to investigate altered serum Aβ and cerebral perfusion in patients with SIVD and their correlation with cognitive function. Seventy-four healthy controls (HCs) and 74 SIVD patients, including 38 SIVD patients with no cognitive impairment (SIVD-NCI) and 36 SIVD patients with mild cognitive impairment (SIVD-MCI) underwent the measurement of serum Aβ40 and Aβ42 levels, pseudo-continuous arterial spin labeling MRI scanning, and cognitive evaluation. Compared to the healthy controls (HCs), the level of serum Aβ40 and Aβ40/42 ratio increased and Aβ42 decreased in SIVD patients. The serum Aβ40 level and Aβ40/42 ratio in patients with SIVD-MCI were significantly higher than those in the HCs and SIVD-NCI, and the level of Aβ42 in the SIVD-MCI was lower than the HCs. In addition, the serum Aβ40/42 ratio provided high diagnostic accuracy for SIVD and SIVD-MCI, it was further identified as an independent risk factor for cognitive impairment. Patients with SIVD-NCI and SIVD-MCI exhibited both increased and decreased cerebral blood flow (CBF) in regional. The Aβ40/42 ratio was associated with global CBF, while altered global and regional CBF was associated with cognitive deficits. In addition, white matter hyperintensities volume (WMHV) correlated with Aβ40/42 ratio, CBF, and cognition. The relationship between Aβ40/42 ratio and cognition was partially mediated by altered CBF. Based on these results, we conclude that the serum Aβ40/42 ratio may be a potential biomarker that can complement current methods for the prediction and diagnosis of cognitive impairment in SIVD patients. In addition, serum Aβ may play a role in cognitive function by regulating CBF, which provides new insights into the intervention, treatment, and prevention of cognitive impairment in SIVD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingxu Li
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chaojuan Huang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Wan
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenchen Li
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiabin Yin
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenming Zhao
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cun Zhang
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqun Zhu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongwu Sun
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Glodzik L, Rusinek H, Butler T, Li Y, Storey P, Sweeney E, Osorio RS, Biskaduros A, Tanzi E, Harvey P, Woldstad C, Maloney T, de Leon MJ. Higher body mass index is associated with worse hippocampal vasoreactivity to carbon dioxide. Front Aging Neurosci 2022; 14:948470. [PMID: 36158536 PMCID: PMC9491849 DOI: 10.3389/fnagi.2022.948470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background and objectives Obesity is a risk factor for cognitive decline. Probable mechanisms involve inflammation and cerebrovascular dysfunction, leading to diminished cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). The hippocampus, crucially involved in memory processing and thus relevant to many types of dementia, poses a challenge in studies of perfusion and CVR, due to its location, small size, and complex shape. We examined the relationships between body mass index (BMI) and hippocampal resting CBF and CVR to carbon dioxide (CVRCO2) in a group of cognitively normal middle-aged and older adults. Methods Our study was a retrospective analysis of prospectively collected data. Subjects were enrolled for studies assessing the role of hippocampal hemodynamics as a biomarker for AD among cognitively healthy elderly individuals (age > 50). Participants without cognitive impairment, stroke, and active substance abuse were recruited between January 2008 and November 2017 at the NYU Grossman School of Medicine, former Center for Brain Health. All subjects underwent medical, psychiatric, and neurological assessments, blood tests, and MRI examinations. To estimate CVR, we increased their carbon dioxide levels using a rebreathing protocol. Relationships between BMI and brain measures were tested using linear regression. Results Our group (n = 331) consisted of 60.4% women (age 68.8 ± 7.5 years; education 16.8 ± 2.2 years) and 39.6% men (age 70.4 ± 6.4 years; education 16.9 ± 2.4 years). Approximately 22% of them (n = 73) were obese. BMI was inversely associated with CVRCO2 (β = -0.12, unstandardized B = -0.06, 95% CI -0.11, -0.004). A similar relationship was observed after excluding subjects with diabetes and insulin resistance (β = -0.15, unstandardized B = -0.08, 95% CI -0.16, -0.000). In the entire group, BMI was more strongly related to hippocampal CVRCO2 in women (β = -0.20, unstandardized B = -0.08, 95% CI -0.13, -0.02). Discussion These findings lend support to the notion that obesity is a risk factor for hippocampal hemodynamic impairment and suggest targeting obesity as an important prevention strategy. Prospective studies assessing the effects of weight loss on brain hemodynamic measures and inflammation are warranted.
Collapse
Affiliation(s)
- Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Henry Rusinek
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Pippa Storey
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Elizabeth Sweeney
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ricardo S. Osorio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Adrienne Biskaduros
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Patrick Harvey
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Christopher Woldstad
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Mony J. de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
11
|
Differential regional cerebrovascular reactivity to end-tidal gas combinations commonly seen during anaesthesia: A blood oxygenation level-dependent MRI observational study in awake adult subjects. Ugeskr Laeger 2022; 39:774-784. [PMID: 35852545 DOI: 10.1097/eja.0000000000001716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Regional cerebrovascular reactivity (rCVR) is highly variable in the human brain as measured by blood oxygenation level-dependent (BOLD) MRI to changes in both end-tidal CO 2 and O 2 . OBJECTIVES We examined awake participants under carefully controlled end-tidal gas concentrations to assess how regional CVR changes may present with end-tidal gas changes seen commonly with anaesthesia. DESIGN Observational study. SETTING Tertiary care centre, Winnipeg, Canada. The imaging for the study occurred in 2019. SUBJECTS Twelve healthy adult subjects. INTERVENTIONS Cerebral BOLD response was studied under two end-tidal gas paradigms. First end-tidal oxygen (ETO 2 ) maintained stable whereas ETCO 2 increased incrementally from hypocapnia to hypercapnia (CO 2 ramp); second ETCO 2 maintained stable whereas ETO 2 increased from normoxia to hyperoxia (O 2 ramp). BOLD images were modeled with end-tidal gas sequences split into two equal segments to examine regional CVR. MAIN OUTCOME MEASURES The voxel distribution comparing hypocapnia to mild hypercapnia and mild hyperoxia (mean F I O 2 = 0.3) to marked hyperoxia (mean F I O 2 = 0.7) were compared in a paired fashion ( P < 0.005 to reach threshold for voxel display). Additionally, type analysis was conducted on CO 2 ramp data. This stratifies the BOLD response to the CO 2 ramp into four categories of CVR slope based on segmentation (type A; +/+slope: normal response, type B +/-, type C -/-: intracranial steal, type D -/+.) Types B to D represent altered responses to the CO 2 stimulus. RESULTS Differential regional responsiveness was seen for both end-tidal gases. Hypocapnic regional CVR was more marked than hypercapnic CVR in 0.3% of voxels examined ( P < 0.005, paired comparison); the converse occurred in 2.3% of voxels. For O 2 , mild hyperoxia had more marked CVR in 0.2% of voxels compared with greater hyperoxia; the converse occurred in 0.5% of voxels. All subjects had altered regional CO 2 response based on Type Analysis ranging from 4 ± 2 to 7 ± 3% of voxels. CONCLUSION In awake subjects, regional differences and abnormalities in CVR were observed with changes in end-tidal gases common during the conduct of anaesthesia. On the basis of these findings, consideration could be given to minimising regional CVR fluctuations in patients-at-risk of neurological complications by tighter control of end-tidal gases near the individual's resting values.
Collapse
|
12
|
Huang CJ, Zhou X, Yuan X, Zhang W, Li MX, You MZ, Zhu XQ, Sun ZW. Contribution of Inflammation and Hypoperfusion to White Matter Hyperintensities-Related Cognitive Impairment. Front Neurol 2022; 12:786840. [PMID: 35058875 PMCID: PMC8763977 DOI: 10.3389/fneur.2021.786840] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/15/2023] Open
Abstract
White matter hyperintensities (WMHs) of presumed vascular origin are one of the most important neuroimaging markers of cerebral small vessel disease (CSVD), which are closely associated with cognitive impairment. The aim of this study was to elucidate the pathogenesis of WMHs from the perspective of inflammation and hypoperfusion mechanisms. A total of 65 patients with WMHs and 65 healthy controls were enrolled in this study. Inflammatory markers measurements [hypersensitive C-reactive protein (hsCRP) and lipoprotein-associated phospholipase A2 (Lp-PLA2)], cognitive evaluation, and pseudocontinuous arterial spin labeling (PCASL) MRI scanning were performed in all the subjects. The multivariate logistic regression analysis showed that Lp-PLA2 was an independent risk factor for WMHs. Cerebral blood flow (CBF) in the whole brain, gray matter (GM), white matter (WM), left orbital medial frontal gyrus [MFG.L (orbital part)], left middle temporal gyrus (MTG.L), and right thalamus (Tha.R) in the patients was lower than those in the controls and CBF in the left triangular inferior frontal gyrus [IFG.L (triangular part)] was higher in the patients than in the controls. There was a significant correlation between Lp-PLA2 levels and CBF in the whole brain (R = -0.417, p < 0.001) and GM (R = -0.278, p = 0.025), but not in the WM in the patients. Moreover, CBF in the MFG.L (orbital part) and the Tha.R was, respectively, negatively associated with the trail making test (TMT) and the Stroop color word test (SCWT), suggesting the higher CBF, the better executive function. The CBF in the IFG.L (triangular part) was negatively correlated with attention scores in the Cambridge Cognitive Examination-Chinese Version (CAMCOG-C) subitems (R = -0.288, p = 0.020). Our results revealed the vascular inflammation roles in WMHs, which may through the regulation of CBF in the whole brain and GM. Additionally, CBF changes in different brain regions may imply a potential role in the modulation of cognitive function in different domains.
Collapse
Affiliation(s)
- Chao-Juan Huang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Yuan
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming-Xu Li
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng-Zhe You
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Qun Zhu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhong-Wu Sun
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Improvement of Retinal Microcirculation after Pulmonary Vein Isolation in Patients with Atrial Fibrillation—An Optical Coherence Tomography Angiography Study. Diagnostics (Basel) 2021; 12:diagnostics12010038. [PMID: 35054205 PMCID: PMC8774642 DOI: 10.3390/diagnostics12010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: To evaluate retinal and optic nerve head (ONH) perfusion in patients with atrial fibrillation (AF) before and after catheter ablation of AF with pulmonary vein isolation (PVI). Methods: 34 eyes of 34 patients with AF and 35 eyes of 35 healthy subjects were included in this study. Flow density data were obtained using spectral-domain OCT-A (RTVue XR Avanti with AngioVue, Optovue, Inc, Fremont, California, USA). The data of the superficial and deep vascular layers of the macula and the ONH (radial peripapillary capillary network, RPC) before and after PVI were extracted and analysed. Results: The flow density in the superficial OCT-angiogram (whole en face) and the ONH (RPC) in patients with AF was significantly lower compared to healthy controls (OCT-A superficial: study group: 48.77 (45.19; 52.12)%; control group: 53.01 (50.00; 54.25)%; p < 0.001; ONH: study group: 51.82 (48.41; 54.03)%; control group: 56.00 (54.35; 57.70)%; p < 0.001;). The flow density in the ONH (RPC) improved significantly in the study group following PVI (before: 51.82 (48.41; 54.03)%; after: 52.49 (50.34; 55.62)%; p = 0.007). Conclusions: Patients with AF showed altered ocular perfusion as measured using OCTA when compared with healthy controls. Rhythm control using PVI significantly improved ocular perfusion as measured using OCT-A. Non-contact imaging using OCTA provides novel information about the central global microperfusion of patients with AF.
Collapse
|
14
|
Liu P, Jiang D, Albert M, Bauer CE, Caprihan A, Gold BT, Greenberg SM, Helmer KG, Jann K, Jicha G, Rodriguez P, Satizabal CL, Seshadri S, Singh H, Thompson JF, Wang DJJ, Lu H. Multi-vendor and multisite evaluation of cerebrovascular reactivity mapping using hypercapnia challenge. Neuroimage 2021; 245:118754. [PMID: 34826595 PMCID: PMC8783393 DOI: 10.1016/j.neuroimage.2021.118754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Cerebrovascular reactivity (CVR), which measures the ability of cerebral blood vessels to dilate or constrict in response to vasoactive stimuli such as CO2 inhalation, is an important index of the brain's vascular health. Quantification of CVR using BOLD MRI with hypercapnia challenge has shown great promises in research and clinical studies. However, in order for it to be used as a potential imaging biomarker in large-scale and multi-site studies, the reliability of CO2-CVR quantification across different MRI acquisition platforms and researchers/raters must be examined. The goal of this report from the MarkVCID small vessel disease biomarkers consortium is to evaluate the reliability of CO2-CVR quantification in three studies. First, the inter-rater reliability of CO2-CVR data processing was evaluated by having raters from 5 MarkVCID sites process the same 30 CVR datasets using a cloud-based CVR data processing pipeline. Second, the inter-scanner reproducibility of CO2-CVR quantification was assessed in 10 young subjects across two scanners of different vendors. Third, test-retest repeatability was evaluated in 20 elderly subjects from 4 sites with a scan interval of less than 2 weeks. In all studies, the CO2 CVR measurements were performed using the fixed inspiration method, where the subjects wore a nose clip and a mouthpiece and breathed room air and 5% CO2 air contained in a Douglas bag alternatively through their mouth. The results showed that the inter-rater CoV of CVR processing was 0.08 ± 0.08% for whole-brain CVR values and ranged from 0.16% to 0.88% in major brain regions, with ICC of absolute agreement above 0.9959 for all brain regions. Inter-scanner CoV was found to be 6.90 ± 5.08% for whole-brain CVR values, and ranged from 4.69% to 12.71% in major brain regions, which are comparable to intra-session CoVs obtained from the same scanners on the same day. ICC of consistency between the two scanners was 0.8498 for whole-brain CVR and ranged from 0.8052 to 0.9185 across major brain regions. In the test-retest evaluation, test-retest CoV across different days was found to be 18.29 ± 17.12% for whole-brain CVR values, and ranged from 16.58% to 19.52% in major brain regions, with ICC of absolute agreement ranged from 0.6480 to 0.7785. These results demonstrated good inter-rater, inter-scanner, and test-retest reliability in healthy volunteers, and suggested that CO2-CVR has suitable instrumental properties for use as an imaging biomarker of cerebrovascular function in multi-site and longitudinal observational studies and clinical trials.
Collapse
Affiliation(s)
- Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Brian T Gold
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Karl G Helmer
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Kay Jann
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gregory Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Pavel Rodriguez
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Herpreet Singh
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeffrey F Thompson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Danny J J Wang
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Troy AM, Cheng HM. Human microvascular reactivity: a review of vasomodulating stimuli and non-invasive imaging assessment. Physiol Meas 2021; 42. [PMID: 34325417 DOI: 10.1088/1361-6579/ac18fd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
The microvasculature serves an imperative function in regulating perfusion and nutrient exchange throughout the body, adaptively altering blood flow to preserve hemodynamic and metabolic homeostasis. Its normal functioning is vital to tissue health, whereas its dysfunction is present in many chronic conditions, including diabetes, heart disease, and cognitive decline. As microvascular dysfunction often appears early in disease progression, its detection can offer early diagnostic information. To detect microvascular dysfunction, one uses imaging to probe the microvasculature's ability to react to a stimulus, also known as microvascular reactivity (MVR). An assessment of MVR requires an integrated understanding of vascular physiology, techniques for stimulating reactivity, and available imaging methods to capture the dynamic response. Practical considerations, including compatibility between the selected stimulus and imaging approach, likewise require attention. In this review, we provide a comprehensive foundation necessary for informed imaging of MVR, with a particular focus on the challenging endeavor of assessing microvascular function in deep tissues.
Collapse
Affiliation(s)
- Aaron M Troy
- Institute of Biomedical Engineering, University of Toronto, Toronto, CANADA
| | | |
Collapse
|
16
|
van der Thiel MM, Freeze WM, Verheggen ICM, Wong SM, de Jong JJA, Postma AA, Hoff EI, Gronenschild EHBM, Verhey FR, Jacobs HIL, Ramakers IHGB, Backes WH, Jansen JFA. Associations of increased interstitial fluid with vascular and neurodegenerative abnormalities in a memory clinic sample. Neurobiol Aging 2021; 106:257-267. [PMID: 34320463 DOI: 10.1016/j.neurobiolaging.2021.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022]
Abstract
The vascular and neurodegenerative processes related to clinical dementia cause cell loss which induces, amongst others, an increase in interstitial fluid (ISF). We assessed microvascular, parenchymal integrity, and a proxy of ISF volume alterations with intravoxel incoherent motion imaging in 21 healthy controls and 53 memory clinic patients - mainly affected by neurodegeneration (mild cognitive impairment, Alzheimer's disease dementia), vascular pathology (vascular cognitive impairment), and presumed to be without significant pathology (subjective cognitive decline). The microstructural components were quantified with spectral analysis using a non-negative least squares method. Linear regression was employed to investigate associations of these components with hippocampal and white matter hyperintensity (WMH) volumes. In the normal appearing white matter, a large fint (a proxy of ISF volume) was associated with a large WMH volume and low hippocampal volume. Likewise, a large fint value was associated with a lower hippocampal volume in the hippocampi. Large ISF volume (fint) was shown to be a prominent factor associated with both WMHs and neurodegenerative abnormalities in memory clinic patients and is argued to play a potential role in impaired glymphatic functioning.
Collapse
Affiliation(s)
- Merel M van der Thiel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Whitney M Freeze
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Inge C M Verheggen
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Sau May Wong
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joost J A de Jong
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Alida A Postma
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Erik I Hoff
- Department of Neurology, Zuyderland Medical Center Heerlen, Heerlen, the Netherlands
| | - Ed H B M Gronenschild
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Frans R Verhey
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Heidi I L Jacobs
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Inez H G B Ramakers
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands; School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Alzheimer Center Limburg, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
17
|
Protective Factors Modulate the Risk of Beta Amyloid in Alzheimer's Disease. Behav Neurol 2020; 2020:7029642. [PMID: 33178360 PMCID: PMC7647774 DOI: 10.1155/2020/7029642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 12/01/2022] Open
Abstract
Aim To identify the factors protecting Abeta-positive subjects with normal cognition (NC) or mild cognitive impairment (MCI) from conversion to Alzheimer's disease (AD). Methods Subjects with MCI in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, with baseline data for neuropsychological tests, brain beta amyloid (Abeta), magnetic resonance imaging (MRI), APOE genotyping, and 18F-FDG-PET (FDG), were included for analysis. Results Elevated brain amyloid was associated with a higher risk of conversion from MCI to AD (41.5%) relative to Abeta levels of <1.231 (5.5%) but was not associated with conversion from NC to AD (0.0 vs. 1.4%). In the multivariate Cox regression analyses, elevated Abeta increased the risk of AD, while higher whole-brain cerebral glucose metabolism (CGM) assessed by FDG decreased the risk of AD in subjects with the same amount of Abeta. Even in the patients with heavily elevated brain amyloid, those with FDG > 5.946 had a lower risk of AD. ApoE4 carrier status did not influence the protective effect. Conclusion Higher average CGM based on FDG modified the progression to AD, indicating a protective function. The results suggest that the inclusion of this CGM measured by FDG would enrich clinical trial design and that increasing CGM along with the use of anti-Abeta agents might be a potential prevention strategy for AD.
Collapse
|
18
|
Ashinoff BK, Mayhew SD, Mevorach C. The same, but different: Preserved distractor suppression in old age is implemented through an age-specific reactive ventral fronto-parietal network. Hum Brain Mapp 2020; 41:3938-3955. [PMID: 32573907 PMCID: PMC7469802 DOI: 10.1002/hbm.25097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown age-related impairments in the ability to suppress salient distractors. One possibility is that this is mediated by age-related impairments in the recruitment of the left intraparietal sulcus (Left IPS), which has been shown to mediate the suppression of salient distractors in healthy, young participants. Alternatively, this effect may be due to a shift in engagement from proactive control to reactive control, possibly to compensate for age-related impairments in proactive control. Another possibility is that this is due to changes in the functional specificity of brain regions that mediate salience suppression, expressed in changes in spontaneous connectivity of these regions. We assessed these possibilities by having participants engage in a proactive distractor suppression task while in an fMRI scanner. Although we did not find any age-related differences in behavior, the young (N = 15) and older (N = 15) cohorts engaged qualitatively distinctive brain networks to complete the task. Younger participants engaged the predicted proactive control network, including the Left IPS. On the other hand, older participants simultaneously engaged both a proactive and a reactive network, but this was not a consequence of reduced network specificity as resting state functional connectivity was largely comparable in both age groups. Furthermore, improved behavioral performance for older adults was associated with increased resting state functional connectivity between these two networks. Overall, the results of this study suggest that age-related differences in the recruitment of a left lateralized ventral fronto-parietal network likely reflect the specific recruitment of reactive control mechanisms for distractor inhibition.
Collapse
Affiliation(s)
- Brandon K. Ashinoff
- Centre for Human Brain Health (CHBH), School of PsychologyUniversity of BirminghamEdgbastonUK
| | - Stephen D. Mayhew
- Centre for Human Brain Health (CHBH), School of PsychologyUniversity of BirminghamEdgbastonUK
| | - Carmel Mevorach
- Centre for Human Brain Health (CHBH), School of PsychologyUniversity of BirminghamEdgbastonUK
| |
Collapse
|
19
|
Wang X, Ding D, Zhao Q, Liang X, Peng L, Zhao X, Xi Q, Min Z, Wang W, Xu X, Guo Q, Wang PJ. Brain hemodynamic changes in amnestic mild cognitive impairment measured by pulsed arterial spin labeling. Aging (Albany NY) 2020; 12:4348-4356. [PMID: 32167487 PMCID: PMC7093201 DOI: 10.18632/aging.102888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/22/2020] [Indexed: 01/10/2023]
Abstract
We used pulsed arterial spin labeling (PASL) to investigate differences in cerebral blood flow (CBF) between 26 patients with amnestic mild cognitive impairment (aMCI) and 27 controls with normal cognition (NC). Hypoperfusion was observed in the right temporal pole of the middle temporal gyrus and the right inferior temporal gyrus in the aMCI compared with NC group. Interestingly, hyperperfusion was observed in the left temporal pole of the middle temporal gyrus, left superior temporal gyrus, bilateral precuneus, postcentral gyrus, right inferior parietal lobule, and right angular gyrus in the aMCI group, which likely resulted from a compensatory mechanism to maintain advanced neural activities. We found that mean CBF in the right inferior temporal gyrus, precuneus, and postcentral gyrus was positively correlated with cognitive ability in the aMCI but not NC group. Collectively, our data indicate that PASL is a useful noninvasive technique for monitoring changes in CBF and predicting cognitive decline in aMCI.
Collapse
Affiliation(s)
- Xiangbin Wang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Ling Peng
- Department of Radiology, Shanghai Liqun Hospital, Shanghai 200333, PR China
| | - Xiaohu Zhao
- Department of Radiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Qian Xi
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Zhang Min
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Wei Wang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Xiaowen Xu
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Qihao Guo
- Department of Geriatrics, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200233, PR China
| | - Pei-Jun Wang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| |
Collapse
|
20
|
Li J, Liu X, Zhang D, Zhang Y, Wang R, Yuan J, Zhao J. Cognitive Performance Profile in Pediatric Moyamoya Disease Patients and Its Relationship With Regional Cerebral Blood Perfusion. Front Neurol 2019; 10:1308. [PMID: 31920931 PMCID: PMC6920207 DOI: 10.3389/fneur.2019.01308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/26/2019] [Indexed: 11/13/2022] Open
Abstract
Object: Moyamoya disease affects the cognitive function of pediatric patients, and compromised cerebral blood flow might be the potential cause. We aimed to explore the specific correlation between cognitive impairment and regional perfusion status in pediatric moyamoya disease patients. Methods: We prospectively enrolled consecutive pediatric moyamoya disease patients admitted to Beijing Tiantan Hospital from July 2017 to March 2019. Arterial spin-labeling magnetic resonance and the Wechsler Intelligence Scale for Children (the 4th edition) were performed on all participants. The cognitive performance of patients was analyzed, and its correlation to cerebral perfusion status was also investigated in the region of interest-based analysis. Results: A total of 21 patients met the inclusion criteria (mean aged 11.14 ± 2.82, male: female = 11:10). Six patients (28.6%) showed no cognitive deficits in any index score, while 15 (71.4%) showed cognitive deficits with differing severity. Nine (42.9%) patients showed overall cognitive impairment, and all cognitive index scores except for Verbal Comprehension Index were significantly lower than the mean scores of normative data with corresponding age. Perceptual Reasoning Index (p = 0.019) were statistically lower in patients with radiologically confirmed cerebral infarction. Suzuki stage of the left hemisphere negatively correlated to Full-scale Intelligence Quotient (r = −0.452, p = 0.039). Region of Interest analysis showed that cerebral blood flow of the left temporal lobe independently associated with the Processing Speed Index (β = 0.535, p = 0.041). Conclusion: Pediatric moyamoya disease patients exhibited different levels of cognitive impairment. Cerebral infarction is related to poorer perceptual reasoning ability. Cerebral blood flow in the left temporal lobe positively correlates with processing speed.
Collapse
Affiliation(s)
- Jiaxi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xingju Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jing Yuan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|