1
|
Feng M, Song Z, Zhou Z, Wu Z, Ma M, Liu Y, Wang Y, Dai H. Cognitive impairment mediates the white matter injury load and gait disorders in subcortical ischemic vascular disease. Brain Imaging Behav 2024:10.1007/s11682-024-00941-3. [PMID: 39316311 DOI: 10.1007/s11682-024-00941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Gait disorders are common in patients with subcortical ischemic vascular disease (SIVD). We aim to explore the impact of white matter (WM) damage on gait disorders in SIVD. 21 SIVD patients and 20 normal controls (NC) were included in the study. Montreal Cognitive Assessment (MoCA) was used to evaluate general cognition, while Speed-Accuracy Trade-Off (SAT) was used to assess executive function. Gait velocity, cadence, and stride length were measured. Diffusion Tensor Imaging (DTI) data were analyzed using Tract-Based Spatial Statistics (TBSS) and Peak Width of Skeletonized Mean Diffusivity (PSMD). The relationships among WM damage, gait disorders, and cognitive function were examined through mediation analysis. SIVD scored lower than NC in MoCA and SAT tests (P < 0.001). Gait velocity and stride length were decreased in SIVD. SIVD had lower PSMD (P < 0.001). PSMD correlated with gait parameters, which were totally mediated by MoCA and partially mediated by SAT. The fractional anisotropy (FA) and mean diffusivity (MD) of the genu of the corpus callosum (GCC) and body of CC (BCC) were correlated with gait parameters. The FA of the bilateral anterior corona radiata (ACR) was positively correlated with gait parameters, while the MD of the bilateral superior corona radiata (SCR), bilateral superior longitudinal fasciculus (SLF), and left external capsule (EC) were negatively correlated with them (P < 0.05). Gait impairments in SIVD were associated with cognitive deficits. Cognitive impairment mediated the WM damage and gait disorders. The microstructural alterations of CC, SLF, EC, and CR may be related to changes in gait.
Collapse
Affiliation(s)
- Mengmeng Feng
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou city, 215000, Jiangsu province, P.R. China
| | - Ziyang Song
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou city, 215000, Jiangsu province, P.R. China
| | - Zheping Zhou
- Department of Geratology, the First Affiliated Hospital of Soochow University, Suzhou city, 215000, Jiangsu province, P.R. China
| | - Zhiwei Wu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou city, 215000, Jiangsu province, P.R. China
| | - Mengya Ma
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou city, 215000, Jiangsu province, P.R. China
| | - Yuanqing Liu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou city, 215000, Jiangsu province, P.R. China
| | - Yueju Wang
- Department of Geratology, the First Affiliated Hospital of Soochow University, Suzhou city, 215000, Jiangsu province, P.R. China
| | - Hui Dai
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou city, 215000, Jiangsu province, P.R. China.
- Institute of Medical Imaging, Soochow University, Suzhou city, 215000, Jiangsu province, P.R. China.
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou city, 215123, Jiangsu province, P.R. China.
| |
Collapse
|
2
|
Peng YJ, Kuo CY, Chang SW, Lin CP, Tsai YH. Acceleration of brain aging after small-volume infarcts. Front Aging Neurosci 2024; 16:1409166. [PMID: 39391585 PMCID: PMC11464776 DOI: 10.3389/fnagi.2024.1409166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Previous studies have shown that stroke patients exhibit greater neuroimaging-derived biological "brain age" than control subjects. This difference, known as the brain age gap (BAG), is calculated by comparing the chronological age with predicted brain age and is used as an indicator of brain health and aging. However, whether stroke accelerates the process of brain aging in patients with small-volume infarcts has not been established. By utilizing longitudinal data, we aimed to investigate whether small-volume infarctions can significantly increase the BAG, indicating accelerated brain aging. Methods A total of 123 stroke patients presenting with small-volume infarcts were included in this retrospective study. The brain age model was trained via established protocols within the field of machine learning and the structural features of the brain from our previous study. We used t-tests and regression analyses to assess longitudinal brain age changes after stroke and the associations between brain age, acute stroke severity, and poststroke outcome factors. Results Significant brain aging occurred between the initial and 6-month follow-ups, with a mean increase in brain age of 1.04 years (t = 3.066, p < 0.05). Patients under 50 years of age experienced less aging after stroke than those over 50 years of age (p = 0.245). Additionally, patients with a National Institute of Health Stroke Scale score >3 at admission presented more pronounced adverse effects on brain aging, even after adjusting for confounders such as chronological age, sex, and total intracranial volume (F 1,117 = 7.339, p = 0.008, η 2 = 0.059). There were significant differences in the proportional brain age difference at 6 months among the different functional outcome groups defined by the Barthel Index (F 2,118 = 4.637, p = 0.012, η 2 = 0.073). Conclusion Stroke accelerates the brain aging process, even in patients with relatively small-volume infarcts. This phenomenon is particularly accentuated in elderly patients, and both stroke severity and poststroke functional outcomes are closely associated with accelerated brain aging. Further studies are needed to explore the mechanisms underlying the accelerated brain aging observed in stroke patients, with a particular focus on the structural alterations and plasticity of the brain following minor strokes.
Collapse
Affiliation(s)
- Ying-Ju Peng
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Diagnostic Radiology, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Yuan Kuo
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Wei Chang
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Diagnostic Radiology, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Yuan-Hsiung Tsai
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Diagnostic Radiology, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Wei YC, Kung YC, Lin CP, Chen CK, Lin C, Tseng RY, Chen YL, Huang WY, Chen PY, Chong ST, Shyu YC, Chang WC, Yeh CH. White matter alterations and their associations with biomarkers and behavior in subjective cognitive decline individuals: a fixel-based analysis. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:12. [PMID: 38778325 PMCID: PMC11110460 DOI: 10.1186/s12993-024-00238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Subjective cognitive decline (SCD) is an early stage of dementia linked to Alzheimer's disease pathology. White matter changes were found in SCD using diffusion tensor imaging, but there are known limitations in voxel-wise tensor-based methods. Fixel-based analysis (FBA) can help understand changes in white matter fibers and how they relate to neurodegenerative proteins and multidomain behavior data in individuals with SCD. METHODS Healthy adults with normal cognition were recruited in the Northeastern Taiwan Community Medicine Research Cohort in 2018-2022 and divided into SCD and normal control (NC). Participants underwent evaluations to assess cognitive abilities, mental states, physical activity levels, and susceptibility to fatigue. Neurodegenerative proteins were measured using an immunomagnetic reduction technique. Multi-shell diffusion MRI data were collected and analyzed using whole-brain FBA, comparing results between groups and correlating them with multidomain assessments. RESULTS The final enrollment included 33 SCD and 46 NC participants, with no significant differences in age, sex, or education between the groups. SCD had a greater fiber-bundle cross-section than NC (pFWE < 0.05) at bilateral frontal superior longitudinal fasciculus II (SLFII). These white matter changes correlate negatively with plasma Aβ42 level (r = -0.38, p = 0.01) and positively with the AD8 score for subjective cognitive complaints (r = 0.42, p = 0.004) and the Hamilton Anxiety Rating Scale score for the degree of anxiety (Ham-A, r = 0.35, p = 0.019). The dimensional analysis of FBA metrics and blood biomarkers found positive correlations of plasma neurofilament light chain with fiber density at the splenium of corpus callosum (pFWE < 0.05) and with fiber-bundle cross-section at the right thalamus (pFWE < 0.05). Further examination of how SCD grouping interacts between the correlations of FBA metrics and multidomain assessments showed interactions between the fiber density at the corpus callosum with letter-number sequencing cognitive score (pFWE < 0.01) and with fatigue to leisure activities (pFWE < 0.05). CONCLUSION Based on FBA, our investigation suggests white matter structural alterations in SCD. The enlargement of SLFII's fiber cross-section is linked to plasma Aβ42 and neuropsychiatric symptoms, which suggests potential early axonal dystrophy associated with Alzheimer's pathology in SCD. The splenium of the corpus callosum is also a critical region of axonal degeneration and cognitive alteration for SCD.
Collapse
Affiliation(s)
- Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yi-Chia Kung
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Chih-Ken Chen
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Chemin Lin
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Rung-Yu Tseng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yao-Liang Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Radiology, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Wen-Yi Huang
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Pin-Yuan Chen
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Shin-Tai Chong
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, 204, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chun-Hung Yeh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
| |
Collapse
|
4
|
Flaherty R, Sui YV, Masurkar AV, Betensky RA, Rusinek H, Lazar M. Diffusion imaging markers of accelerated aging of the lower cingulum in subjective cognitive decline. Front Neurol 2024; 15:1360273. [PMID: 38784911 PMCID: PMC11111894 DOI: 10.3389/fneur.2024.1360273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Alzheimer's Disease (AD) typically starts in the medial temporal lobe, then develops into a neurodegenerative cascade which spreads to other brain regions. People with subjective cognitive decline (SCD) are more likely to develop dementia, especially in the presence of amyloid pathology. Thus, we were interested in the white matter microstructure of the medial temporal lobe in SCD, specifically the lower cingulum bundle that leads into the hippocampus. Diffusion tensor imaging (DTI) has been shown to differentiate SCD participants who will progress to mild cognitive impairment from those who will not. However, the biology underlying these DTI metrics is unclear, and results in the medial temporal lobe have been inconsistent. Methods To better characterize the microstructure of this region, we applied DTI to cognitively normal participants in the Cam-CAN database over the age of 55 with cognitive testing and diffusion MRI available (N = 325, 127 SCD). Diffusion MRI was processed to generate regional and voxel-wise diffusion tensor values in bilateral lower cingulum white matter, while T1-weighted MRI was processed to generate regional volume and cortical thickness in the medial temporal lobe white matter, entorhinal cortex, temporal pole, and hippocampus. Results SCD participants had thinner cortex in bilateral entorhinal cortex and right temporal pole. No between-group differences were noted for any of the microstructural metrics of the lower cingulum. However, correlations with delayed story recall were significant for all diffusion microstructure metrics in the right lower cingulum in SCD, but not in controls, with a significant interaction effect. Additionally, the SCD group showed an accelerated aging effect in bilateral lower cingulum with MD, AxD, and RD. Discussion The diffusion profiles observed in both interaction effects are suggestive of a mixed neuroinflammatory and neurodegenerative pathology. Left entorhinal cortical thinning correlated with decreased FA and increased RD, suggestive of demyelination. However, right entorhinal cortical thinning also correlated with increased AxD, suggestive of a mixed pathology. This may reflect combined pathologies implicated in early AD. DTI was more sensitive than cortical thickness to the associations between SCD, memory, and age. The combined effects of mixed pathology may increase the sensitivity of DTI metrics to variations with age and cognition.
Collapse
Affiliation(s)
- Ryn Flaherty
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, United States
| | - Yu Veronica Sui
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arjun V. Masurkar
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Rebecca A. Betensky
- Department of Biostatistics, New York University School of Global Public Health, New York, NY, United States
| | - Henry Rusinek
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Mariana Lazar
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Triana AM, Saramäki J, Glerean E, Hayward NMEA. Neuroscience meets behavior: A systematic literature review on magnetic resonance imaging of the brain combined with real-world digital phenotyping. Hum Brain Mapp 2024; 45:e26620. [PMID: 38436603 PMCID: PMC10911114 DOI: 10.1002/hbm.26620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A primary goal of neuroscience is to understand the relationship between the brain and behavior. While magnetic resonance imaging (MRI) examines brain structure and function under controlled conditions, digital phenotyping via portable automatic devices (PAD) quantifies behavior in real-world settings. Combining these two technologies may bridge the gap between brain imaging, physiology, and real-time behavior, enhancing the generalizability of laboratory and clinical findings. However, the use of MRI and data from PADs outside the MRI scanner remains underexplored. Herein, we present a Preferred Reporting Items for Systematic Reviews and Meta-Analysis systematic literature review that identifies and analyzes the current state of research on the integration of brain MRI and PADs. PubMed and Scopus were automatically searched using keywords covering various MRI techniques and PADs. Abstracts were screened to only include articles that collected MRI brain data and PAD data outside the laboratory environment. Full-text screening was then conducted to ensure included articles combined quantitative data from MRI with data from PADs, yielding 94 selected papers for a total of N = 14,778 subjects. Results were reported as cross-frequency tables between brain imaging and behavior sampling methods and patterns were identified through network analysis. Furthermore, brain maps reported in the studies were synthesized according to the measurement modalities that were used. Results demonstrate the feasibility of integrating MRI and PADs across various study designs, patient and control populations, and age groups. The majority of published literature combines functional, T1-weighted, and diffusion weighted MRI with physical activity sensors, ecological momentary assessment via PADs, and sleep. The literature further highlights specific brain regions frequently correlated with distinct MRI-PAD combinations. These combinations enable in-depth studies on how physiology, brain function and behavior influence each other. Our review highlights the potential for constructing brain-behavior models that extend beyond the scanner and into real-world contexts.
Collapse
Affiliation(s)
- Ana María Triana
- Department of Computer Science, School of ScienceAalto UniversityEspooFinland
| | - Jari Saramäki
- Department of Computer Science, School of ScienceAalto UniversityEspooFinland
| | - Enrico Glerean
- Department of Neuroscience and Biomedical Engineering, School of ScienceAalto UniversityEspooFinland
| | | |
Collapse
|
6
|
Wang X, Chen Q, Liu Y, Sun J, Li J, Zhao P, Cai L, Liu W, Yang Z, Wang Z, Lv H. Causal relationship between multiparameter brain MRI phenotypes and age: evidence from Mendelian randomization. Brain Commun 2024; 6:fcae077. [PMID: 38529357 PMCID: PMC10963122 DOI: 10.1093/braincomms/fcae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
To explore the causal relationship between age and brain health (cortical atrophy, white matter integrity, white matter hyperintensities and cerebral microbleeds in various brain regions) related multiparameter imaging features using two-sample Mendelian randomization. Age was determined as chronological age of the subject. Cortical volume, white matter micro-integrity, white matter hyperintensity volume and cerebral microbleeds of each brain region were included as phenotypes for brain health. Age and imaging of brain health related genetic data were analysed to determine the causal relationship using inverse-variance weighted model, validated by heterogeneity and horizontal pleiotropy variables. Age is causally related to increased volumes of white matter hyperintensities (β = 0.151). For white matter micro-integrity, fibres of the inferior cerebellar peduncle (axial diffusivity β = -0.128, orientation dispersion index β = 0.173), cerebral peduncle (axial diffusivity β = -0.136), superior fronto-occipital fasciculus (isotropic volume fraction β = 0.163) and fibres within the limbic system were causally deteriorated. We also detected decreased cortical thickness of multiple frontal and temporal regions (P < 0.05). Microbleeds were not related with aging (P > 0.05). Aging is a threat of brain health, leading to cortical atrophy mainly in the frontal lobes, as well as the white matter degeneration especially abnormal hyperintensity and deteriorated white matter integrity around the hippocampus.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yawen Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Sun
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jia Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Linkun Cai
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wenjuan Liu
- Department of Radiology, Aerospace Center Hospital, Beijing 100089, China
- Peking University Aerospace School of Clinical Medicine, Beijing 100089, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
7
|
Saheli M, Moshrefi M, Baghalishahi M, Mohkami A, Firouzi Y, Suzuki K, Khoramipour K. Cognitive Fitness: Harnessing the Strength of Exerkines for Aging and Metabolic Challenges. Sports (Basel) 2024; 12:57. [PMID: 38393277 PMCID: PMC10891799 DOI: 10.3390/sports12020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Addressing cognitive impairment (CI) represents a significant global challenge in health and social care. Evidence suggests that aging and metabolic disorders increase the risk of CI, yet promisingly, physical exercise has been identified as a potential ameliorative factor. Specifically, there is a growing understanding that exercise-induced cognitive improvement may be mediated by molecules known as exerkines. This review delves into the potential impact of aging and metabolic disorders on CI, elucidating the mechanisms through which various exerkines may bolster cognitive function in this context. Additionally, the discussion extends to the role of exerkines in facilitating stem cell mobilization, offering a potential avenue for improving cognitive impairment.
Collapse
Affiliation(s)
- Mona Saheli
- Department of Anatomical Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.S.); (M.B.)
| | - Mandana Moshrefi
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Masoumeh Baghalishahi
- Department of Anatomical Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.S.); (M.B.)
| | - Amirhossein Mohkami
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Yaser Firouzi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Bahonar University, Kerman 7616913439, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| |
Collapse
|
8
|
Porcu M, Cocco L, Marrosu F, Cau R, Suri JS, Qi Y, Pineda V, Bosin A, Malloci G, Ruggerone P, Puig J, Saba L. Impact of corpus callosum integrity on functional interhemispheric connectivity and cognition in healthy subjects. Brain Imaging Behav 2024; 18:141-158. [PMID: 37955809 DOI: 10.1007/s11682-023-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
To examine the corpus callosum's (CC) integrity in terms of fractional anisotropy (FA) and how it affects resting-state hemispheric connectivity (rs-IHC) and cognitive function in healthy individuals. Sixty-eight healthy individuals were recruited for the study. The global FA (gFA) and FA values of each CC tract (forceps minor, body, tapetum, and forceps major) were evaluated using diffusion-weighted imaging (DWI) sequences. The homotopic functional connectivity technique was used to quantify the effects of FA in the CC tracts on bilateral functional connectivity, including the confounding effect of gFA. Brain regions with higher or lower rs-IHC were identified using the threshold-free cluster enhancement family-wise error-corrected p-value of 0.05. The null hypothesis was rejected if the p-value was ≤ 0.05 for the nonparametric partial correlation technique. Several clusters of increased rs-IHC were identified in relation to the FA of individual CC tracts, each with a unique topographic distribution and extension. Only forceps minor FA values correlated with cognitive scores. The integrity of CC influences rs-IHC differently in healthy subjects. Specifically, forceps minor anisotropy impacts rs-IHC and cognition more than other CC tracts do.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy.
- Department of Medical Imaging, Azienda Ospedaliera Universitaria di Cagliari, S.S: 554, Km 4,500 - CAP, Monserrato, 09042, Cagliari, Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Yang Qi
- Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | - Victor Pineda
- Department of Medical Sciences, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Cagliari, Italy
| | | | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Cagliari, Italy
| | - Josep Puig
- Department of Medical Sciences, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
Munro CE, Boyle R, Chen X, Coughlan G, Gonzalez C, Jutten RJ, Martinez J, Orlovsky I, Robinson T, Weizenbaum E, Pluim CF, Quiroz YT, Gatchel JR, Vannini P, Amariglio R. Recent contributions to the field of subjective cognitive decline in aging: A literature review. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12475. [PMID: 37869044 PMCID: PMC10585124 DOI: 10.1002/dad2.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/23/2023] [Accepted: 08/04/2023] [Indexed: 10/24/2023]
Abstract
Subjective cognitive decline (SCD) is defined as self-experienced, persistent concerns of decline in cognitive capacity in the context of normal performance on objective cognitive measures. Although SCD was initially thought to represent the "worried well," these concerns can be linked to subtle brain changes prior to changes in objective cognitive performance and, therefore, in some individuals, SCD may represent the early stages of an underlying neurodegenerative disease process (e.g., Alzheimer's disease). The field of SCD research has expanded rapidly over the years, and this review aims to provide an update on new advances in, and contributions to, the field of SCD in key areas and themes identified by researchers in this field as particularly important and impactful. First, we highlight recent studies examining sociodemographic and genetic risk factors for SCD, including explorations of SCD across racial and ethnic minoritized groups, and examinations of sex and gender considerations. Next, we review new findings on relationships between SCD and in vivo markers of pathophysiology, utilizing neuroimaging and biofluid data, as well as associations between SCD and objective cognitive tests and neuropsychiatric measures. Finally, we summarize recent work on interventions for SCD and areas of future growth in the field of SCD.
Collapse
Affiliation(s)
| | - Rory Boyle
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Xi Chen
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Gillian Coughlan
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Christopher Gonzalez
- Department of PsychologyIllinois Institute of TechnologyChicagoIllinoisUSA
- Department of PsychiatryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Roos J. Jutten
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jairo Martinez
- Department of PsychiatryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Psychological and Brain SciencesBoston UniversityBostonMassachusettsUSA
| | - Irina Orlovsky
- Department of Psychological and Brain SciencesUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | | | - Emma Weizenbaum
- Department of PsychiatryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Celina F. Pluim
- Brigham and Women's HospitalBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Psychological and Brain SciencesBoston UniversityBostonMassachusettsUSA
| | - Yakeel T. Quiroz
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer R. Gatchel
- Department of PsychiatryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Patrizia Vannini
- Brigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
10
|
The relationship between physical activity and subjective cognitive decline: Evidence from the behavioral risk factor surveillance system (BRFSS). J Affect Disord 2023; 328:108-115. [PMID: 36806601 DOI: 10.1016/j.jad.2023.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 01/15/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Studies have shown that subjective cognitive decline (SCD) is a major risk factor for mild cognitive impairment or even dementia, but the relationship between physical activity (PA) and SCD is still unclear. The goal of current study is to address how various physical activities relate to SCD. METHODS 216,593 adults from the Behavioral Risk Factor Surveillance System (BRFSS) were included in this study. We measured SCD and PA with participants' self-report. With the unconditional logistic regression model, the association between PA and SCD was investigated. We used a four-way decomposition method to explore the mediation roles of depression between PA and SCD. The nearest matching method of propensity score and multinomial propensity score were used to reduce the effects of confounding factors. RESULTS Compared with those inactive, the weighted adjusted odds ratios (AORs) of SCD among those who were physically active were <1 (p < 0.005), regardless of the type of PA. The top three PA in weighted AORs were: running (AOR: 0.51, 95 % CI: 0.50-0.52), aerobics exercise (AOR: 0.55, 95 % CI: 0.53-0.56), and weightlifting (AOR: 0.60, 95 % CI: 0.59-0.62). The dose-response relationship between PA and SCD was found. Participants who engaged in PA for 241-300 min per week (AOR: 0.61, 95 % CI: 0.59-0.62) or exercised metabolic equivalent of 801-1000 per week (AOR: 0.62, 95 % CI: 0.62-0.65) had the lowest risk of SCD. CONCLUSIONS Regardless of the specific PA types, engaging in PA is associated with a reduced risk of having SCD, and people who engage in running had the lowest risk of SCD. There was a dose-response relationship between PA and SCD, and PA-based interventions should be developed accordingly to prevent cognitive deterioration in older age.
Collapse
|
11
|
Lee PL, Kuo CY, Wang PN, Chen LK, Lin CP, Chou KH, Chung CP. Regional rather than global brain age mediates cognitive function in cerebral small vessel disease. Brain Commun 2022; 4:fcac233. [PMID: 36196084 PMCID: PMC9525017 DOI: 10.1093/braincomms/fcac233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/24/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
The factors and mechanisms underlying the heterogeneous cognitive outcomes of cerebral small vessel disease are largely unknown. Brain biological age can be estimated by machine learning algorithms that use large brain MRI data sets to integrate and compute neuroimaging-derived age-related features. Predicted and chronological ages difference (brain-age gap) reflects advanced or delayed brain aging in an individual. The present study firstly reports the brain aging status of cerebral small vessel disease. In addition, we investigated whether global or certain regional brain age could mediate the cognitive functions in cerebral small vessel disease. Global and regional (400 cortical, 14 subcortical and 28 cerebellum regions of interest) brain-age prediction models were constructed using grey matter features from MRI of 1482 healthy individuals (age: 18–92 years). Predicted and chronological ages differences were obtained and then applied to non-stroke, non-demented individuals, aged ≥50 years, from another community-dwelling population (I-Lan Longitudinal Aging Study cohort). Among the 734 participants from the I-Lan Longitudinal Aging Study cohort, 124 were classified into the cerebral small vessel disease group. The cerebral small vessel disease group demonstrated significantly poorer performances in global cognitive, verbal memory and executive functions than that of non-cerebral small vessel disease group. Global brain-age gap was significantly higher in the cerebral small vessel disease (3.71 ± 7.60 years) than that in non-cerebral small vessel disease (−0.43 ± 9.47 years) group (P = 0.003, η2 = 0.012). There were 82 cerebral cortical, 3 subcortical and 4 cerebellar regions showing significantly different brain-age gap between the cerebral small vessel disease and non-cerebral small vessel disease groups. Global brain-age gap failed to mediate the relationship between cerebral small vessel disease and any of the cognitive domains. In 89 regions with increased brain-age gap in the cerebral small vessel disease group, seven regional brain-age gaps were able to show significant mediation effects in cerebral small vessel disease-related cognitive impairment (we set the statistical significance P < 0.05 uncorrected in 89 mediation models). Of these, the left thalamus and left hippocampus brain-age gap explained poorer global cognitive performance in cerebral small vessel disease. We demonstrated the interconnections between cerebral small vessel disease and brain age. Strategic brain aging, i.e. advanced brain aging in critical regions, may be involved in the pathophysiology of cerebral small vessel disease-related cognitive impairment. Regional rather than global brain-age gap could potentially serve as a biomarker for predicting heterogeneous cognitive outcomes in patients with cerebral small vessel disease.
Collapse
Affiliation(s)
- Pei-Lin Lee
- Institute of Neuroscience, National Yang Ming Chiao Tung University , Taipei , Taiwan
| | - Chen-Yuan Kuo
- Aging and Health Research Center, National Yang Ming Chiao Tung University , Taipei , Taiwan
| | - Pei-Ning Wang
- Aging and Health Research Center, National Yang Ming Chiao Tung University , Taipei , Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital , Taipei , Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University , Taipei , Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital , Taipei , Taiwan
| | - Liang-Kung Chen
- Aging and Health Research Center, National Yang Ming Chiao Tung University , Taipei , Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital , Taipei , Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital) , Taipei , Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University , Taipei , Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University , Taipei , Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University , Taipei , Taiwan
| | - Kun-Hsien Chou
- Institute of Neuroscience, National Yang Ming Chiao Tung University , Taipei , Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University , Taipei , Taiwan
| | - Chih-Ping Chung
- Aging and Health Research Center, National Yang Ming Chiao Tung University , Taipei , Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital , Taipei , Taiwan
| |
Collapse
|
12
|
Liang S, Yang F, Zhang Y, Zhao H, Wang X. Changes and clinical correlation of diffusion tensor imaging parameters of compressed spinal cord and nerve root in patients with cervical spondylosis. BMC Med Imaging 2022; 22:107. [PMID: 35659198 PMCID: PMC9166510 DOI: 10.1186/s12880-022-00835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) was used to quantitatively study the characteristics of the related spinal cord and nerve root compression parameters in patients with cervical spondylosis (CS), and diffusion tensor tractography (DTT) was used to visualize the spinal cord and nerve root and analyze their relevance to clinical evaluation. METHODS A total of 67 patients with CS and 30 healthy volunteers received 3.0 T magnetic resonance imaging. Cervical DTI and DTT were performed in all the participants, where the b value of DTI was set at 800 s/mm2. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the spinal cord and cervical nerve roots were measured by using DTI. Patients with CS were scored according to the modified Japanese Orthopedic Association (mJOA) score. RESULTS In all the participants, the spinal cord and cervical nerve roots were clearly visible by DTT. Compared to the healthy volunteers, the FA values were significantly decreased and ADC values were significantly increased in patients with CS. mJOA score was significantly correlated with the DTI index (ADC and FA) values. Receiver operator characteristic curve analysis revealed that FA and ADC could identify mild, moderate, and severe CS. CONCLUSIONS DTI parameters of cervical spinal cord and nerve root compression are associated with the clinical evaluation of patients with CS and may be helpful in assessing the severity of CS.
Collapse
Affiliation(s)
- Shuo Liang
- Department of Radiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Feng Yang
- Department of Radiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China.
| | - Yang Zhang
- Department of Spine Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China.
| | - Huiyu Zhao
- Department of Radiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Xinyue Wang
- Department of Radiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|