1
|
Vermunt L, Sutphen CL, Dicks E, de Leeuw DM, Allegri RF, Berman SB, Cash DM, Chhatwal JP, Cruchaga C, Day GS, Ewers M, Farlow MR, Fox NC, Ghetti B, Graff-Radford NR, Hassenstab J, Jucker M, Karch CM, Kuhle J, Laske C, Levin J, Masters CL, McDade E, Mori H, Morris JC, Perrin RJ, Preische O, Schofield PR, Suárez-Calvet M, Xiong C, Scheltens P, Teunissen CE, Visser PJ, Bateman RJ, Benzinger TLS, Fagan AM, Gordon BA, Tijms BM. Axonal damage and inflammation response are biological correlates of decline in small-world values: a cohort study in autosomal dominant Alzheimer's disease. Brain Commun 2024; 6:fcae357. [PMID: 39440304 PMCID: PMC11495221 DOI: 10.1093/braincomms/fcae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The grey matter of the brain develops and declines in coordinated patterns during the lifespan. Such covariation patterns of grey matter structure can be quantified as grey matter networks, which can be measured with magnetic resonance imaging. In Alzheimer's disease, the global organization of grey matter networks becomes more random, which is captured by a decline in the small-world coefficient. Such decline in the small-world value has been robustly associated with cognitive decline across clinical stages of Alzheimer's disease. The biological mechanisms causing this decline in small-world values remain unknown. Cerebrospinal fluid (CSF) protein biomarkers are available for studying diverse pathological mechanisms in humans and can provide insight into decline. We investigated the relationships between 10 CSF proteins and small-world coefficient in mutation carriers (N = 219) and non-carriers (N = 136) of the Dominantly Inherited Alzheimer Network Observational study. Abnormalities in Amyloid beta, Tau, synaptic (Synaptosome associated protein-25, Neurogranin) and neuronal calcium-sensor protein (Visinin-like protein-1) preceded loss of small-world coefficient by several years, while increased levels in CSF markers for inflammation (Chitinase-3-like protein 1) and axonal injury (Neurofilament light) co-occurred with decreasing small-world values. This suggests that axonal loss and inflammation play a role in structural grey matter network changes.
Collapse
Affiliation(s)
- Lisa Vermunt
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Neurochemistry Laboratory, Departmentt of Laboratory Medicine, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | | | - Ellen Dicks
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Diederick M de Leeuw
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | - Ricardo F Allegri
- Instituto de Investigaciones Neurológicas FLENI, Buenos Aires, Argentina
| | - Sarah B Berman
- Department of Neurology, Alzheimer’s Disease Research Center, and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carlos Cruchaga
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Martin R Farlow
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Nick C Fox
- Dementia Research Institute at UCL, University College London Institute of Neurology, London W1T 7NF, UK
- Department of Neurodegenerative Disease, Dementia Research Centre, London WC1N 3AR, UK
| | - Bernardino Ghetti
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | | | - Jason Hassenstab
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Celeste M Karch
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, University Hospital and University Basel, 4031 Basel, Switzerland
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Ludwig-Maximilians-Universität München, D-80539 München, Germany
| | - Colin L Masters
- Florey Institute, Melbourne, Parkville Vic 3052, Australia
- The University of Melbourne, Melbourne, Parkville Vic 3052, Australia
| | - Eric McDade
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, 558-8585 Osaka, Japan
| | - John C Morris
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard J Perrin
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Peter R Schofield
- Neuroscience Research Australia & School of Medical Sciences, NSW 2052 Sydney, Sydney, Australia
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, 08003 Barcelona, Spain
| | - Chengjie Xiong
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip Scheltens
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Life Science Partners, 1071 DV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Departmentt of Laboratory Medicine, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, 6229 ER Maastricht, Netherlands
| | | | | | - Anne M Fagan
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian A Gordon
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Betty M Tijms
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ma J, Lu J, Wu J, Xiang Y, Zheng M, Hua X, Xu J. The moderating role of information processing speed in the relationship between brain remodeling and episodic memory in amnestic mild cognitive impairment. Alzheimers Dement 2024; 20:6793-6809. [PMID: 39193657 PMCID: PMC11485304 DOI: 10.1002/alz.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION The role of information processing speed (IPS) on relationships between episodic memory (EM) and central remodeling features in amnestic mild cognitive impairment (aMCI) was investigated. METHODS Neuropsychological evaluations and multimodal magnetic resonance imaging were performed on 48 patients diagnosed with aMCI and 50 healthy controls (HC). Moderation models explored the moderating effect of IPS on associations between EM and imaging features at single-region, connectivity, and network levels. RESULTS IPS significantly enhanced the positive correlations between recall and cortical thickness of left inferior temporal gyrus. IPS also notably amplified negative correlations between recognition and functional connectivity (FC) of left inferior parietal lobe and right occipital, as well as between recall/recognition and nodal clustering coefficient of left anterior cingulate cortex. DISCUSSION IPS functioned as a moderator of associations between recall and neuroimaging metrics at the "single region-connectivity-network" level, providing new insights for cognitive rehabilitation in aMCI patients. HIGHLIGHTS aMCI patients exhibited brain functional and structural remodeling alterations. IPS moderated relations between episodic memory and brain remodeling metrics. Therapy targeted at IPS can be considered for improving episodic memory in aMCI.
Collapse
Affiliation(s)
- Jie Ma
- Department of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Juan‐Juan Lu
- Department of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jia‐Jia Wu
- Department of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yun‐Ting Xiang
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mou‐Xiong Zheng
- Department of Traumatology and OrthopedicsYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu‐Yun Hua
- Department of Traumatology and OrthopedicsYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- Department of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
| |
Collapse
|
3
|
Fang M, Huang H, Yang J, Zhang S, Wu Y, Huang CC. Changes in microstructural similarity of hippocampal subfield circuits in pathological cognitive aging. Brain Struct Funct 2024; 229:311-321. [PMID: 38147082 DOI: 10.1007/s00429-023-02721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/02/2023] [Indexed: 12/27/2023]
Abstract
The hippocampal networks support multiple cognitive functions and may have biological roles and functions in pathological cognitive aging (PCA) and its associated diseases, which have not been explored. In the current study, a total of 116 older adults with 39 normal controls (NC) (mean age: 52.3 ± 13.64 years; 16 females), 39 mild cognitive impairment (MCI) (mean age: 68.15 ± 9.28 years, 14 females), and 38 dementia (mean age: 73.82 ± 8.06 years, 8 females) were included. The within-hippocampal subfields and the cortico-hippocampal circuits were assessed via a micro-structural similarity network approach using T1w/T2w ratio and regional gray matter tissue probability maps, respectively. An analysis of covariance was conducted to identify between-group differences in structural similarities among hippocampal subfields. The partial correlation analyses were performed to associate changes in micro-structural similarities with cognitive performance in the three groups, controlling the effect of age, sex, education, and cerebral small-vessel disease. Compared with the NC, an altered T1w/T2w ratio similarity between left CA3 and left subiculum was observed in the mild cognitive impairment (MCI) and dementia. The left CA3 was the most impaired region correlated with deteriorated cognitive performance. Using these regions as seeds for GM similarity comparisons between hippocampal subfields and cortical regions, group differences were observed primarily between the left subiculum and several cortical regions. By utilizing T1w/T2w ratio as a proxy measure for myelin content, our data suggest that the imbalanced synaptic weights within hippocampal CA3 provide a substrate to explain the abnormal firing characteristics of hippocampal neurons in PCA. Furthermore, our work depicts specific brain structural characteristics of normal and pathological cognitive aging and suggests a potential mechanism for cognitive aging heterogeneity.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanghuang Huang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Shuying Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Yujie Wu
- Changning Mental Health Center, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Changning Mental Health Center, Shanghai, China.
| |
Collapse
|
4
|
Yu H, Ding Y, Wei Y, Dyrba M, Wang D, Kang X, Xu W, Zhao K, Liu Y. Morphological connectivity differences in Alzheimer's disease correlate with gene transcription and cell-type. Hum Brain Mapp 2023; 44:6364-6374. [PMID: 37846762 PMCID: PMC10681645 DOI: 10.1002/hbm.26512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent forms of dementia in older individuals. Convergent evidence suggests structural connectome abnormalities in specific brain regions are linked to AD progression. The biological basis underpinnings of these connectome changes, however, have remained elusive. We utilized an individual regional mean connectivity strength (RMCS) derived from a regional radiomics similarity network to capture altered morphological connectivity in 1654 participants (605 normal controls, 766 mild cognitive impairment [MCI], and 283 AD). Then, we also explored the biological basis behind these morphological changes through gene enrichment analysis and cell-specific analysis. We found that RMCS probes of the hippocampus and medial temporal lobe were significantly altered in AD and MCI, with these differences being spatially related to the expression of AD-risk genes. In addition, gene enrichment analysis revealed that the modulation of chemical synaptic transmission is the most relevant biological process associated with the altered RMCS in AD. Notably, neuronal cells were found to be the most pertinent cells in the altered RMCS. Our findings shed light on understanding the biological basis of structural connectome changes in AD, which may ultimately lead to more effective diagnostic and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Huiying Yu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yanhui Ding
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yongbin Wei
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Dong Wang
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Xiaopeng Kang
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Weizhi Xu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Kun Zhao
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Yong Liu
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | | |
Collapse
|
5
|
Fu Z, Zhao M, Li Y, He Y, Wang X, Zhou Z, Han Y, Li S. Heterogeneity in subjective cognitive decline in the Sino Longitudinal Study on Cognitive Decline(SILCODE): Empirically derived subtypes, structural and functional verification. CNS Neurosci Ther 2023; 29:4032-4042. [PMID: 37475187 PMCID: PMC10651943 DOI: 10.1111/cns.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 06/17/2023] [Indexed: 07/22/2023] Open
Abstract
AIMS We evaluated whether Subjective Cognitive Decline (SCD) subtypes could be empirically derived within the Sino Longitudinal Study on Cognitive Decline (SILCODE) SCD cohort and examined associated neuroimaging markers, biomarkers, and clinical outcomes. METHODS A cluster analysis was performed on eight neuropsychological test scores from 124 SCD SILCODE participants and 57 normal control (NC) subjects. Structural and functional neuroimaging indices were used to evaluate the SCD subgroups. RESULTS Four subtypes emerged: (1) dysexecutive/mixed SCD (n = 23), (2) neuropsychiatric SCD (n = 24), (3) amnestic SCD (n = 22), and (4) cluster-derived normal (n = 55) who exhibited normal performance in neuropsychological tests. Compared with the NC group, each subgroup showed distinct patterns in gray matter (GM) volume and the amplitude of low-frequency fluctuations (ALFF). Lower fractional anisotropy (FA) values were only found in the neuropsychiatric SCD group relative to NC. CONCLUSION The identification of empirically derived SCD subtypes demonstrates the presence of heterogeneity in SCD neuropsychological profiles. The cluster-derived normal group may represent the majority of SCD individuals who do not show progressive cognitive decline; the dysexecutive/mixed SCD and amnestic SCD might represent high-risk groups with progressing cognitive decline; and finally, the neuropsychiatric SCD may represent a new topic in SCD research.
Collapse
Affiliation(s)
- Zhenrong Fu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU)Ministry of EducationWuhanChina
- School of Psychology, Key Laboratory of Human Development and Mental Health of Hubei ProvinceCentral China Normal UniversityWuhanChina
| | - Mingyan Zhao
- Department of PsychologyTangshan Gongren HospitalTangshanChina
| | - Yuxia Li
- Department of NeurologyTangshan Central HospitalTangshanChina
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yirong He
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Xuetong Wang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Zongkui Zhou
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU)Ministry of EducationWuhanChina
- School of Psychology, Key Laboratory of Human Development and Mental Health of Hubei ProvinceCentral China Normal UniversityWuhanChina
| | - Ying Han
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical EngineeringHainan UniversityHaikouChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
- National Clinical Research Center for Geriatric DisordersBeijingChina
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Shuyu Li
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| |
Collapse
|
6
|
Yue J, Han S, Li A, Wei Z, Cao D, Gao S, Li X, Yang G, Zhang Q. Multimodal magnetic resonance imaging on brain structure and function changes in subjective cognitive decline: a mini-review. Front Aging Neurosci 2023; 15:1259190. [PMID: 37790282 PMCID: PMC10543888 DOI: 10.3389/fnagi.2023.1259190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Subjective cognitive decline (SCD) is the initial stage of Alzheimer's disease (AD). Early identification of SCD and its risk factors is of great importance for targeted interventions and for delaying the onset of AD. We reviewed the relevant literature on structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), and other techniques regarding SCD research in recent years. This study applied sMRI and fMRI techniques to explore abnormal brain structures and functions, which may help provide a basis for SCD diagnosis.
Collapse
Affiliation(s)
- Jinhuan Yue
- Shenzhen Frontiers in Chinese Medicine Research Co., Ltd., Shenzhen, China
- Department of Acupuncture and Moxibustion, Vitality University, Hayward, CA, United States
| | - Shengwang Han
- Third Ward of Rehabilitation Department, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ang Li
- Servier (Beijing) Pharmaceutical Research & Development CO., Ltd., Beijing, China
| | - Zeyi Wei
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Danna Cao
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shenglan Gao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoling Li
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Qinhong Zhang
- Shenzhen Frontiers in Chinese Medicine Research Co., Ltd., Shenzhen, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Ding H, Wang Z, Tang Y, Wang T, Qi M, Dou W, Qian L, Gao Y, Zhong Q, Yang X, Tian H, Zhang L, Zhu Y. Topological properties of individual gray matter morphological networks in identifying the preclinical stages of Alzheimer's disease: a preliminary study. Quant Imaging Med Surg 2023; 13:5258-5270. [PMID: 37581056 PMCID: PMC10423385 DOI: 10.21037/qims-22-1373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/08/2023] [Indexed: 08/16/2023]
Abstract
Background Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are preclinical stages of Alzheimer's disease (AD). Individual biomarkers are essential for evaluating altered neurological outcomes at both SCD and MCI stages for early diagnosis and intervention of AD. In this study, we aimed to investigate the relationships between topological properties of the individual brain morphological network and clinical cognitive performances among healthy controls (HCs) and patients with SCD or MCI. Methods The topological measurements of individual morphological networks were analyzed using graph theory, and inter-group differences of standard graph topology were correlated and regressed to scores of clinical cognitive functions. Results Compared with HCs, the topology of the individual morphological networks in SCD and MCI patients was significantly altered. At the global level, altered topology was characterized by lower global efficiency, shorter characteristics path length, and normalized characteristics path length [all P<0.05, false discovery rate (FDR) corrected]. In addition, at the regional level, SCD and MCI patients exhibited abnormal degree centrality in the caudate nucleus and nodal efficiency in the caudate nucleus, right insula, lenticular nucleus, and putamen (all P<0.05, FDR corrected). Conclusions The topological features of individual gray matter morphological networks may serve as biomarkers to improve disease prognosis and intervention in the early stages of AD, namely SCD and MCI. Moreover, these findings may further elucidate the relationships between brain morphological alterations and cognitive dysfunctions in SCD and MCI.
Collapse
Affiliation(s)
- Hongyuan Ding
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihao Wang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Yin Tang
- Department of Medical Imaging, Jingjiang People’s Hospital, Jingjiang, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Yaxin Gao
- Department of Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| | - Qian Zhong
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Huifang Tian
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Tang Y, Cao M, Li Y, Lin Y, Wu X, Chen M. Altered structural covariance of locus coeruleus in individuals with significant memory concern and patients with mild cognitive impairment. Cereb Cortex 2023; 33:8523-8533. [PMID: 37130822 PMCID: PMC10321106 DOI: 10.1093/cercor/bhad137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023] Open
Abstract
The locus coeruleus (LC) is the site where tau accumulation is preferentially observed pathologically in Alzheimer's disease (AD) patients, but the changes in gray matter co-alteration patterns between the LC and the whole brain in the predementia phase of AD remain unclear. In this study, we estimated and compared the gray matter volume of the LC and its structural covariance (SC) with the whole brain among 161 normal healthy controls (HCs), 99 individuals with significant memory concern (SMC) and 131 patients with mild cognitive impairment (MCI). We found that SC decreased in MCI groups, which mainly involved the salience network and default mode network. These results imply that seeding from LC, the gray matter network disruption and disconnection appears early in the MCI group. The altered SC network seeding from the LC can serve as an imaging biomarker for discriminating the patients in the potential predementia phase of AD from the normal subjects.
Collapse
Affiliation(s)
- Yingmei Tang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Minghui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Yunhua Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Yuting Lin
- School of Psychology, Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, No.55 Zhongshan Avenue West, Guangzhou 510631, Guangdong, China
| | - Xiaoyan Wu
- School of Psychology, Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, No.55 Zhongshan Avenue West, Guangzhou 510631, Guangdong, China
| | - Meiwei Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| |
Collapse
|
9
|
Chen Q, Chen F, Long C, Zhu Y, Jiang Y, Zhu Z, Lu J, Zhang X, Nedelska Z, Hort J, Zhang B. Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline. Alzheimers Res Ther 2023; 15:86. [PMID: 37098612 PMCID: PMC10127414 DOI: 10.1186/s13195-023-01233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/18/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer's disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals. METHODS One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the progression rate to MCI was compared between the G-SCD and B-SCD groups. RESULTS Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD group had a significantly higher conversion rate to MCI than the G-SCD group. CONCLUSION Compared to SCD participants with good spatial navigation performance, SCD participants with bad performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcortical nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise clinical decisions for SCD individuals who seek medical help.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Futao Chen
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Cong Long
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yajing Zhu
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yaoxian Jiang
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengyang Zhu
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiaming Lu
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhang
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China.
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China.
- Institute of Brain Science, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Vermunt L, Sutphen C, Dicks E, de Leeuw DM, Allegri R, Berman SB, Cash DM, Chhatwal JP, Cruchaga C, Day G, Ewers M, Farlow M, Fox NC, Ghetti B, Graff-Radford N, Hassenstab J, Jucker M, Karch CM, Kuhle J, Laske C, Levin J, Masters CL, McDade E, Mori H, Morris JC, Perrin RJ, Preische O, Schofield PR, Suárez-Calvet M, Xiong C, Scheltens P, Teunissen CE, Visser PJ, Bateman RJ, Benzinger TLS, Fagan AM, Gordon BA, Tijms BM. Axonal damage and astrocytosis are biological correlates of grey matter network integrity loss: a cohort study in autosomal dominant Alzheimer disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.21.23287468. [PMID: 37016671 PMCID: PMC10071836 DOI: 10.1101/2023.03.21.23287468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Brain development and maturation leads to grey matter networks that can be measured using magnetic resonance imaging. Network integrity is an indicator of information processing capacity which declines in neurodegenerative disorders such as Alzheimer disease (AD). The biological mechanisms causing this loss of network integrity remain unknown. Cerebrospinal fluid (CSF) protein biomarkers are available for studying diverse pathological mechanisms in humans and can provide insight into decline. We investigated the relationships between 10 CSF proteins and network integrity in mutation carriers (N=219) and noncarriers (N=136) of the Dominantly Inherited Alzheimer Network Observational study. Abnormalities in Aβ, Tau, synaptic (SNAP-25, neurogranin) and neuronal calcium-sensor protein (VILIP-1) preceded grey matter network disruptions by several years, while inflammation related (YKL-40) and axonal injury (NfL) abnormalities co-occurred and correlated with network integrity. This suggests that axonal loss and inflammation play a role in structural grey matter network changes. Key points Abnormal levels of fluid markers for neuronal damage and inflammatory processes in CSF are associated with grey matter network disruptions.The strongest association was with NfL, suggesting that axonal loss may contribute to disrupted network organization as observed in AD.Tracking biomarker trajectories over the disease course, changes in CSF biomarkers generally precede changes in brain networks by several years.
Collapse
|
11
|
Daamen M, Scheef L, Li S, Grothe MJ, Gaertner FC, Buchert R, Buerger K, Dobisch L, Drzezga A, Essler M, Ewers M, Fliessbach K, Herrera Melendez AL, Hetzer S, Janowitz D, Kilimann I, Krause BJ, Lange C, Laske C, Munk MH, Peters O, Priller J, Ramirez A, Reimold M, Rominger A, Rostamzadeh A, Roeske S, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel SJ, Wagner M, Düzel E, Jessen F, Boecker H. Cortical Amyloid Burden Relates to Basal Forebrain Volume in Subjective Cognitive Decline. J Alzheimers Dis 2023; 95:1013-1028. [PMID: 37638433 DOI: 10.3233/jad-230141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Atrophy of cholinergic basal forebrain (BF) nuclei is a frequent finding in magnetic resonance imaging (MRI) volumetry studies that examined patients with prodromal or clinical Alzheimer's disease (AD), but less clear for individuals in earlier stages of the clinical AD continuum. OBJECTIVE To examine BF volume reductions in subjective cognitive decline (SCD) participants with AD pathologic changes. METHODS The present study compared MRI-based BF volume measurements in age- and sex-matched samples of N = 24 amyloid-positive and N = 24 amyloid-negative SCD individuals, based on binary visual ratings of Florbetaben positron emission tomography (PET) measurements. Additionally, we assessed associations of BF volume with cortical amyloid burden, based on semiquantitative Centiloid (CL) analyses. RESULTS Group differences approached significance for BF total volume (p = 0.061) and the Ch4 subregion (p = 0.059) only, showing the expected relative volume reductions for the amyloid-positive subgroup. There were also significant inverse correlations between BF volumes and CL values, which again were most robust for BF total volume and the Ch4 subregion. CONCLUSIONS The results are consistent with the hypothesis that amyloid-positive SCD individuals, which are considered to represent a transitional stage on the clinical AD continuum, already show incipient alterations of BF integrity. The negative association with a continuous measure of cortical amyloid burden also suggests that this may reflect an incremental process. Yet, further research is needed to evaluate whether BF changes already emerge at "grey zone" levels of amyloid accumulation, before amyloidosis is reliably detected by PET visual readings.
Collapse
Affiliation(s)
- Marcel Daamen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lukas Scheef
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- RheinAhrCampus, University of Applied Sciences Koblenz, Remagen, Germany
| | - Shumei Li
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Ralph Buchert
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian University Munich, Munich, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Drzezga
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Michael Ewers
- Institute for Clinical Radiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Ana Lucia Herrera Melendez
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center of Advanced Neuroimaging, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian University Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, UK
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Medical Faculty, Cologne, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Matthias Reimold
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-University, Tübingen, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ayda Rostamzadeh
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Boecker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
12
|
Qiu T, Zeng Q, Zhang Y, Luo X, Xu X, Li X, Shen Z, Li K, Wang C, Huang P, Zhang M, Dai S, Xie F. Altered functional connectivity pattern of hippocampal subfields in individuals with objectively-defined subtle cognitive decline and its association with cognition and cerebrospinal fluid biomarkers. Eur J Neurosci 2022; 56:6227-6238. [PMID: 36342704 PMCID: PMC10100315 DOI: 10.1111/ejn.15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Recent studies have shown that in the preclinical phase of Alzheimer's disease (AD), subtle cognitive changes can be detected using sensitive neuropsychological measures, and have proposed the concept of objectively-defined subtle cognitive decline (Obj-SCD). We aimed to assess the functional alteration of hippocampal subfields in individuals with Obj-SCD and its association with cognition and pathological biomarkers. Forty-two participants with cognitively normal (CN), 29 with Obj-SCD, and 55 with mild cognitive impairment (MCI) were retrospectively collected from the ADNI database. Neuropsychological performance, functional MRI, and cerebrospinal fluid (CSF) data were obtained. We calculated the seed-based functional connectivity (FC) of hippocampal subfields (cornu ammonis1 [CA1], CA2/3/dentate gyrus [DG], and subiculum) with whole-brain voxels. Additionally, we analyzed the correlation between FC values of significantly altered regions and neuropsychological performance and CSF biomarkers. The Obj-SCD group showed lower FC between left CA1-CA2/3/DG and right thalamus and higher FC between right subiculum and right superior parietal gyrus (SPG) compared with the CN and MCI groups. In the Obj-SCD group, FC values between left CA2/3/DG and right thalamus were positively associated with Auditory Verbal Learning Test (AVLT) recognition (r = 0.395, p = 0.046) and CSF Aβ1-42 levels (r = 0.466, p = 0.019), and FC values between left CA1 and right thalamus were positively correlated with CSF Aβ1-42 levels (r = 0.530, p = 0.006). Taken together, dysfunction in CA1-CA2/3/DG subregions suggests subtle cognitive impairment and AD-specific pathological changes in individuals with Obj-SCD. Additionally, increased subiculum connectivity may indicate early functional compensation for subtle cognitive changes.
Collapse
Affiliation(s)
- Tiantian Qiu
- Department of RadiologyLinyi People's HospitalLinyiChina
| | - Qingze Zeng
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yusong Zhang
- Department of RadiologyLinyi People's HospitalLinyiChina
| | - Xiao Luo
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaopei Xu
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaodong Li
- Department of RadiologyLinyi People's HospitalLinyiChina
| | - Zhujing Shen
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Kaicheng Li
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Chao Wang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Shouping Dai
- Department of RadiologyLinyi People's HospitalLinyiChina
| | - Fei Xie
- Department of Equipment and Medical EngineeringLinyi People's HospitalLinyiChina
| | | |
Collapse
|
13
|
Xu K, Wei Y, Zhang S, Zhao L, Geng B, Mai W, Li P, Liang L, Chen D, Zeng X, Deng D, Liu P. Percentage amplitude of fluctuation and structural covariance changes of subjective cognitive decline in patients: A multimodal imaging study. Front Neurosci 2022; 16:888174. [PMID: 35937877 PMCID: PMC9354620 DOI: 10.3389/fnins.2022.888174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Back ground Subjective cognitive decline (SCD) may be the first clinical sign of Alzheimer’s disease (AD). The possible neural mechanisms of SCD are not well known. This study aimed to compare percent amplitude of fluctuation (PerAF) and structural covariance patterns in patients with SCD and healthy controls (HCs). Methods We enrolled 53 patients with SCD and 65 HCs. Resting-state functional magnetic resonance imaging (MRI) data and T1-weighted anatomical brain 3.0-T MRI scans were collected. The PerAF approach was applied to distinguish altered brain functions between the two groups. A whole-brain voxel-based morphometry analysis was performed, and all significant regions were selected as regions of interest (ROIs) for the structural covariance analysis. Statistical analysis was performed using two-sample t-tests, and multiple regressions were applied to examine the relationships between neuroimaging findings and clinical symptoms. Results Functional MRI results revealed significantly increased PerAF including the right hippocampus (HIPP) and right thalamus (THA) in patients with SCD relative to HCs. Gray matter volume (GMV) results demonstrated decreased GMV in the bilateral ventrolateral prefrontal cortex (vlPFC) and right insula in patients with SCD relative to HCs. Taking these three areas including the bilateral vlPFC and right insula as ROIs, differences were observed in the structural covariance of the ROIs with several regions between the two groups. Additionally, significant correlations were observed between neuroimaging findings and clinical symptoms. Conclusion Our study investigated the abnormal PerAF and structural covariance patterns in patients with SCD, which might provide new insights into the pathological mechanisms of SCD.
Collapse
Affiliation(s)
- Ke Xu
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Yichen Wei
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shuming Zhang
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Lihua Zhao
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Bowen Geng
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Wei Mai
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Pengyu Li
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Lingyan Liang
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Duoli Chen
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Xiao Zeng
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Demao Deng
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Demao Deng,
| | - Peng Liu
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
- *Correspondence: Peng Liu,
| |
Collapse
|
14
|
Sun W, Ueno D, Narumoto J. Brain Neural Underpinnings of Interoception and Decision-Making in Alzheimer's Disease: A Narrative Review. Front Neurosci 2022; 16:946136. [PMID: 35898412 PMCID: PMC9309692 DOI: 10.3389/fnins.2022.946136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
This study reviews recent literature on interoception directing decision-making in Alzheimer's disease (AD). According to the somatic marker hypothesis, signals from the internal body direct decision-making and involve the ventromedial prefrontal cortex (vmPFC). After reviewing relevant studies, we summarize the brain areas related to interoception and decision-making (e.g., vmPFC, hippocampus, amygdala, hypothalamus, anterior cingulate cortex, and insular cortex) and their roles in and relationships with AD pathology. Moreover, we outline the relationship among interoception, the autonomic nervous system, endocrine system, and AD pathology. We discuss that impaired interoception leads to decreased decision-making ability in people with AD from the perspective of brain neural underpinning. Additionally, we emphasize that anosognosia or reduced self-awareness and metacognition in AD are remarkably congruent with the malfunction of the autonomic nervous system regulating the interoceptive network. Furthermore, we propose that impaired interoception may contribute to a loss in the decision-making ability of patients with AD. However, there still exist empirical challenges in confirming this proposal. First, there has been no standardization for measuring or improving interoception to enhance decision-making ability in patients with AD. Future studies are required to better understand how AD pathology induces impairments in interoception and decision-making.
Collapse
|
15
|
Liu L, Wang T, Du X, Zhang X, Xue C, Ma Y, Wang D. Concurrent Structural and Functional Patterns in Patients With Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2022; 14:838161. [PMID: 35663572 PMCID: PMC9161636 DOI: 10.3389/fnagi.2022.838161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Amnestic mild cognitive impairment (aMCI) is a clinical subtype of MCI, which is known to have a high risk of developing Alzheimer's disease (AD). Although neuroimaging studies have reported brain abnormalities in patients with aMCI, concurrent structural and functional patterns in patients with aMCI were still unclear. In this study, we combined voxel-based morphometry (VBM), amplitude of low-frequency fluctuations (ALFFs), regional homogeneity (Reho), and resting-state functional connectivity (RSFC) approaches to explore concurrent structural and functional alterations in patients with aMCI. We found that, compared with healthy controls (HCs), both ALFF and Reho were decreased in the right superior frontal gyrus (SFG_R) and right middle frontal gyrus (MFG_R) of patients with aMCI, and both gray matter volume (GMV) and Reho were decreased in the left inferior frontal gyrus (IFG_L) of patients with aMCI. Furthermore, we took these overlapping clusters from VBM, ALFF, and Reho analyses as seed regions to analyze RSFC. We found that, compared with HCs, patients with aMCI had decreased RSFC between SFG_R and the right temporal lobe (subgyral) (TL_R), the MFG_R seed and left superior temporal gyrus (STG_L), left inferior parietal lobule (IPL_L), and right anterior cingulate cortex (ACC_R), the IFG_L seed and left precentral gyrus (PRG_L), left cingulate gyrus (CG_L), and IPL_L. These findings highlighted shared imaging features in structural and functional magnetic resonance imaging (MRI), suggesting that SFG_R, MFG_R, and IFG_L may play a major role in the pathophysiology of aMCI, which might be useful to better understand the underlying neural mechanisms of aMCI and AD.
Collapse
Affiliation(s)
- Li Liu
- Affiliated Mental Health Center, Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tenglong Wang
- School of Humanities and Management, Graduate School of Wannan Medical College, Wuhu, China
| | - Xiangdong Du
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiaobin Zhang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Chuang Xue
- Affiliated Mental Health Center, Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Ma
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Dong Wang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Yang F, Jiang X, Yue F, Wang L, Boecker H, Han Y, Jiang J. Exploring dynamic functional connectivity alterations in the preclinical stage of Alzheimer's disease: an exploratory study from SILCODE. J Neural Eng 2022; 19. [PMID: 35147522 DOI: 10.1088/1741-2552/ac542d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Exploring functional connectivity (FC) alterations is important for the understanding of underlying neuronal network alterations in subjective cognitive decline (SCD). The objective of this study was to prove that dynamic FC can better reflect the changes of brain function in individuals with SCD compared to static FC, and further to explore the association between FC alterations and amyloid pathology in the preclinical stage of Alzheimer's disease (AD). METHODS 101 normal control (NC) subjects, 97 SCDs, and 55 cognitive impairment (CI) subjects constituted the whole-cohort. Of these, 29 NCs and 52 SCDs with amyloid images were selected as the sub-cohort. First, independent components (ICs) were identified by independent component analysis and static and dynamic FC were calculated by pairwise correlation coefficient between ICs. Second, FC alterations were identified through group comparison, and seed-based dynamic FC analysis was done. Analysis of variance (ANOVA) was used to compare the seed-based dynamic FC maps and measure the group or amyloid effects. Finally, correlation analysis was conducted between the altered dynamic FC and amyloid burden. RESULTS The results showed that 42 ICs were revealed. Significantly altered dynamic FC included those between the salience/ventral attention network, the default mode network, and the visual network. Specifically, the thalamus/caudate (IC 25) drove the hub role in the group differences. In the seed-based dynamic FC analysis, the dynamic FC between the thalamus/caudate and the middle temporal/frontal gyrus was observed to be higher in the SCD and CI groups. Moreover, a higher dynamic FC between the thalamus/caudate and visual cortex was observed in the amyloid positive group. Finally, the altered dynamic FC was associated with the amyloid global standardized uptake value ratio (SUVr). CONCLUSION Our findings suggest SCD-related alterations could be more reflected by dynamic FC than static FC, and the alterations are associated with global SUVr.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai University, Shangda Road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| | - Xueyan Jiang
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Feng Yue
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Luyao Wang
- Shanghai University, Shangda road, Baoshan district, shanghai, Shanghai, 200444, CHINA
| | - Henning Boecker
- University Hospital Bonn, Positron Emission Tomography (PET) Group, Bonn, Germany, Bonn, Nordrhein-Westfalen, 53127, GERMANY
| | - Ying Han
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Jiehui Jiang
- Shanghai University, Shangda road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| |
Collapse
|
17
|
Huang P, Luan XH, Xie Z, Li MT, Chen SD, Liu J, Jia XZ, Cao L, Zhou HY. Altered Local Brain Amplitude of Fluctuations in Patients With Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:790632. [PMID: 34955817 PMCID: PMC8703136 DOI: 10.3389/fnagi.2021.790632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023] Open
Abstract
This study is aimed at investigating the characteristics of the spontaneous brain activity in patients with myotonic dystrophy type 1 (DM1). A total of 18 patients with DM1 and 18 healthy controls (HCs) were examined by resting-state functional MRI. Combined methods include amplitude of low-frequency fluctuations (ALFFs), the fractional amplitude of low-frequency fluctuations (fALFFs), and Wavelet transform-based ALFFs (Wavelet-ALFFs) with standardization, percent amplitude of fluctuation (PerAF) with/without standardization were applied to evaluate the spontaneous brain activity of patients with DM1. Compared with HCs, patients with DM1 showed decreased ALFFs and Wavelet-ALFFs in the bilateral precuneus (PCUN), angular gyrus (ANG), inferior parietal, but supramarginal and angular gyri (IPL), posterior cingulate gyrus (PCG), superior frontal gyrus, medial (SFGmed), middle occipital gyrus (MOG), which were mainly distributed in the brain regions of default mode network (DMN). Decreased ALFFs and Wavelet-ALFFs were also seen in bilateral middle frontal gyrus (MFG), inferior frontal gyrus, opercular part (IFGoperc), which were the main components of the executive control network (ECN). Patients with DM1 also showed decreased fALFFs in SFGmed.R, the right anterior cingulate and paracingulate gyri (ACGR), bilateral MFG. Reduced PerAF in bilateral PCUN, ANG, PCG, MOG, and IPLL as well as decreased PerAF without standardization in PCUNR and bilateral PCG also existed in patients with DM1. In conclusion, patients with DM1 had decreased activity in DMN and ECN with increased fluctuations in the temporal cortex and cerebellum. Decreased brain activity in DMN was the most repeatable and reliable with PCUN and PCG being the most specific imaging biomarker of brain dysfunction in patients with DM1.
Collapse
Affiliation(s)
- Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Hua Luan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Meng-Ting Li
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Ze Jia
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Li Cao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hai-Yan Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|